7Th Proceedings IWCSPP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elytra Reduction May Affect the Evolution of Beetle Hind Wings
Zoomorphology https://doi.org/10.1007/s00435-017-0388-1 ORIGINAL PAPER Elytra reduction may affect the evolution of beetle hind wings Jakub Goczał1 · Robert Rossa1 · Adam Tofilski2 Received: 21 July 2017 / Revised: 31 October 2017 / Accepted: 14 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Beetles are one of the largest and most diverse groups of animals in the world. Conversion of forewings into hardened shields is perceived as a key adaptation that has greatly supported the evolutionary success of this taxa. Beetle elytra play an essential role: they minimize the influence of unfavorable external factors and protect insects against predators. Therefore, it is particularly interesting why some beetles have reduced their shields. This rare phenomenon is called brachelytry and its evolution and implications remain largely unexplored. In this paper, we focused on rare group of brachelytrous beetles with exposed hind wings. We have investigated whether the elytra loss in different beetle taxa is accompanied with the hind wing shape modification, and whether these changes are similar among unrelated beetle taxa. We found that hind wings shape differ markedly between related brachelytrous and macroelytrous beetles. Moreover, we revealed that modifications of hind wings have followed similar patterns and resulted in homoplasy in this trait among some unrelated groups of wing-exposed brachelytrous beetles. Our results suggest that elytra reduction may affect the evolution of beetle hind wings. Keywords Beetle · Elytra · Evolution · Wings · Homoplasy · Brachelytry Introduction same mechanism determines wing modification in all other insects, including beetles. However, recent studies have The Coleoptera order encompasses almost the quarter of all provided evidence that formation of elytra in beetles is less currently known animal species (Grimaldi and Engel 2005; affected by Hox gene than previously expected (Tomoyasu Hunt et al. -
Appl. Entomol. Zool. 45(1): 89-100 (2010)
Appl. Entomol. Zool. 45 (1): 89–100 (2010) http://odokon.org/ Mini Review Psocid: A new risk for global food security and safety Muhammad Shoaib AHMEDANI,1,* Naz SHAGUFTA,2 Muhammad ASLAM1 and Sayyed Ali HUSSNAIN3 1 Department of Entomology, University of Arid Agriculture, Rawalpindi, Pakistan 2 Department of Agriculture, Ministry of Agriculture, Punjab, Pakistan 3 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK (Received 13 January 2009; Accepted 2 September 2009) Abstract Post-harvest losses caused by stored product pests are posing serious threats to global food security and safety. Among the storage pests, psocids were ignored in the past due to unavailability of the significant evidence regarding quantitative and qualitative losses caused by them. Their economic importance has been recognized by many re- searchers around the globe since the last few years. The published reports suggest that the pest be recognized as a new risk for global food security and safety. Psocids have been found infesting stored grains in the USA, Australia, UK, Brazil, Indonesia, China, India and Pakistan. About sixteen species of psocids have been identified and listed as pests of stored grains. Psocids generally prefer infested kernels having some fungal growth, but are capable of excavating the soft endosperm of damaged or cracked uninfected grains. Economic losses due to their feeding are directly pro- portional to the intensity of infestation and their population. The pest has also been reported to cause health problems in humans. Keeping the economic importance of psocids in view, their phylogeny, distribution, bio-ecology, manage- ment and pest status have been reviewed in this paper. -
Effect of Host Age on Progeny Production of Theocolax Elegans
