¿QUÉ SABEMOS DE LA FORMACIÓN DE ESTRELLAS MASIVAS? Miriam Garcia

Total Page:16

File Type:pdf, Size:1020Kb

¿QUÉ SABEMOS DE LA FORMACIÓN DE ESTRELLAS MASIVAS? Miriam Garcia ¿QUÉ SABEMOS DE LA FORMACIÓN DE ESTRELLAS MASIVAS? Miriam Garcia IX REUNIÓN CIENTÍFICA DE LA SEA 14 SEPTIEMBRE, MADRID ¡POCO! ¡¡Gracias por su atención!! IX REUNIÓN CIENTÍFICA DE LA SEA 14 SEPTIEMBRE, MADRID OutlineOutline • Introduction • Main stages of massive star formation • Proposed scenarios of the accretion phase • The observed stages • Feedback • Stellar masses: • Spectroscopic mass: (need to know Mdot) • Evolutionary mass • Dynamical mass (but few eclipsing binary systems known, plus binarity modifies massive star evolution in a way we do not fully undestand yet.) • Obscured IR clusters IX SEA 2010, 14/SEPT/2010 INTRODUCTIONINTRODUCTION IX SEA 2010, 14/SEPT/2010 GeneralGeneral processprocess • A gas condensation (core) collapses inside a larger unit of the molecular cloud (clump). • The protostar forms, • it increases its mass by accretion • with simultaneous mass loss through bipolar outflow and/or collimated jet • Initial conditions • Dense compact clump: 10 23 – 10 24 cm -2 • Cold cores: 10 5 cm -3, 10-20K, 0.5pc diameter Bate et al. UK Astroph. fluids facility IX SEA 2010, 14/SEPT/2010 MainMain stages stages 5 From a Giant Molecular cloud (10 M⊙): 1. Fragmentation /compresion: formation of cold cores (100 M⊙) (induced by external SN shock, UV rad, ρ-wave) 2. Collapse into protostellar embryos that can heat up the core (ρ increases, κ increases, the IR does not escape). Collimated jets and outflows appear. 3. Disk-accretion onto the protostar as it evolves towards MS Massive stars start H-burning before the ZAMS and develope radiation-driven winds Formation of hyper-compact HII region from the photoionized and partially photoevaporated disk. 4. Disruption of the cloud by the combined action of winds, outflows, and UV radiation IX SEA 2010, 14/SEPT/2010 UCHII -> CHII -> normal HII EmbeddedEmbedded pre-main pre-main sequence sequence stages stages To be observed at mid-IR and radio wavelengths (see summary by Menten et al. 2005; van der Tak & Menten 2005): • IR dark clouds • Hot molecular cores • Hypercompact and ultra-compact HII regions • Compact and classical HII regions (can be seen in optical range) So, if you are looking for YSO go to: • Dark clouds • Bright-rimmed pillars • Compact HII regions IX SEA 2010, 14/SEPT/2010 IR dark clouds • Significant mid-IR opacity • Cold (<15 K) Glimpse, 8 µm • Dense (>10 4 cm -3) • Large column densities (>10 23 –10 25 cm -2) • Believed to be the starting point of high mass star formation Perault et al. 1996; Egan et al. 1998; Carey et al. 1998, 2000; Hennebelle et al. 2001; Simon et al. 2006; Rathborne et al. 2006 IX SEA 2010, 14/SEPT/2010 AccretionAccretion (or (or how how toto outpower outpower radiation radiation pressure) pressure) • The problem: massive stars ignite H at 20 M⊙, before the accretion stage is over (Krumholz et al. 2009) . 