Exploring the Ionosphere, Earth's Interface to Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observation of the Airglow from the ISS by the IMAP Mission *Y
2013/3/13(ANGWIN workshop, Tachikawa) Observation of the airglow from the ISS by the IMAP mission *Y. Akiya [1], A. Saito [1], T. Sakanoi [2], Y. Hozumi [1], A. Yamazaki [3], Y. Otsuka [4] [1] Graduation School of Science, Kyoto University , [2] PPARC, Tohoku University, [3] ISAS/JAXA, [4] STE Laboratory, Nagoya University ----- Outline ----- Introduction of the IMAP mission Visible and near-infrared spectrographic imager Samples of airglow observation by VISI Summary “ISS-IMAP” mission Ionosphere, Mesosphere, Upper atmosphere and Plasmasphere Imagers of the ISS-IMAP mapping mission from the mission International Space Station (ISS) Observational imagers were installed on the Exposure Facility of Japanese Experimental Module: August 9th, 2012. Initial checkout: August and September, 2012 Nominal observations: October, 2012 - [Pictures: Courtesy of JAXA/NASA] [this issue]. According to characteristics of airglow emissions, wavelength range from 630 to 762 nm. Typical total intensity of such as intensity, emission height, background continuum, etc., we airglow is 100 1000 R as listed in Table 1, and 10 % variation of selected the airglow emissions which will be measured with VISI, the total intensity must be detected in order to investigate the and determined the requirements for instrumental design. The airglow variation pattern. In addition, short exposure cycle less targets and requirements are summarized in Table 1. than several seconds is necessary to measure small-scale airglow Table 1. Scientific Targets of VISI signatures (see Table 1) considering the orbital speed of ISS (~8 km/s). Airglow Required Region Scientific Typical A sectional view of VISI and its specifications are given in (waele- spatial (height) target intensity Figure 4 and Table 2, respectively. -
News & Notes, Third Quarter 2016
National Aeronautics and Space Administration Volume 33, Number 3 Third Quarter 2016 FROM IF YOU GIVE A NASA HISTORY INTERN THE CHIEF SOME APPLE JUICE HISTORIAN By Cat Baldwin and Chris Rudeen n last quarter’s issue, II made some fairly s the NASA History summer interns, IN THIS ISSUE: pointed comments on Athere’s a special place in our hearts for decisions being made the Smithsonian National Air and Space From the Chief Historian regarding the history Museum (NASM). We have dragged many 1 office at Johnson Space Center (JSC). As I people into the Apollo exhibit, stopping 1 If You Give a NASA History Intern write this, the situation is still in flux, but I am them at every artifact along the way and Some Apple Juice considerably more inclined to expect a positive telling stories over their loud complaints. 5 News from Headquarters and the outcome. This is in part due to my impressions “That’s the lunar ranging retroreflector! Centers from some very frank discussions between It’s a mirror on the Moon and they shoot senior officials at JSC and Headquarters. It is lasers at it. How cool is that?” “Yes, that’s 11 Other Aerospace History News clear from those discussions that JSC leader- duct tape on that bumper. Gene Cernan 14 Recent Publications and Online ship has a strong commitment to an effective literally had to duct-tape the bumper back Resources history program. However, it was equally clear on the LRV [lunar roving vehicle]. Gene 21 Upcoming Meetings that JSC is feeling the squeeze in their Center Cernan is an artist.” Our friends don’t Management and Operations (CMO) budget. -
Ozone Layer Depletion (PDF)
United States Air and Radiation EPA 430-F-10-027 Environmental Protection 6205J August 2010 Agency www.epa.gov/ozone/strathome.html Ozone Layer Depletion The stratospheric ozone layer forms a thin shield in the upper atmosphere, protecting life on Earth from the sun’s ultraviolet (UV) rays. It has been called the Earth’s sunscreen. In the 1980s, scientists found evidence that the ozone layer was being depleted. Depletion of the ozone layer results in increased UV radiation reaching the Earth’s surface, which in turn leads to a greater chance of overexposure to UV radiation and the related health effects of skin cancer, cataracts, and immune suppression. This fact sheet explains the importance of protecting the stratospheric ozone layer. What is Stratospheric Ozone? Ozone is a naturally-occurring gas that can be good or bad for your health and the environment depending on its location in