Kasetsart J. (Nat. Sci.) 48 : 587 - 597 (2014) Effect of Host Age on Progeny Production of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) Reared on Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) Bonginkhosi E. Dlamini* and Weerawan Amornsak ABSTRACT Five host ages of Maize weevil, Sitophilus zeamais (Motschulsky) reared on brown rice were examined for progeny production of Theocolax elegans (Westwood). Brown rice kernels infested with S. zeamais were exposed to a mated female of T. elegans after 13, 15, 17, 19 and 21 d following S. zeamais introduction. Host stages were determined by measuring head-capsule widths from all the host ages. There was a signifi cant difference (P < 0.05) in T. elegans progeny production among the different host ages. Total progeny, total female progeny and total male progeny produced by 19-day-old S. zeamais larvae were signifi cantly higher (P < 0.05) compared to the other host ages. Progeny of T. elegans raised on 19-day-old S. zeamais larvae had a higher female to male ratio compared to the other host ages. Sitophilus zeamais larvae after 13, 15–17 and 19–21 d were found to be second, third and fourth instars, respectively. It was concluded that T. elegans can develop on the second, third and fourth instar larvae of S. zeamais. However, 19-day-old (fourth instar) S. zeamais larvae produced more T. elegans progeny with a higher female to male ratio. Keywords: Sitophilus zeamais, Theocolax elegans, host ages, progeny production, parasitoid INTRODUCTION have adverse effects on consumers and long-term residual effect on the environment (Phillips, 1997; Rice and maize are important food Charlet et al., 2002; Flinn and Hagstrum, 2002; crops of many countries of the world and are Bale et al., 2007), while biological control agents grown for grain which is stored because it cannot have no adverse effects on consumers or the be distributed or consumed immediately (Flinn environment (Flinn, 1998; Tefera et al., 2010). -
Trichoferus Campestris (Faldermann)
Velvet Longhorn Beetle Screening Aid Trichoferus campestris (Faldermann) Hanna R. Royals and Todd M. Gilligan Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research Boulevard, Suite 108, Fort Collins, Colorado 80526 U.S.A. (Emails: [email protected]; [email protected]) This CAPS (Cooperative Agricultural Pest Survey) screening aid produced for and distributed by: Version 2.0 USDA-APHIS-PPQ National Identification Services (NIS) 29 Jan 2019 This and other identification resources are available at: http://caps.ceris.purdue.edu/taxonomic-services Trichoferus campestris (Faldermann), the velvet longhorn beetle, is a wood- boring beetle native to Asia (also in literature as Hesperophanes campestris). The recorded host plants for this beetle are numerous, encompassing at least 40 genera of woody plants. They preferentially attack apple (Malus) and mulberry (Morus), but have been recorded on Betula, Broussonetia, Gleditsia, Salix, Sorbus, and various other fruit and deciduous trees. The most likely pathway for these beetles into North America is imported wood dunnage and wood packaging, as this pest is able to develop in very dry wood. In 1997, a localized infestation of this species occurred in a storage site in New Brunswick, New Jersey. Two specimens were recorded in a residential area near Montreal in 2002, and adults and larvae were collected from dying logs of Norway maple Fig. 1: Adult of Trichoferus campestris (Photo (Acer platanoides) in Ontario. Since then, adults have been captured in Lindgren by Gyorgy Csoka, Hungary Forest Research funnel traps deployed in Illinois, Ohio, Minnesota, and Utah. -
PESTS of STORED PRODUCTS a 'Pest of Stored Products' Can Refer To
PESTS OF STORED PRODUCTS A ‘pest of stored products’ can refer to any organism that infests and damages stored food, books and documents, fabrics, leather, carpets, and any other dried or preserved item that is not used shortly after it is delivered to a location, or moved regularly. Technically, these pests can include microorganisms such as fungi and bacteria, arthropods such as insects and mites, and vertebrates such as rodents and birds. Stored product pests are responsible for the loss of millions of dollars every year in contaminated products, as well as destruction of important documents and heritage artifacts in homes, offices and museums. Many of these pests are brought indoors in items that were infested when purchased. Others originate indoors when susceptible items are stored under poor storage conditions, or when stray individual pests gain access to them. Storage pests often go unnoticed because they infest items that are not regularly used and