40 M⊙ in models with rotation (Yorke & Sonnhalter 2002) . • Three main mechanisms: (see reviews by Zinnecker & Yorke 2007; Beuther et al. 2007) • Monolithic collapse (Yorke & Sonhalter 2002; Krumholtz 2007, 2009) • Competitive accretion (Bonnell et al. 1997, 2001) . Can reproduce the apparently universal IMF. • Stellar mergers • Triggered OB star formation (Elmegreen & Lada 1997): stars formed in shock matter (from rad. pressure of other OB stars, SN, …) are more massive. IX SEA 2010, 14/SEPT/2010 KrumholzKrumholz et et al.al. 20092009 • Radiation pressure does not halt accetion in 3D models: “- Gravitational + Rayleigh-Taylor instabilities channel gas onto the star system through non-axisymmetric disk that self- shield against radiation, and allow radiation to escape through optically-thin bubbles. -The instabilities in accretion disks, and the resulting formation of companion stars, can only be simulated when the disk is represented non-axisymmetrically. It is important to consider these effects because most massive stars are members of multiple system”. • Simulation. Initial cloud properties: • Mcore = 100 M⊙ • Radius = 0.1 pc • Density profile ρ∝r−1.5 • T=20K • Slow, solid-body rotation IX SEA 2010, 14/SEPT/2010 FeedbackFeedback IX SEA 2010, 14/SEPT/2010 THEORYTHEORY MEETSMEETS OBSERVATIONSOBSERVATIONS IX SEA 2010, 14/SEPT/2010 Current mass Initial mass Contrast to predictions & favor one or another scenario IX SEA 2010, 14/SEPT/2010 TheThe maximum maximum predicted predicted stellar stellar mass mass Figer (2005) • Obvious limit: when radiation pressure stops accretion (at 60 M⊙, 40 M⊙ or 20 M⊙, depending on the author!) • But now, radiation pressure can be overcome with jets • (In opacity limited accretion, limit set at 200 M⊙) IX SEA 2010, 14/SEPT/2010 TheThe IMF IMF • φ(m)dm ∝ m-2.35 dm or d(log N)/d(log m)= Γ • Figer (2005) from populations of very massive young clusters: Max(M ini )=150 M⊙ • Oey & Clarke (2005) statistical approach: 120-200 M⊙ • Koen (2006) 140-160 M ⊙ • Also: it takes a GMC 5 Figer (2005) (10 M⊙) to make a 50 M⊙ star (Larson, 1982). IX SEA 2010, 14/SEPT/2010 EMPIRICALEMPIRICAL STELLARSTELLAR MASSESMASSES IX SEA 2010, 14/SEPT/2010 EvolutionaryEvolutionary masses: masses: A2 Ia B1.5 Ia O9.5 III Garcia et al. (2010) (Spectral types: Bresolin et al. 2007, Garcia et al. in prep.) IX SEA 2010, 14/SEPT/2010 AUTOPOP:AUTOPOP: automaticautomatic finding finding & & characterizationcharacterization ofof OB OB associationsassociations Photometric Catalog + target selection criteria Isochrones Friends of Friends Automatic M, Age determin. (plus prop. in isochrones) Masses and ages associations members VO-friendly tables to Garcia (2009, 2010) al. et X-match with cats IX SEA 2010, 14/SEPT/2010 SomeSome results results on on IC IC 16131613 Log age= 6.5 , 6.8 , 7.1 , 7.4 , 7.7 , 8.0 Garcia et al. 2010 IX SEA 2010, 14/SEPT/2010 SpectroscopicSpectroscopic mass: mass: • From gravity and radius: M= gR 2/G • log g : Quantitative spectroscopic analysis of the 4000-5000 Å range, of Balmer lines (Hβ, Hγ and Hδ) with FASTWIND (Puls et al. 2005) . • R from V-mag + A v + distance, or calibrations • Hα to estimate the mass loss rate, and infer M ini (also need age). IX SEA 2010, 14/SEPT/2010 ToTo determine determine massmass loss loss rate… rate… • Can be done with Hα (better characterized) but UV lines more sensitive Mdot, and also may provide terminal velocity. • Need also to constrain clumping filling factor • Panchromatic spectroscopic studies with CMFGEN: IX SEA 2010, 14/SEPT/2010 HybridHybrid spectroscopic-evolutionaryspectroscopic-evolutionary massmass Quantitative spectroscopic analysis