Region Sierras Pampeanas Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Region Sierras Pampeanas Pdf Region sierras pampeanas pdf Continue doi: 10.2475/ajs.286.10.737 AJS Online December 1986 vol. 286 No 10 737-764 Load with a link to an article with reference to articles via Google Scholar Load related web page information Page 2 doi: 10.2475/ajs.286.10.765 AJS Online December 1986 vol. 286 No. 10 765-791 Show PDF in full window Full Text (PDF) Load with reference to article information Citing articles via Google Scholar Articles Ellis, D. J. Search for imaginary content Load related web page information Around the last 10 million years of the cape subductive sub-horizon form directly under the advanced lithosphere of the province of Sierra Pampenas, in the west of Argentina. During this time, the middle and upper cortex split into many faulty blocks separated by reverse faults. Non-pool pools fill wide valleys between basement lifts. The theory predicts that there may be longwave subsidence throughout the Sierras Pampeanas area due to the flat subduction of the plate beneath it. However, the tectonic province of Sierra Pampean is well above sea level and may have risen topographically since the Mid-Miocene, when the sea splashed around the edges. Various geophysical studies also show that the crust is very thick, thicker than one would expect for the continental crust at its current height. How are these facts related to each other? First, we tested the suggestion that there are sea layers of the Miocene age in the Sierra Pampeans that would be a solid paleotopographic marker. Isotopic studies of PhD student Brian Raskin on possible marine limestone show that they are much more likely to be lacustrique deposits, and thus there is no evidence of sea level rise in Neogene. Working with Mario Jimenez and colleagues from the National University of San Juan (research of the gravitational field and magnetic field) and Fede Devil from the National University of Cordoba (field geology, geochronology, interpretation of seismic reflections and mechanical modeling), aimed at more accurate definition of geometry and history of neogenic sedimentary basins of Sierra Pampean. The geophysical characterization of the deep crust and flat plate lithosphere, conducted by a team of the University of Arizona led by Susan Beck and George Sandt, provided a valuable context for our studies of topographical evolution. The reflection of seismic profiles (provided by RepsolYPF) illustrates that thick clusters of neogene (?) layers are not related to the modern morphology of the basin and range. Fede Devila explored the role of dynamic subsidence associated with the alignment of the Nasca subduction slab under South America in the regional development of the basin. Some of the relevant publications are: Davila, F., Jordan, T.E., and Asty, R., 2005, LongWave in Andes broken through shadow: Near-fused control on sedimentary and topography topography Pampinaas? 6th International Symposium on Andean Geodynamics (ISAG Barcelona), IRD Editions (Institut de Recherche pour le Developpement) Paris, page 211-214.Devila, F.M., Astiny, R.A., Jordan, T.E., 2005, Kargas subcorcatalites en el anthepas yn y la planicie pampeana: evidencias estratigr'ficas, totrogrifikas y geof'sicas: Revista de la Asociaci'n Geol'tica Argentina, v. p.775-786.Fisher, N.D., Jordan, T.E., and Brown, L., 2002, Structural and Stratigraphic Evolution of the La Rioja Basin, Argentina: Journal of South American Earth Sciences, Art 15, p. 141-156. Jordan, T.E., and Allmendinger, R.W., 1986, SierraS Pampeanas of Argentina: The modern analogue of the deformation of the rocky mountains foreland: American Journal of Science, art. 286, p.737-764. Jordan, T.E., Seitler,., Ramos, VA, and Gleadow, A.J.W., 1989, Thermo-chronometric data on the development of the basement