they may be very small in size. Infestations are noticed when the pests emerge from storage, to disperse or sometimes as a result of crowding or after having exhausted a particular food source, and search for new sources of food and harborage. Unexplained occurrences of minute moths and beetles flying in large numbers near stored items, or crawling over countertops, walls and ceilings, powdery residues below and surrounding stored items, and stale odors in pantries and closets can all indicate a possible storage pest infestation. Infestations in stored whole grains or beans can also be detected when these are soaked in water, and hollowed out seeds rise to the surface, along with the adult stages of the pests, and other debris. -
The Correspondence of Peter Macowan (1830 - 1909) and George William Clinton (1807 - 1885)
The Correspondence of Peter MacOwan (1830 - 1909) and George William Clinton (1807 - 1885) Res Botanica Missouri Botanical Garden December 13, 2015 Edited by P. M. Eckel, P.O. Box 299, Missouri Botanical Garden, St. Louis, Missouri, 63166-0299; email: mailto:[email protected] Portrait of Peter MacOwan from the Clinton Correspondence, Buffalo Museum of Science, Buffalo, New York, USA. Another portrait is noted by Sayre (1975), published by Marloth (1913). The proper citation of this electronic publication is: "Eckel, P. M., ed. 2015. Correspondence of Peter MacOwan(1830–1909) and G. W. Clinton (1807–1885). 60 pp. Res Botanica, Missouri Botanical Garden Web site.” 2 Acknowledgements I thank the following sequence of research librarians of the Buffalo Museum of Science during the decade the correspondence was transcribed: Lisa Seivert, who, with her volunteers, constructed the excellent original digital index and catalogue to these letters, her successors Rachael Brew, David Hemmingway, and Kathy Leacock. I thank John Grehan, Director of Science and Collections, Buffalo Museum of Science, Buffalo, New York, for his generous assistance in permitting me continued access to the Museum's collections. Angela Todd and Robert Kiger of the Hunt Institute for Botanical Documentation, Carnegie-Melon University, Pittsburgh, Pennsylvania, provided the illustration of George Clinton that matches a transcribed letter by Michael Shuck Bebb, used with permission. Terry Hedderson, Keeper, Bolus Herbarium, Capetown, South Africa, provided valuable references to the botany of South Africa and provided an inspirational base for the production of these letters when he visited St. Louis a few years ago. Richard Zander has provided invaluable technical assistance with computer issues, especially presentation on the Web site, manuscript review, data search, and moral support. -
Hymenoptera: Chalcidoidea) of Morocco
Graellsia, 77(1): e139 enero-junio 2021 ISSN-L: 0367-5041 https://doi.org/10.3989/graellsia.2021.v77.301 ANNOTATED CHECK-LIST OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) OF MOROCCO. PART II Khadija Kissayi1,*, Mircea-Dan Mitroiu2 & Latifa Rohi3 1 National School of Forestry, Department of Forest Development, B.P. 511, Avenue Moulay Youssef, Tabriquet, 11 000, Salé, Morocco. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-3494-2250 2 Alexandru Ioan Cuza, University of Iaşi, Faculty of Biology, Research Group on Invertebrate Diversity and Phylogenetics, Bd. Carol I 20A, 700 505, Iaşi, Romania. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-1368-7721 3 University Hassan II, Faculty of Sciences Ben M’sik, Laboratory of ecology and environment, Avenue Driss El Harti, B.P. 7955, Casablanca, 20 800 Morocco. Email: [email protected] / or [email protected] – ORCID iD: https://orcid.org/0000-0002-4180-1117 * Corresponding author: [email protected] ABSTRACT In this second part, we present the subfamily Pteromalinae in Morocco, which includes 86 species belonging to 50 genera. Fifteen genera and 37 species are listed for the first time in the Moroccan fauna, among which 9 have been newly identified, 24 have been found in the bibliography and 4 deposited in natural history museums. An updated list of Moroccan species is given, including their distribution by regions, their general distribution and their hosts. Keywords: Pteromalinae; distribution; hosts; new record; Morocco; Palaearctic Region. RESUMEN Lista comentada de Pteromalidae (Hymenoptera: Chalcidoidea) de Marruecos. Parte II En esta segunda parte, presentamos la subfamilia Pteromalinae en Marruecos, que incluye 86 especies pertenecientes a 50 géneros. -