of the 4000-5000 Å range: • Effective temperature: • Silicon lines for B superg. ( SiIII4552,4567, 4574, SiII4128 and SiIV4116 ) • HeI and HeII for O stars • log g BEWARE OF R !! prep in 2010, al. et Simón-Díaz IX SEA 2010, 14/SEPT/2010 BUT!!BUT!! MassMass discrepancydiscrepancy • Reported by Herrero et al. (1992) • Partly reconciled when a more detailed description of the OB star atmospheres was used to derive the spectroscopic masses (Herrero, Puls, & Najarro, 2002; Repolust, Puls, & Herrero, 2004; see also Puls 2008) • However, some discrepancy remains for: • Galactic B-type supergiants (Markova & Puls, 2008) • OB stars in the LMC and SMC (Massey et al., 2009) • IC 1613 (Garcia et al. 2010) IX SEA 2010, 14/SEPT/2010 TheThe IACOB IACOB databasedatabase • IACOB database: high resolution spectroscopy of Galactic OB stars (Simón-Díaz et al. 2010). • Large sample of OB stars with spectroscopic and evolutionary masses. • Tackle the mass discrepancy • Build the upper end of the IMF IX SEA 2010, 14/SEPT/2010 PAUSAPAUSA FRANCESA:FRANCESA: UNCERTAINTIESUNCERTAINTIES ATAT WORKWORK IX SEA 2010, 14/SEPT/2010 • Unknown extinction (can be overcome with mutiwavelength photometry as opposed as to only use B-V). • Uncertainties in distance (that propagate to R*): • From photometric analysis • Spectroscopic paralax (which relies on calibrations of radius with spectral type, which in turn require previous distance determinations) • Physical paralaxes : • Hipparcos (not so good if outside of Solar neighborhood Maíz-Apellániz 2001, 2008) • GAIA will play a crucial role with its improved paralaxes • Unresolved binaries (real or projected), which increase the apparent V-magnitude (HD64315, S. Simón-Díaz, J. Lorenzo- Espinosa ). IX SEA 2010, 14/SEPT/2010 WHEREWHERE ISIS THETHE MOSTMOST MASSIVEMASSIVE STAR?STAR? IX SEA 2010, 14/SEPT/2010 So…So… where where do do wewe find find the the most most massive massive stars? stars? • Considering a Salpeter IMF and that the cluster has not lost any member to SN explosion (age < 3Myr), 4 A cluster of Mtot > 10 M⊙ is needed to produce a 150 M⊙ star (Figer 2005, see also Crowther et al. 2010) 30 Dor in the LMC: • R136: 150 M ⊙ (Parker & Garmany 1993, Massey & Hunter 1998). IX SEA 2010, 14/SEPT/2010 Are there 10 44 M clusters in the MW? Are there 10 M⊙⊙⊙⊙⊙⊙clusters in the MW? Q: Do we have a 30 Dor in the MW? A: Except for NGC3603, we did not know until the advent of IR surveys. In the MW, we know about 10 4 very massive clusters (Mtot > 10 M⊙) →But expect of the order of 80 (Hanson & Popescu, 2008; Ivanov et al., 2010) Figer (2007) IX SEA 2010, 14/SEPT/2010 Cygnus Center Arches Quintuplet Norma RSG2 RSG1 Scutum Crux RSGC3 Westerlund 1 Alicante 8 NGC 3603 Sagitarius Carina Tr14+16 Cyg OB2 Westerlund 2 Orion Perseus Accessible from ORM IX SEA 2010, 14/SEPT/2010 MASGOMAS: en busca de los ccúúúúmulosmulos perdidos MASGOMAS: MAssive Stars in Galactic Obscured Massive clusterS IX SEA 2010, 14/SEPT/2010 TheThe IR IR piercespierces through through Galactic Galactic dust dust Optical (DSS) G61.48+0.09 Marín-Franch et al. (2009) Near-IR (LIRIS@WHT) Near-IR (2MASS) IX SEA 2010, 14/SEPT/2010 MASGOMASMASGOMAS • Select [new] clusters from IR surveys (GLIMPSE, 2MASS, UKIDDS ) • If needed, obtain new IR photometry with LIRIS • Obtain NIR spectra with LIRIS Marín-Franch et al.