the atmosphere. In the layer near the Earth’s surface—the troposphere— ground-level or “bad” ozone is an air pollutant that is a key ingredient of urban smog. But higher up, in the stratosphere, “good” ozone protects life on Earth by absorbing some of the sun’s UV rays. An easy way to remember this is the phrase “good up high, bad nearby.” Ozone Layer Depletion Compounds that contain chlorine and bromine molecules, such as methyl chloroform, halons, and chlorofluorocarbons (CFCs), are stable and have atmospheric lifetimes long enough to be transported by winds into Ozone “up high” in the stratosphere protects the Earth, while ozone close to the Earth’s surface is harmful. -
Hubble Space Telescope Primer for Cycle 25
January 2017 Hubble Space Telescope Primer for Cycle 25 An Introduction to the HST for Phase I Proposers 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started For information about submitting a HST observing proposal, please begin at the Cycle 25 Announcement webpage at: http://www.stsci.edu/hst/proposing/docs/cycle25announce Procedures for submitting a Phase I proposal are available at: http://apst.stsci.edu/apt/external/help/roadmap1.html Technical documentation about the instruments are available in their respective handbooks, available at: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help Contact the STScI Help Desk by sending a message to [email protected]. Voice mail may be left by calling 1-800-544-8125 (within the US only) or 410-338-1082. The HST Primer for Cycle 25 was edited by Susan Rose, Senior Technical Editor and contributions from many others at STScI, in particular John Debes, Ronald Downes, Linda Dressel, Andrew Fox, Norman Grogin, Katie Kaleida, Matt Lallo, Cristina Oliveira, Charles Proffitt, Tony Roman, Paule Sonnentrucker, Denise Taylor and Leonardo Ubeda. Send comments or corrections to: Hubble Space Telescope Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] CHAPTER 1: Introduction In this chapter... 1.1 About this Document / 7 1.2 What’s New This Cycle / 7 1.3 Resources, Documentation and Tools / 8 1.4 STScI Help Desk / 12 1.1 About this Document The Hubble Space Telescope Primer for Cycle 25 is a companion document to the HST Call for Proposals1. -
[OI] 5577 in the Airglow and the Aurora
Journal of Resea rch of the National Bureau of Sta ndards- D. Radio Propagation Vol. 63D, No.1, July-August 1959 Origin of [OlJ 5577 in the Airglow and the Aurora Franklin E. Roach, James W. McCaulley, and Edward Marovich (January 30, 1959) The distribution of 5577 zenith intensities at stations in the subauroral zone iB found to be unimodal with no discontinuity at the visual threshold. This is interpreted as evi dence that 5577 airglow and 5577 aurora may have a common origin. 1. Introduction origin hypothesis, their critical characteristic being the lack of any discontinuity. It i cu tomary to refer to [01] 5577 as airglow if In figure 2, a replot of the histogram of St. Amand it is invisible and as aurora if it is visible. Thus, and Ashburn is shown with a regroupillg of the data the physiological visual threshold (at approximately to correspond to class intervals of 50 R rather than the 10 R that they used. They put an approxi 1,000 myleighs 1 for extended objects) has been assumed to have a physical significance in the upper mately normal curve through the plot on the basis atmosphere with different mechanisms operative of which they were able to state that an intensity above and below the threshold. The purpose of correspondulg to a just visible aurora should occur this paper is to inquil'e into the existence of a only "once or twice in geologic time." Because physical criterion to distinguish between 5577 auroras do occur occasionally, though rarely, in southern California, the implication is that an aurora airglow and 5577 aurora. -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Roundup LYNDON B