Potential of the Blattisocius Mali (Acari: Blattisociidae) Mite As Biological Control Agent of Potato Tuber Moth (Lepidoptera: Gelechiidae) in Stored Potatoes
Potential of the Blattisocius mali (Acari: Blattisociidae) mite as biological control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes ABSTRACT: Potato tuber moth (PTM)Phthorimaea operculella(Lep.: Gelechiidae) is one of the pest species affecting Solanaceae worldwide. It can cause up to 80% of losses in potato cultivation in fieldas well asdamage up to 100% of tubersduring storage. Blattisocius (=Typhlodromus) mali (Acari: Ascidae),a predatory mite,was studied as a potential biological control agent of PTM. An acceptance assay of PTM eggs as prey was carried out. Additionally, two assays have been conducted under microcosm conditions, which assess the densities of mite releases at two levels of PTM infestation. The results showed that B. malifemale adults accept PTM eggs as prey, and they cause a mortality rate 89.63±2.47%, 48 hours later. In addition to this, under microcosm conditions with potato tubers, we found that when the level of infestation of the pest was low, the effectiveness of the mite control varied from 72.50±28.50 to 100%, twenty-eight days later, according to the release rate of mites. Under high levels of infestation, the effectiveness of biological control of the pest varied from 53.36±25.55 to 88.85±7.17%, also according to the release rate of the mites. The possible use of biological control with B. mali of PTM, in different types of potato storages, are analysed and discussed. INTRODUCTION Pests and diseases cause pronounced losses in potato crops (Solanum tuberosum L.).Current reductions in the harvest are caused byapproximately:40.3% pathogens and viruses; 21.1% animal pests and 8.3% weeds (Oerke 2006). -
Influence of Wheat Cultivar, Temperature, and Theocolax
INFLUENCE OF WHEAT CULTIVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT BY MICHAEL D. TOEWS Bachelor ofScience Fort Hays State University Hays, Kansas 1995 Submitted to the Faculty ofthe Graduate College ofthe Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May 1998 INFLUENCE OF WHEAT CULTrVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT Thesis Approved: ~~~ ~JJ.~D~~_ /~,) 6L~fN-r , ean ofthe Graduate College n PREFACE The first chapter ofthis thesis is a literature review focused on issues in stored wheat. Also induded in chapter one is a review ofthe lesser grain borer, the parasitoid Theocolax elegans, and interactions among the trophic levels in my research. Subsequent chapters are formal papers representing my M.S. research project and are written in compliance with the publication policies and guidelines for manuscript preparation with the Entomological Society ofAmerica. The completion ofthis degree would not have been possible without the guidance ofmany people. I would like to express my sincere appreciation to my graduate advisor, Dr. Gemt Cuperus, for his assistance and direction. My co-advisor, Dr. Tom Phillips, provided a great deal ofpractical assistance and advice while also housing me in his laboratory space. This research project greatly benefited from the insight offered by Dr. Richard Berberet and Dr. Phillip Mulder. Special appreciation is directed toward Dr. Mark Payton who answered many questions and assisted me with the design and analysis of each experiment. I wish to extend special thanks to Edmond Bonjour for his proofreading and example throughout all phases ofmy degree. -
Mite Composition Comprising a Predatory Mite and Immobilized