foamline in SierraS Pampeanas, Argentina: Journal of South American Earth Sciences, Article 2, #3, page 207-222.Allmendinger, R.W., and Jordan, T.E., 1989 Geological Map of the Newfoundland Mountains, Northwest, Utah (scale 1:31, 680): U.S. Geological Survey, Map MF-2087. Tabbutt, K, Naezer, KV, Jordan, T.E. and Cerveny, P.F., 1989, New fission-track Ages of Mio-Plioocene Tuffs in Sierras Pampeanas and Precordirier Argentina: Asociaci'n Geol'gica Argentina, Revista, 34, p. 408-419Gimenez, M.E., Martinez, M.P., Jordan, T., Ruiz, F., Lins Klinger, F., 2009, Gravity Characteristics of the La Rioja Valley Basin, Argentina: Geophysics, Art 74, No. 3, DOI. 10.1190/1.3103247 This article needs additional quotes to be verified. Please help improve this article by adding quotes to reliable sources. Non-sources of materials can be challenged and removed. Find sources: Sierras Pampeanas - News newspaper book scientist JSTOR (December 2017) (Learn how and when to remove this template message) Location of the Cerro region of General Belgrano west side of Champaqu after the snowfall Of Trithrinax campestris forest near Papagaios Sierras Pampeanas (also called Central Sierras or Pampas Sierra) (English: Pampas Sierra) (English: Pampas Mountain) The Sierra Pampeana is a chain of mountains that rise sharply from the surrounding region of Pampa in northwestern Argentina. They run parallel to the Andes, and their crest line is about 540 km (340 miles) east of the Andean crest line (running from 29 to 35 S latitudes about 65 W longitude). They cross seven provinces of Argentina: San Luis, San Juan, Cordoba, La Rioja, Catamarca, Santiago del Estero and Tucuman. The geography of the highest point of the Sierra Pampean is Cerro General Belgrano (6,250 m above sea level) in La Rioja, in the Area of Famatina. Between the high points are several salt-filled depressions. Depression Salinas Grandes in Cordoba, La Rioja, Catamarque and Santiago del Estero. A characteristic feature of many of these mountain ranges is their morphological asymmetry: the western slopes are usually steeper than the eastern slopes, so the former are sometimes called coasts, and the latter are called skirts. Narrow valleys are called broken or open; narrow openings between valleys are called doors. Due to erosion and other geological forces (volcanoes, glaciers, rivers, tectonics, etc.), the surface of this area varies greatly. It includes rocks and narrow channels of some rivers that are called crates (if they are moderate in size) or cannons (if they are older); There are abundant caves, grottoes and overhangs. Some mountains are separated by large open areas (too large to be considered a valley); they are called barreals (mud flats) or pampas (herbal plains). Geology See also: Achala Batolith and the Pampei Flat Plate Before the Mesozoic Sierra Pampeana were affected by cycles of oregon events produced by a series of continental collisions along the proto-Pacific edge of Gondwana. The neoprotherosoysian Cambrian Pameese orage was a major event along the southwestern Gondwana, which coincided with the end of the Brazilian-Pan-African beard. In Cambrian, subductions along the proto- Pacific edge lead to famatinian orogeny which accretes Precordillera Terrane in Gondwana. In the horn of Gondwanida Gondwana reached its maximum level at the beginning of carbon and began to disintegrate in the early cretaceous. Along the Pacific region, the convergence of tectonic plates leads to the resumption of subduction, leading to large Riolitic provinces and the plutonium belts of the Permian-Jurassic period. By the end of the Paleozoic erosion, a penepley had been forming in the eastern Sierra Pampean. Later tectonic movements divided this surface into different levels, with the highest level being Pampa de Achala. As the South Atlantic opened after the basalt floods