National Aeronautics and Space Administration Roundup LYNDON B. JOHNSON SPACE CENTER Winter | 2014 JSC 2.0.13: A LOOK BACK JSC Director In this edition… I’D LIKE TO START OFF 2014 by relating a couple of JSC 2.0 stories. The 3 ISS Science Corner first one involves the External Relations Office taking a fresh look at how 4 Orion sets the stage in 2013 they communicate about the International Space Station on NASA TV. They for Exploration Flight Test-1 determined they could more effectively and efficiently communicate by morphing the daily one-hour show called “Space Station Live” into a daily half- 6 Milestones hour show, primarily aimed at media representatives who follow NASA closely 8 2013 Social Media Spotlight and are interested in details, plus a weekly two-minute video called “Space to 10 NASA’s ‘what’s next’ team Ground” designed for the general public. The snappy “Space to Ground” has the advantage that it can be easily used in a variety of venues, including the 12 NASA hails success of NASA home page, outreach events, airport kiosks, museums/science centers, commercial space program, traveling exhibits and various social media. The changes allow us to reach plans readied for astronauts more people, produce products better suited to two different audiences and overall make better use of our resources. We’re getting good feedback on the PHOTO changes, but one of the first responses came in an email from a woman who NASA/ said her 79-year-old mother, who is a big NASA fan and avid watcher of NASA TV, was very disappointed that her 60-minute show had been cut in half! While I don’t like disappointing anyone (and I’ve sent a signed photo to the mom in a gesture of goodwill), it’s actually a nice reminder that there are people everywhere who are inspired by what we do and really want to hear all about it. -
NASA's Strategic Direction and the Need for a National Consensus
NASA's Strategic Direction and the Need for a National Consensus NASAs Strategic Direction and the Need for a National Consensus Committee on NASAs Strategic Direction Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPYSUBJECT TO FURTHER EDITORIAL CORRECTION Copyright © National Academy of Sciences. All rights reserved. NASA's Strategic Direction and the Need for a National Consensus THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by Contract NNH10CC48B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Division on Engineering and Physical Sciences National Research Council 500 Fifth Street, NW Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu. -
Jet Streams Anomalies As Possible Short-Term Precursors Of
Research in Geophysics 2014; volume 4:4939 Jet streams anomalies as the existence of thermal fields, con nected with big linear structures and systems of crust Correspondence: Hong-Chun Wu, Institute of possible short-term precursors faults.2 Anomalous variations of latent heat Occupational Safety and Health, Safety of earthquakes with M 6.0 flow were observed for the 2003 M 7.6 Colima Department, Shijr City, Taipei, Taiwan. > (Mexico) earthquake.3 The atmospheric Tel. +886.2.22607600227 - Fax: +886.2.26607732. E-mail: [email protected] Hong-Chun Wu,1 Ivan N. Tikhonov2 effects of ionization are observed at the alti- 1Institute of Occupational Safety and tudes of top of the atmosphere (10-12 km). Key words: earthquake, epicenter, jet stream, pre- Health, Safety Department, Shijr City, Anomalous changes in outgoing longwave cursory anomaly. radiation were recorded at the height of 300 Taipei, Taiwan; 2Institute of Marine GPa before the 26 December 2004 M 9.0 Acknowledgments: the authors would like to Geology and Geophysics, FEB RAS; w express their most profound gratitude to the Indonesia earthquake.4 These anomalous ther- Yuzhno-Sakhalinsk, Russia National Center for Environmental Prediction of mal events occurred 4-20 days prior the earth- the USA and the National Earthquake quakes.5-8 Information Center on Earthquakes of the U.S. Local anomalous changes in the ionosphere Geological Survey for data on jet streams and 9-11 earthquakes on the Internet. Abstract over epicenters can precede earthquakes. Statistical analysis showed that these changes Dedications: the authors dedicate this work to occurred about 1-5 days before seismic the memory of Miss Cai Bi-Yu, who died in Satellite data of thermal images revealed events.12 To connect the listed above abnormal Taiwan during the 1999 earthquake with magni- the existence of thermal fields, connected with phenomena to preparation of earthquakes, tude M=7.3. -
Ozone: Good up High, Bad Nearby