Recommended publications
  • A Massive Association Around the Obscured Open Cluster RSGC3 Tent of the Clusters Is Uncertain.Membershipin RSGC1 and Ste2 2
    Astronomy & Astrophysics manuscript no. 16102 c ESO 2018 October 31, 2018 A massive association around the obscured open cluster RSGC3,⋆ I. Negueruela1, C. Gonz´alez-Fern´andez1 , A. Marco1, and J. S. Clark2 1 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Apdo. 99, E03080 Alicante, Spain e-mail: [email protected] 2 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK Preprint online version: October 31, 2018 ABSTRACT Context. Four clusters of red supergiants have been discovered in a region of the Milky Way close to base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. If the clusters are physically connected, this Scutum Complex would be the largest and most massive star-forming region ever identified in the Milky Way. Aims. The spatial extent of one of these clusters, RSGC3, has not been investigated. In this paper we explore the possibility that a population of red supergiants could be located in its vicinity. Methods. We utilised 2MASS JHKS photometry to identify candidate obscured luminous red stars in the vicinity of RSGC3. We observed a sample of candidates with the TWIN spectrograph on the 3.5-m telescope at Calar Alto, obtaining intermediate-resolution spectroscopy in the 8000–9000Å range. We re-evaluated a number of classification criteria proposed in the literature for this spectral range and found that we could use our spectra to derive spectral types and luminosity classes.
    [Show full text]
  • A Long-Period Cepheid Variable in the Starburst Cluster Vdbh222 Journal Item
    Open Research Online The Open University’s repository of research publications and other research outputs A long-period Cepheid variable in the starburst cluster VdBH222 Journal Item How to cite: Clark, J. S.; Negueruela, I.; Lohr, M. E.; Dorda, R.; González-Fernández, C.; Lewis, F. and Roche, P. (2015). A long-period Cepheid variable in the starburst cluster VdBH222. Astronomy & Astrophysics, 584, article no. L12. For guidance on citations see FAQs. c 2015 ESO https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1051/0004-6361/201527360 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk A&A 584, L12 (2015) Astronomy DOI: 10.1051/0004-6361/201527360 & c ESO 2015 Astrophysics Letter to the Editor A long-period Cepheid variable in the starburst cluster VdBH222 J. S. Clark1, I. Negueruela2,M.E.Lohr1, R. Dorda2, C. González-Fernández3 ,F.Lewis4,5,andP.Roche5 1 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK e-mail: [email protected] 2 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain 3 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 4 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 5 School of Physics & Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff,UK Received 14 September 2015 / Accepted 21 October 2015 ABSTRACT Context.
    [Show full text]
  • 16 Aug 2012 E Uegat Rudteosue Pncutrstephenso Cluster Open Obscured the Around Supergiants Red L Am,Spain) Palma, (La Ouain Ohrors Ayrg Eg,Dve Ta.2007 Ages Typical Al
    Astronomy & Astrophysics manuscript no. wyffos c ESO 2012 August 17, 2012 Red supergiants around the obscured open cluster Stephenson2,⋆ I. Negueruela1, A. Marco1, C. Gonz´alez-Fern´andez1 , F. Jim´enez-Esteban2,3,4, J. S. Clark5, M. Garcia6,7, and E. Solano2,3 1 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain e-mail: [email protected] 2 Centro de Astrobiolog´ıa (INTA-CSIC), Departamento de Astrof´ısica, PO Box 78, E-28691, Villanueva de la Ca˜nada, Madrid, Spain 3 Spanish Virtual Observatory, Spain 4 Saint Louis University, Madrid Campus, Division of Science and Engineering, Avda. del Valle 34, E-28003 Madrid, Spain 5 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 6 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 7 Departamento de Astrof´ısica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain Preprint online version: August 17, 2012 ABSTRACT Context. Several clusters of red supergiants have been discovered in a small region of the Milky Way close to the base of the Scutum- Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. Amongst these clusters, Stephenson 2, with a core grouping of 26 red supergiants, is a strong candidate to be the most massive cluster in the Galaxy. Aims. Stephenson 2 is located close to a region where a strong over-density of red supergiants had been found.