of Parana-Etendek, the Andean formation of the Andes, a product of volcanism and compression forces along the Pacific region, but also led to the development of elongating basins in South America and passive reserves along the Atlantic coast, processes continue to this day. The basement of the Sierra Pampean was raised during the Andean oreganoia over the almost horizontal segment of the Subduction Plate of The Attack. The Sierras Pampeanas also suffered from the magmatism of the Miocene arc 700 km east of the Chilean Trench during this period. Climate and hydrography This region has a temperate and semi-arid climate, with warm summers and cool winters. The north eastern slope is covered with tropical forests, due to the high humidity in this subtropical zone. Parts in Cordoba and San Luis enjoy a Mediterranean-style climate, with intense summers and snowy winters; the vegetation here includes coniferous trees. More precipitation falls on the eastern slopes, which are met by wet winds from the Atlantic Ocean. Groundwater is not abundant in most of this area; the eastern slopes show a large population due to the greater water flow available there. There are short, torrential rivers and many streams and rivers that carry low streams, with brief and violent floods caused by summer rains. These rivers are used to produce hydropower. Flora and fauna Flora Extant species include algarrobo Blanco (white carob), algarrobo negro, chanar, jarilla, mystol, piquinine, tala, alpataco, tabaquillo and espinillo. In the more arid regions (western faces) grow giant or medium cacti and various shrubs (chill, tola, etc.) Because more rainfall is available, vegetation is dense with trees such as conifers, alders, deciduous trees including walnut, jacaranda, pisonia, Schinus mollee, que que que. The areas of Cordoba and San Luis have abundant vegetation on the eastern slopes, including carob, coconuts (local name for palm trees), garabato blanco (acacia) and willow. On the hills of Cordoba there are olives, peach, pear, apricot, fig trees, iva, lemon trees, cypress, Cedar, Pine, Eucalyptus, Poplar, Oak and Willow Especially in the areas of Cordoba and San Luis are shrubs and medicinal herbs of peperin, pennyroyal, dandelion, banana, banana, grapes of mounts Fertile Valley in San Juan In arid areas such as the center and west of La Rioja and Catamark, the vines are smeared with , (jujube was delivered by Lebanese immigrants and Syrians in the early twentieth century), grains, aloe and jojoba.
Recommended publications
  • Redalyc.Sr, C and O Isotope Composition of Marbles from The
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Murra, J.A.; Baldo, E.G.; Galindo, C.; Casquet, C.; Pankhurst, R.J.; Rapela, C.W.; Dahlquist, J. Sr, C and O isotope composition of marbles from the Sierra de Ancasti, Eastern Sierras Pampeanas, Argentina: age and constraints for the Neoproterozoic-Lower Paleozoic evolution of the proto- Gondwana margin Geologica Acta: an international earth science journal, vol. 9, núm. 1, marzo, 2011, pp. 79-92 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50522124008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.9, Nº 1, March 2011, 79-92 DOI: 10.1344/105.000001645 Available online at www.geologica-acta.com Sr, C and O isotope composition of marbles from the Sierra de Ancasti, Eastern Sierras Pampeanas, Argentina: age and constraints for the Neoproterozoic–Lower Paleozoic evolution of the proto-Gondwana margin 1 1 2 2 3 4 1 J.A. MURRA E.G. BALDO C. GALINDO C. CASQUET R.J. PANKHURST C.W. RAPELA J. DAHLQUIST 1 CICTERRA (Universidad Nacional de Córdoba - Conicet) Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina. Murra E-mail: [email protected] Baldo E-mail: [email protected] Dahlquist E-mail: [email protected] 2 Departamento. Petrología y Geoquímica Facultad de Ciencias Geológicas, Inst.