actions you can take High-Altitude “Good” Ozone Ground-Level “Bad” Ozone •Protect yourself against sunburn. When the UV Index is •Check the air quality forecast in your area. At times when the Air “high” or “very high”: Limit outdoor activities between 10 Quality Index (AQI) is forecast to be unhealthy, limit physical exertion am and 4 pm, when the sun is most intense. Twenty minutes outdoors. In many places, ozone peaks in mid-afternoon to early before going outside, liberally apply a broad-spectrum evening. Change the time of day of strenuous outdoor activity to avoid sunscreen with a Sun Protection Factor (SPF) of at least 15. these hours, or reduce the intensity of the activity. For AQI forecasts, Reapply every two hours or after swimming or sweating. For check your local media reports or visit: www.epa.gov/airnow UV Index forecasts, check local media reports or visit: www.epa.gov/sunwise/uvindex.html •Help your local electric utilities reduce ozone air pollution by conserving energy at home and the office. Consider setting your •Use approved refrigerants in air conditioning and thermostat a little higher in the summer. Participate in your local refrigeration equipment. Make sure technicians that work on utilities’ load-sharing and energy conservation programs. your car or home air conditioners or refrigerator are certified to recover the refrigerant. Repair leaky air conditioning units •Reduce air pollution from cars, trucks, gas-powered lawn and garden before refilling them. equipment, boats and other engines by keeping equipment properly tuned and maintained. During the summer, fill your gas tank during the cooler evening hours and be careful not to spill gasoline. -
The Sky This Month – Sept 12 to Oct 10, 2018 (Times in EDT) by Chris Vaughan
RASC Toronto Centre – www.rascto.ca The Sky This Month – Sept 12 to Oct 10, 2018 (times in EDT) by Chris Vaughan NEWS Space Exploration – Public and Private Ref. http://spaceflightnow.com/launch-schedule/ Launches Sept 13 at 5:21 pm EDT – Japanese H-2B rocket from Tanegashima Space Center, Japan, payload unmanned cargo vehicle to deliver equipment and supplies to ISS. Sept 15 at 8:46-11:20 am EDT - ULA Delta 2 rocket from Vandenberg Air Force Base, payload NASA’s ICESat 2 investigating ice-sheet elevation change, sea-ice freeboard, and vegetation canopy height. Sept 16 at TBD - India’s Polar Satellite Launch Vehicle from Satish Dhawan Space Center, Sriharikota, India, payload NovaSAR-S radar imaging instrument and SSTL-S1 Earth observation satellites. Sept 25 at TBD - Ariane 5 ECA rocket from Kourou, French Guiana, payload Horizons 3e and Azerspace 2/Intelsat 38 communications satellites. Oct TBD - India’s Geosynchronous Satellite Launch Vehicle Mk. 3 from Satish Dhawan Space Center, Sriharikota, India, payload GSAT 29 communications satellite. Oct 6 at 4:00-5:30 am EDT - Air-launched Northrop Grumman Pegasus XL rocket from Cape Canaveral Air Force Station, payload NASA’s Ionospheric Connection Explorer (ICON) satellite to study the ionosphere. Oct 7 at TBD - SpaceX Falcon 9 rocket from Vandenberg Air Force Base, payload SAOCOM 1A Earth observation satellite for Argentina’s space agency. JUNO at Jupiter Juno is presently executing a series of 53 day orbits. The 15th perijove close pass occurred on September 7. News at https://www.missionjuno.swri.edu/news/ DAWN at Ceres The DAWN spacecraft will exhaust its manoeuvring hydrazine supply any time now, and then remain in orbit around Ceres for decades (at least) to protect Ceres against Earth-contamination. -
Model Based Systems Engineering for a Venture Class Launch Facility
Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Fall 11-2020 Model Based Systems Engineering for a Venture Class Launch Facility Walter McGee Taraila Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Mechanical Engineering Commons, and the Systems Engineering and Multidisciplinary Design Optimization Commons Recommended Citation Taraila, Walter M.. "Model Based Systems Engineering for a Venture Class Launch Facility" (2020). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/ b713-zf77 https://digitalcommons.odu.edu/mae_etds/326 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. MODEL BASED SYSTEMS ENGINEERING FOR A VENTURE CLASS LAUNCH FACILITY by Walter McGee Taraila B.Sc. May 2012, University of Maryland, College Park A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE MECHANICAL AND AEROSPACE ENGINEERING OLD DOMINION UNIVERSITY December 2020 Approved by: Sharan Asundi (Director) Holly Handley (Member) Miltos Kotinis (Member) ABSTRACT MODEL BASED SYSTEMS ENGINEERING FOR A VENTURE CLASS LAUNCH FACILITY Walter McGee Taraila Old Dominion University, 2020 Director: Dr. Sharan Asundi A study of Model-Based Systems Engineering (MBSE) applied to a small-lift launch facility is presented. The research uses Systems Modeling Language (SysML) products and functional diagrams to document the structure, controls, electrical power, hydraulic, safety mechanisms, softWare, and fluid ground systems on a launch pad.