    [Show full text]
  • Sio Maser Emission from Red Supergiants Across the Galaxy: I
    Astronomy & Astrophysics manuscript no. 18265-v2 c ESO 2018 November 15, 2018 SiO maser emission from red supergiants across the Galaxy: I. Targets in massive star clusters L. Verheyen⋆, M. Messineo, and K. M. Menten Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany e-mail: verheyen, messineo, [email protected] Received 2011/ Accepted ABSTRACT Aims. Red supergiants (RSGs) are among the most luminous of all stars, easily detectable in external galaxies, and may ideally serve as kinematic tracers of Galactic structure. Some RSGs are surrounded by circumstellar envelopes detectable by their dust and molecular and, in particular, maser emission. This study consists of a search for maser emission from silicon monoxide (SiO) toward a significant number of RSGs that are members of massive stellar clusters, many of which have only recently been discovered. Further, we aim to relate the occurrence of maser action to properties of the host stars. Methods. Using the IRAM 30 meter telescope, we searched for maser emission in the J = 2 − 1 rotational transition within the first vibrationally excited state of SiO toward a sample of 88 RSGs. Results. With an average rms noise level of 0.25 Jy, we detected maser emission in 15% of the sample, toward most of the sources for the first time in this transition. The peak of the emission provides accurate radial velocities for the RSGs. The dependence of the detection rate on infrared colors supports a radiative pumping mechanism for the SiO masers. Key words. Stars: AGB and post-AGB – circumstellar matter – masers 1.
    [Show full text]
  • Massive Open Star Clusters Using the VVV Survey III
    A&A 564, L9 (2014) Astronomy DOI: 10.1051/0004-6361/201322619 & c ESO 2014 Astrophysics Letter to the Editor Massive open star clusters using the VVV survey III. A young massive cluster at the far edge of the Galactic bar, S. Ramírez Alegría1,2, J. Borissova1,2,A.N.Chené3, E. O’Leary3,P.Amigo1,2, D. Minniti2,4,R.K.Saito5, D. Geisler6, R. Kurtev1,2,M.Hempel2,4, M. Gromadzki1,J.R.A.Clarke1, I. Negueruela7, A. Marco7, C. Fierro1,8, C. Bonatto9, and M. Catelan2,4 1 Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030 Valparaíso, Chile e-mail: [email protected] 2 The Millennium Institute of Astrophysics (MAS), Santiago, Chile 3 Gemini North Observatory, USA 4 Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 5 Universidade Federal de Sergipe, Departamento de Física, Av. Marechal Rondon s/n, 49100-000 São Cristóvão SE, Brazil 6 Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Chile 7 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Spain 8 Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico 9 Universidade Federal do Rio Grande do Sul, Departamento de Astronomia, CP 15051, RS 91501-970 Porto Alegre, Brazil Received 5 September 2013 / Accepted 11 March 2014 ABSTRACT Context. Young massive clusters are key to map the Milky Way’s structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters.
    [Show full text]
  • GIANO-TNG Spectroscopy of Red Supergiants in the Young Star Cluster RSGC3 L
    A&A 585, A14 (2016) Astronomy DOI: 10.1051/0004-6361/201526649 & c ESO 2015 Astrophysics GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3 L. Origlia1, E. Oliva2, N. Sanna2, A. Mucciarelli3, E. Dalessandro3, S. Scuderi4, C. Baffa2, V. Biliotti2, L. Carbonaro2, G. Falcini2, E. Giani2, M. Iuzzolino2, F. Massi2, M. Sozzi2, A. Tozzi2, A. Ghedina5, F. Ghinassi5, M. Lodi5, A. Harutyunyan5, and M. Pedani5 1 INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 3 University of Bologna, Physics & Astronomy Dept., Viale Berti Pichat 6-2, 40127 Bologna, Italy 4 INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 5 INAF–TNG, ORM Astronomical Observatory, 38787 Garafia, TF, Spain Received 1 June 2015 / Accepted 22 September 2015 ABSTRACT Aims. The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R ' 50 000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Results. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances.