    [Show full text]
  • Early Evolution of the Proto-Andean Margin of South America
    Early evolution of the Proto-Andean margin of South America C. W. Rapela Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Calle 1 No. 644, 1900 La Plata, Argentina R. J. Pankhurst British Antarctic Survey, Cambridge CB30ET, United Kingdom C. Casquet Departamento de Petrología y Geoquímica, Universidad Complutense, 28040 Madrid, Spain E. Baldo J. Saavedra CSIC, Instituto de Agrobiología y Recursos Naturales, 37071 Salamanca, Spain C. Galindo Departamento de Petrología y Geoquímica, Universidad Complutense, 28040 Madrid, Spain ABSTRACT INTRODUCTION From a detailed study of a 500 km transect in the Sierras Pampeanas, central-west Argen- The evolution of the Gondwana margin pro- tina, two pre-Silurian tectono-magmatic episodes are recognized and defined, each culminating posed here is based on new geochemical, isotopic, in micro-continental collisions against the proto-Andean margin of Gondwana. The Pampean petrological, and sedimentological data from a orogeny started in Early Cambrian time with short-lived subduction, indicated by ca. 535 Ma 500 km traverse across the Eastern Sierras Pam- calc-alkaline granitoids. Following Pampean terrane collision, burial to granulite facies condi- peanas and Precordillera (Fig. 1). Pre-Silurian tions (ca. 9 kbar) generated widespread migmatites and ca. 520 Ma highly peraluminous gran- metamorphic and magmatic history is inferred ites in the Eastern Sierras Pampeanas. After brief quiescence, a second major episode, the from (1) dating by conventional U-Pb on abraded Famatinian orogeny, started with subduction ca. 490 Ma, forming a wide continental arc and zircons, U-Pb SHRIMP analyses, and whole-rock ensialic backarc basin. This heralded the approach of Laurentia to Gondwana, during which Rb-Sr and K-Ar, (2) thermo-barometry based on the Precordillera terrane separated from the southern Appalachian region, finally colliding with microprobe mineral analyses, and (3) Nd and Sr Gondwana in Silurian–Devonian time.
    [Show full text]
  • GSA TODAY • Radon in Water, P
    Vol. 8, No. 11 November 1998 INSIDE • Field Guide Editor, p. 5 GSA TODAY • Radon in Water, p. 10 • Women Geoscientists, p. 12 A Publication of the Geological Society of America • 1999 Annual Meeting, p. 31 Gas Hydrates: Greenhouse Nightmare? Energy Panacea or Pipe Dream? Bilal U. Haq, National Science Foundation, Division of Ocean Science, Arlington, VA 22230 ABSTRACT Recent interest in methane hydrates has resulted from the recognition that they may play important roles in the global carbon cycle and rapid climate change through emissions of methane from marine sediments and permafrost into the atmosphere, and in causing mass failure of sediments and structural changes on the continental slope. Their presumed large volumes are also consid- ered to be a potential source for future exploitation of methane as a resource. Natural gas hydrates occur widely on continental slope and rise, stabilized in place by high hydrostatic pressure and frigid bottom-temperature condi- tions. Change in these conditions, Figure 1. This seismic profile, over the landward side of Blake Ridge, crosses a salt diapir; the profile has either through lowering of sea level or been processed to show reflection strength. The prominent bottom simulating reflector (BSR) swings increase in bottom-water temperature, upward over the diapir because of the higher conductivity of the salt. Note the very strong reflections of may trigger the following sequence of gas accumulations below the gas-hydrate stability zone and the “blanking” of energy above it. Bright events: dissociation of the hydrate at its Spots along near-vertical faults above the diapir represent conduits for gas venting.