(19) TZZ _ __T (11) EP 2 612 551 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01K 67/033 (2006.01) A01N 63/00 (2006.01) 05.11.2014 Bulletin 2014/45 A01N 35/02 (2006.01) (21) Application number: 12189587.4 (22) Date of filing: 23.10.2012 (54) Mite composition comprising a predatory mite and immobilized prey contacted with a fungus reducing agent and methods and uses related to the use of said composition Milbenzusammensetzung mit einer Raubmilbenart und mit einem Pilzreduktionsmittel in Kontakt gekommenes immobilisiertes Beutetier sowie Verfahren und Verwendungen im Zusammenhang mit dem Einsatz dieser Zusammensetzung Composition d’acariens comprenant des acariens prédateurs et proie immobilisée mise en contact avec un agent réducteur de champignon et procédés et utilisations associés à l’utilisation de ladite composition (84) Designated Contracting States: EP-A1- 2 380 436 WO-A1-2007/075081 AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • CROSS J V ET AL: "EFFECT OF REPEATED PL PT RO RS SE SI SK SM TR FOLIAR SPRAYS OF INSECTICIDES OR FUNGICIDES ON ORGANOPHOSPHATE- (30) Priority: 04.01.2012 US 201261583152 P RESISTANT STRAINS OF THE ORCHARD PREDATORY MITE TYPHLODROMUS PYRI ON (43) Date of publication of application: APPLE", CROP PROTECTION, ELSEVIER 10.07.2013 Bulletin 2013/28 SCIENCE, GB, vol. 13, 1 January 1994 (1994-01-01), pages 39-44, XP000917959, ISSN: (73) Proprietor: Koppert B.V. -
Electrophysiological and Behavioral Responses of Theocolax Elegans (Westwood)(Hymenoptera: Pteromalidae) to Cereal Grain Volatiles
Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 5460819, 8 pages http://dx.doi.org/10.1155/2016/5460819 Research Article Electrophysiological and Behavioral Responses of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) to Cereal Grain Volatiles Giacinto Salvatore Germinara,1 Antonio De Cristofaro,2 and Giuseppe Rotundo2 1 Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy 2Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy Correspondence should be addressed to Giacinto Salvatore Germinara; [email protected] Received 2 October 2015; Revised 23 December 2015; Accepted 5 January 2016 Academic Editor: Johannes Stokl¨ Copyright © 2016 Giacinto Salvatore Germinara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Volatiles emitted by the host’s food would be the first signals used by parasitoids in the host location process and are thought to play an important role in host habitat location. In this study, the olfactory responses of Theocolax elegans (Westwood), a Pteromalid wasp that parasitizes immature stages of stored-product insect pests developing inside cereal or leguminous grains, to volatiles emitted by healthy wheat grains, their hexane extracts, and different doses of three individual compounds previously identified in cereal grain odors were investigated in Y-tube olfactometer and Petri dish arena behavioral bioassays and electroantennogram recordings. In Y-tube olfactometer bioassays, odors from healthy wheat grains and their hexane extracts were attractive to both sexes of T. -
Spider Beetles
TEL: 0800 804 6378 Spider Beetles Description Order: Coleoptera (‘sheath-wings’) Characteristics: Forewings hard and leathery, meeting along mid-line of dorsal surface; hindwings membranous, sometimes lacking; biting mouthparts; well developed thorax; complete metamorphosis with egg, larval, pupal and Australian spider adult stages. beetle 3.2mm long Family: Ptinidae Members of this family possess long, 11-segmented antennae, positioned between Adult beetles, too, will damage packaging the eyes, plus a number of characteristics which Distribution Ptinus tectusoriginated in Australasia. It is a including bags and sacks. Gregarious and give them a spider-like appearance: a stout cosmopolitan species which reached Europe in nocturnal, they spend the day in cracks and body with hairy surface; a waist-like constriction the 19th century and is now widely distributed. crevices amongst packaging and the fabric of at the base of the prothorax; 6 (not 8) long thin It is rarely imported and infestations often the store. Consequently they can thrive in old legs with 5-segmented tarsi. originate in birds’ nests. There are 2-4 buildings where they find many harbourages. generations per year in unheated conditions. Species characteristics: All stages except eggs and young larvae can Life-Cycle overwinter. The female Australian spider beetle may Australian Spider Beetle produce 120 or more eggs over 3-4 weeks in (Ptinus tectus) Adult, 2.5-4mm long; elytra Ptinus fur is a closely related species which is early summer. They are laid either singly or in clothed with dull-brown to golden-brown hairs; also cosmopolitan in distribution. batches and, being sticky, will adhere to the striae not distinct unless hairs rubbed off.