    [Show full text]
  • Download This Article in PDF Format
    A&A 619, A35 (2018) Astronomy https://doi.org/10.1051/0004-6361/201730717 & c ESO 2018 Astrophysics 86 GHz SiO maser survey of late-type stars in the Inner Galaxy IV. SiO emission and infrared data for sources in the Scutum and Sagittarius-Carina arms, 20◦ < l < 50◦? M. Messineo1,2, ??, H. J. Habing2, L. O. Sjouwerman3, A. Omont4, and K. M. Menten5 1 Key Laboratory for Researches in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026, PR China e-mail: [email protected] 2 Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands 3 National Radio Astronomy Observatory, PO Box 0, Socorro NM 87801, USA 4 Institut d’Astrophysique de Paris CNRS, 98bis Boulevard Arago, 75014 Paris, France 5 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 1 March 2017 / Accepted 11 May 2018 ABSTRACT We present an 86 GHz SiO (v = 1; J = 2 ! 1) maser search toward late-type stars located within jbj < 0◦:5 and 20◦ < l < 50◦. This search is an extension at longer longitudes of a previously published work. We selected 135 stars from the MSX catalog using color and flux criteria and detected 92 (86 new detections). The detection rate is 68%, the same as in our previous study. The last few decades have seen the publication of several catalogs of point sources detected in infrared surveys (MSX, 2MASS, DENIS, ISOGAL, WISE, GLIMPSE, AKARI, and MIPSGAL). We searched each catalog for data on the 444 targets of our earlier survey and for the 135 in the survey reported here.
    [Show full text]
  • The Agb Newsletter
    THE AGB NEWSLETTER An electronic publication dedicated to Asymptotic Giant Branch stars and related phenomena Official publication of the IAU Working Group on Red Giants and Supergiants No. 286 — 2 May 2021 https://www.astro.keele.ac.uk/AGBnews Editors: Jacco van Loon, Ambra Nanni and Albert Zijlstra Editorial Board (Working Group Organising Committee): Marcelo Miguel Miller Bertolami, Carolyn Doherty, JJ Eldridge, Anibal Garc´ıa-Hern´andez, Josef Hron, Biwei Jiang, Tomasz Kami´nski, John Lattanzio, Emily Levesque, Maria Lugaro, Keiichi Ohnaka, Gioia Rau, Jacco van Loon (Chair) Editorial Dear Colleagues, It is our pleasure to present you the 286th issue of the AGB Newsletter. A healthy 30 postings are sure to keep you inspired. Now that the Leuven workshop has happened, we are gearing up to the IAU-sponsored GAPS 2021 virtual discussion meeting aimed to lay out a roadmap for cool evolved star research: we have got an exciting line-up of new talent as well as seasoned experts introducing the final session – all are encouraged to contribute to the meeting through 5-minute presentations or live discussion and the White Paper that will follow (see announcement at the back). Those interested in the common envelope process will no doubt consider attending the CEPO 2021 virtual meeting on this topic organised at the end of August / star of September. Great news on the job front: there are Ph.D. positions in Bordeaux, postdoc positions in Warsaw and another one in Nice. Thanks to Josef Hron and P´eter Abrah´am´ for ensuring the continuation of the Fizeau programme for exchange in the field of interferometry.