    [Show full text]
  • Cactus Explorer the first Free On-Line Journal for Cactus and Succulent Enthusiasts
    TheCactus Explorer The first free on-line Journal for Cactus and Succulent Enthusiasts 1 Schlumbergera opuntioides 2 Parodia mammulosa Number 13 3 Explorers Weekend 2014 ISSN 2048-0482 4 Crassulaceae at Lyon B.G. December 2014 5 Schlumbergera truncata The Cactus Explorer ISSN 2048-0482 Number 13 December 2014 THE POSITION OF PARODIA TURECEKIANA IN THE PARODIA MAMMULOSA COMPLEX In this article, Giovanna Anceschi & Alberto Magli discuss Parodia turecekiana R. Kiesling, part of the Parodia mammulosa (Lemaire) Taylor complex. Photographs by the authors Fig.1 Parodia mammulosa (turecekiana populations). Uruguay, Rio Negro, Nuevo Berlin. 27 Jan 2014, A&M 966 During the seven months of our 2013/2014 Parodia turecekiana R. Kiesling was one of journey, out of the 70 new taxa we investigated our “black sheep”. In fact, before this year’s in habitat for a forthcoming classification in the happy discovery, we failed to find the above Cactusinhabitat system, 11 belong to the genus mentioned taxon of the Pampa Biome on three Parodia Spegazzini (precisely, 10 are Andean occasions. The first time was in November taxa and one from the Pampa Biome). Parodia 2008, in Uruguay, Dpt. Río Negro, on Ruta 25, being one of our genera of preference, during between Bellaco and Young, following the our next journey we hope to find or deepen the reference R. Kiesling 8368 (Kiesling 1995, 67: knowledge of the last four taxa that will allow 18). The second time, again in November 2008, us to have a complete overview of Parodia s.l., in Uruguay, Dpt. Río Negro, Young, northwest based on study experience in the habitats of all of Young, locality Paso Uleste, in the its components.
    [Show full text]
  • Volume 8, Issue 2, 2017 ISSN 2191-3099 This Document Was Published in Pdf Format: August 19Th 2017
    Schütziana The Gymnocalycium Online Journal Volume 8, Issue 2, 2017 ISSN 2191-3099 This document was published in pdf format: August 19th 2017 Content Papsch, Wolfgang Editorial p. 2 Marx, Ulf p. 3-10 Franz Strigl – 80 years and still young at heart Kulhánek, Tomáš Papsch, Wolfgang On the Distribution of Gymnocalycium platense p. 11-23 (Spegazzini) Britton & Rose (Cactaceae) Kulhánek, Tomáš Gymnocalycium alenae Kulhánek, a new species p. 24-38 from the northern part of province Córdoba Published: August 19th 2017 Legal notice Publisher: WORKING GROUP SCHÜTZIANA, Fichtenweg 43, 14547 Fichtenwalde, Germany Editorial team and responsible for the content: www.schuetziana.org/contact.php Mario Wick, 14547 Fichtenwalde, Fichtenweg 43, Germany, [email protected] Massimo Meregalli, 10123 Torino, V. Accademia Albertina, 17, Italia, [email protected] Wolfgang Papsch, 8401 Kalsdorf, Ziehrenweg 6, Austria, [email protected] Tomáš Kulhánek, 67201 Moravský Krumlov, Tylova 673, Czech Republic, [email protected]. SCHÜTZIANA is the journal of the WORKING GROUP SCHÜTZIANA. Source of supply: SCHÜTZIANA is available only as a pdf-file via World Wide Web and can be downloaded from: www.schuetziana.org/download.php. The content of the respective article expresses the opinion of the author and need not being in agreement with the opinion of the WORKING GROUP SCHÜTZIANA. The issues of SCHÜTZIANA are free of charge and may be distributed freely. The content and the pictures of the articles of SCHÜTZIANA are property of the author and may not be used for other purposes than reading, printing and storing without permission. © 2017 WORKING GROUP SCHÜTZIANA.
    [Show full text]
  • Andean Flat-Slab Subduction Through Time
    Andean flat-slab subduction through time VICTOR A. RAMOS & ANDRE´ S FOLGUERA* Laboratorio de Tecto´nica Andina, Universidad de Buenos Aires – CONICET *Corresponding author (e-mail: [email protected]) Abstract: The analysis of magmatic distribution, basin formation, tectonic evolution and structural styles of different segments of the Andes shows that most of the Andes have experienced a stage of flat subduction. Evidence is presented here for a wide range of regions throughout the Andes, including the three present flat-slab segments (Pampean, Peruvian, Bucaramanga), three incipient flat-slab segments (‘Carnegie’, Guan˜acos, ‘Tehuantepec’), three older and no longer active Cenozoic flat-slab segments (Altiplano, Puna, Payenia), and an inferred Palaeozoic flat- slab segment (Early Permian ‘San Rafael’). Based on the present characteristics of the Pampean flat slab, combined with the Peruvian and Bucaramanga segments, a pattern of geological processes can be attributed to slab shallowing and steepening. This pattern permits recognition of other older Cenozoic subhorizontal subduction zones throughout the Andes. Based on crustal thickness, two different settings of slab steepening are proposed. Slab steepening under thick crust leads to dela- mination, basaltic underplating, lower crustal melting, extension and widespread rhyolitic volcan- ism, as seen in the caldera formation and huge ignimbritic fields of the Altiplano and Puna segments. On the other hand, when steepening affects thin crust, extension and extensive within-plate basaltic flows reach the surface, forming large volcanic provinces, such as Payenia in the southern Andes. This last case has very limited crustal melt along the axial part of the Andean roots, which shows incipient delamination.
    [Show full text]
  • Variabilidad Morfológica Y Modelos Arqueológicos
    1 El presente trabajo se orientó al estudio de la variación craneofacial de los grupos humanos que habitaron el sector austral de las Sierras Pampeanas y llanuras circundantes en tiempos prehispánicos desde una perspectiva que combina análisis morfológicos cuali-cuantitativos y análisis basados en la morfometría geométrica. Como objetivos específicos se planteó: a) caracterizar morfológicamente colecciones arqueológicas inéditas de restos óseos, b) estudiar la variación craneofacial de las mencionadas colecciones a partir de análisis de morfometría geométrica, c) establecer relaciones genéticas entre las poblaciones de la región central del país y demás regiones geográfico-ecológicas de Argentina y Sudamérica (Andes, Amazonia, Gran Chaco, Patagonia-Tierra del Fuego), d) poner a prueba diferentes modelos sobre las posibles vías de poblamiento del centro del país. Los resultados sugieren importantes similitudes a nivel de morfología craneal y variación epigenética entre muestras principalmente del lado oriental de las sierras –actual territorio de la provincia de Córdoba- y poblaciones del centro y Noreste de Patagonia, y región pampeana. Teniendo en cuenta los resultados generales, consideramos que el poblamiento de la región austral de las Sierras Pampeanas se relaciona con aquel ocurrido desde el Noreste del país, siguiendo un derrotero general Norte-Sur a través del Litoral Atlántico. Mariana Fabra Doctora en Historia (Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Argentina) y Magister en Antropología (FFyH, UNC), se desempeña actualmente como Investigadora Adjunta del Consejo Nacional de Investigaciones Científicas y Técnicas. Es Profesora Asistente la licenciatura en Antropología (Departamento de Antropología, Área Antropología Biológica, FFyH, UNC). Ha dirigido diversos proyectos de investigación (PIP CONICET, PID MiNCyT Córdoba), sobre temáticas vinculadas al poblamiento de la región central de Argentina y el estilo de vida de las poblaciones originarias del centro del país desde una perspectiva bioarqueológica.
    [Show full text]
  • Frequency Content and Attenuation Laws for Sierras Pampeanas Earthquakes and Their Direct Implications on the Seismic Assessment for Life Extension of Embalse Npp
    Transactions, SMiRT 19, Toronto, August 2007 Paper # K02/3 FREQUENCY CONTENT AND ATTENUATION LAWS FOR SIERRAS PAMPEANAS EARTHQUAKES AND THEIR DIRECT IMPLICATIONS ON THE SEISMIC ASSESSMENT FOR LIFE EXTENSION OF EMBALSE NPP. Roberto D. Martino1,3, Aldo A. Bonalumi1,3, and Ricardo J. Rocca2,3 1Departamento de Geología Básica, 2Departamento de Construcciones Civiles. 3Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1611. X 5016 GCA - Córdoba. República Argentina. E-mails: [email protected], [email protected], [email protected] ABSTRACT The Embalse NPP (ENPP), located in Córdoba, Argentina (lat: -32.23º, long -64.44º), is currently being reassessed in order to pursue a renewal of the operating license, due in 2010. ENPP site is located at a valley within the Sierras Pampeanas (Pampean Ranges) of Córdoba, which constitute the most eastern group of the Pampean Ranges Province. They are broken Andean foreland blocks, built as a consequence of the flat- lying orientation of the Nazca subducting plate. In the decade of 1970 it was determined a design earthquake based on little instrumental data. It was used a floating earthquake as MCE with a magnitude M = 6.5 and a maximum horizontal acceleration of 0.26 g. In the following decades several earthquakes of medium size magnitude (M = 5.5 to 6.4) within the Pampean Ranges have been registered. Data is not enough for defining a regional attenuation law, but data points adjust to the proposed relations for Central and Eastern US (CEUS). With new tectonic and seismological data, a deterministic analysis indicates that the magnitude size of the controlling earthquake remains reasonable, but changes in attenuation laws and design spectra will have to be considered for the renewal of the operating license The analysis of elastic response spectra shows intermediate shape forms compared with those used for stable continental zones like CEUS and the unstable continental zones like West US.
    [Show full text]
  • Provenance Study on Neoproterozoic Rocks of Nw Argentina: Puncoviscana Formation – First Results
    U N I V E R S I D A D D E C O N C E P C I Ó N DEPARTAMENTO DE CIENCIAS DE LA TIERRA 10° CONGRESO GEOLÓGICO CHILENO 2003 PROVENANCE STUDY ON NEOPROTEROZOIC ROCKS OF NW ARGENTINA: PUNCOVISCANA FORMATION – FIRST RESULTS ZIMMERMANN, U.1 1Dep.of Geol., RAU University, Auckland Park 2092, South Africa [email protected] INTRODUCTION Since more than 20 years the western border of Gondwana is object of controversies related to the basic question if crustal growth is related to terrane accretion or to “recycling” of the same crustal rocks during the Vendian and Lower Paleozoic. Different hypotheses were developed regarding the evolution of that margin. One of the key element to understand the crustal evolution, is the Vendian to Lower Cambrian so-called PVF. Turner (1960) described rock successions in northwestern Argentina (Fig. 1) of Pre-Ordovician age comprising greywackes and sand- and siltstones, but dominated by pelites as the PVF. Afterwards, it was established that mostly all Vendian to Lower Cambrian very-low to low grade metasedimentary rocks in the region are classified, such as Suncho, Negro Peinado or La Cébila Formation (e.g. comp. in Aceñolaza et al., 1988), are equivalents of the PVF. Widely distributed medium- to high-grade metasedimentary rocks (Fig. 1), those rocks were interpreted as exhumed deeper crustal levels of the PVF (Willner, 1990). Other authors deny this opinion and interpret the different metamorphic rocks related to different events, consequently of different ages (Mon and Hongn, 1990). Based on only punctual petrographic work, the depositional area was defined as a passive margin based on petrography and mainly major element geochemistry (Jezek, 1990, Willner et al., 1985, Rossi Toselli et al., 1997), or on preliminary trace element data (Do Campo and Ribeiro Guevara, 2002).
    [Show full text]
  • Rasgos Estructurales En La Sierra Pampeana De Velasco Y Alrededores a Partir De Los Campos Gravimétricos Y Magnetométricos
    Revista de la Asociación Geológica Argentina 70 (2): 193 - 201 (2013) 193 RASGOS ESTRUCTURALES EN LA SIERRA PAMPEANA DE VELASCO Y ALREDEDORES A PARTIR DE LOS CAMPOS GRAVIMÉTRICOS Y MAGNETOMÉTRICOS Marcos A. SÁNCHEZ1, Silvana L. SPAGNOTTO1 y Myriam P. MARTINEZ1,2 1CONICET - IGSV. C.P. 5407. Rivadavia - San Juan. 2FCEFyN - UNSJ. CP: 5400. San Juan. e-mail: [email protected] RESUMEN La región que comprende la sierra de Velasco y el Sistema de Famatina, en el centro-oeste de la Provincia de La Rioja - Argenti- na, es un área clave para el estudio de la amalgamación de terrenos y tectónica vinculada con el levantamiento andino. En éste trabajo, se definen algunos rasgos de la estructura cortical de ésta región. Para ello, mediante la aplicación de métodos poten- ciales (gravedad y magnetismo), adecuadamente procesados e interpretados a través de técnicas semiautomáticas y de resalto de anomalías, se logró determinar: a) una región que respondería a la zona de sutura entre los terrenos Famatina y Pampia y b) fallas relacionadas al levantamiento de las sierras de Famatina y de Velasco. Los resultados anteriores se representan en una sección este - oeste en un modelo estructural de bloques de basamento entre Famatina y Velasco, hasta 12 km de profundidad. En él señalamos además la distribución de las fallas y sus buzamientos. Palabras clave: Gravedad, magnetismo, deconvolución de Werner, señal analítica, sutura ABSTRACT Structural features of the Sierra Pampeana de Velasco and surrounding areas from gravimetric and magnetometric fields. The region comprising the Sierra de Velasco and Famatina System, in the center-west of the province of La Rioja in Argentina, is a key area for the study of the tectonic amalgamation of land and linked to the Andean uplift.
    [Show full text]
  • Holdridge Life Zone Map: Republic of Argentina María R
    United States Department of Agriculture Holdridge Life Zone Map: Republic of Argentina María R. Derguy, Jorge L. Frangi, Andrea A. Drozd, Marcelo F. Arturi, and Sebastián Martinuzzi Forest International Institute General Technical November Service of Tropical Forestry Report IITF-GTR-51 2019 In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form.
    [Show full text]
  • Uncorrected Proofs
    N. Jb. Geol. Paläont. Abh. Article Stuttgart, July 2012 Basin evolution of the margin of Gondwana at the Neoproterozoic/ Cambrian transition: the Puncoviscana Formation of Northwest Argentina Alejandro J. Toselli, Guillermo F. Aceñolaza, Hubert Miller, Christopher Adams, Florencio G. Aceñolaza, and Juana N. Rossi With 4 figures Toselli, A.J., AceñolAzA, G.F., Miller, H., Adams, c., AceñolAzA, F.G. & rossi, J.N. (2012): Basin evolution of the margin of Gondwana at the Neoproterozoic/Cambrian transition: the Puncoviscana Formation of Northwest Argentina. – N. Jb. Geol. Paläont. Abh., 265: 000-000; Stuttgart. Abstract: The Puncoviscana Formation is an important stratigraphic sequence of sandstones and shales, with intercalated conglomerates, limestones and volcanic rocks. It was deposited at the Neo- proterozoic-Cambrian boundary in a shallow basin on the western margin of Gondwana. Trace fos- sils of the Puncoviscana Formation s.l. are represented by the Oldhamia and Nereites ichnoassocia- tions and the geographical distribution of assemblages are alignedproofs as parallel belts, with a shallower eastern Nereites association and a deeper western Oldhamia association. They represent different temporal levels on the evolution of the basin. Detrital zircon spectra display a wide range of ages, which indicate their provenance from Neoproterozoic to Cambrian source areas as well as Meso- to Paleoproterozoic basement units, exhibiting typical Gondwanan ages. Thick limestone banks are interbedded in the Puncoviscana Formation s.l. that included the siliciclastic sequences, with very low- to medium-metamorphic grade. δ13C values for the limestones vary from -1.57 to +3.40/00 VPDB, while in the Sierras Pampeanas, δ13C values vary from +2.6 to +80/00 VPDB.
    [Show full text]