    [Show full text]
  • Exploring the Mass Loss Histories of the Red Supergiants
    Draft version August 5, 2020 Typeset using LATEX preprint style in AASTeX62 Exploring the Mass Loss Histories of the Red Supergiants∗ Roberta M. Humphreys1 — Greta Helmel1 — Terry J. Jones1 — Michael S. Gordon2 — 1Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455, USA 2USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035, USA (Received; Revised; Accepted) Submitted to AJ ABSTRACT We report mid- to far-infrared imaging and photomety from 7 to 37µm with SOFIA/FORCAST and 2µm adaptive optics imaging with LBTI/LMIRCam of a large sample of red supergiants (RSGs) in four Galactic clusters; RSGC1, RSGC2=Stephenson 2, RSGC3, and NGC 7419. The red supergiants in these clus- ters cover their expected range in luminosity and initial mass from 9 to more than ≈ 25 M⊙. The population includes examples of very late-type RSGs such as MY Cep which may be near the end of the RSG stage, high mass losing maser sources, yellow hypergiants and post-RSG candidates. Many of the stars and almost all of the most luminous have spectral energy distributions (SEDs) with extended infrared excess ra- diation at the longest wavelengths. To best model their SEDs we use DUSTY with a variable radial density distribution function to estimate their mass loss rates. Our M˙ – luminosity relation for 42 RSGs basically follows the classical de Jager curve, but 5 at luminosities below 10 L⊙ we find a significant population of red supergiants with arXiv:2008.01108v1 [astro-ph.SR] 3 Aug 2020 5 M˙ below the de Jager relation. At luminosities above 10 L⊙ there is a rapid transi- tion to higher mass loss rates that approximates and overlaps the de Jager curve.
    [Show full text]
  • Chemical Abundances of Four Red Supergiants Star Clusters (Rsgcs) in Scutum-Crux Arm
    Star Clusters: From the Milky Way to the Early Universe Proceedings IAU Symposium No. 351, 2019 c International Astronomical Union 2020 A. Bragaglia, M. Davies, A. Sills & E. Vesperini, eds. doi:10.1017/S1743921319006902 Chemical abundances of four red supergiants star clusters (RSGCs) in Scutum-Crux arm Sang-Hyun Chun Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea email: [email protected] Abstract. We investigate the spectral properties of red supergiant stars in the four RSGCs (RSGC2, RSGC3, RSGC4, RSGC5, and Alicante 10) in the Scutum-Crux arm of the Milky Way. The high-resolution (R ∼ 45, 000) near-infrared (H and K bands) spectra for 41 red supergiants were obtained using IGRINS at Gemini South telescope. The calibration of effective tempera- tures and gravities are derived based on the EWTi and EWCO using supergiants in IGIRNS library. The resulted temperatures and gravities are consistent with previous results. Model spectra were synthesized using derived stellar parameters from which we estimate metallicities and chemical abundances like α-elements. In our preliminary result, we find that overall four RSGCs indeed have sub-solar metallicities as already known in previous studies. The metallicity properties of RSGCs are far off the nominal metallicity trend in this region, and this suggests recent low-metallicity gas fueling into the inner disk and bulge. Keywords. stars: abundances, stars: late-type, (stars:) supergiants, Galaxy: disk 1. Introduction Massive stars are important to investigate the structures and chemical evolution of galaxies because of their luminous brightness and chemical enrichment as supernova.
    [Show full text]
  • Pode Ω Centauri Induzir Formaç˜Ao Estelar No Disco Galáctico?
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE F´ISICA DEPARTAMENTO DE ASTRONOMIA Pode ! Centauri induzir forma¸c~ao estelar no disco Gal´actico?∗ Gustavo Malta Salerno, Bel., Lic. Disserta¸c~aorealizada sob orienta¸c~aodo Professor Dr. Eduardo Luiz Damiani Bica e apresentada ao Programa de P´os- Gradua¸c~ao do Instituto de F´ısica da UFRGS em preenchimento parcial dos re- quisitos para a obten¸c~aodo t´ıtulode Mestre em F´ısica. Porto Alegre Agosto, 2013 ∗Trabalho parcialmente financiado pelo Conselho Nacional de Desenvolvimento Cient´ıficoe Tecnol´ogico(CNPq). Para Ota, M~aozinha,Manetinha, Cinzinha e Cotoco. Agradecimentos Agrade¸coao Dr. Eduardo Luiz Damiani Bica e ao Dr. Charles Bonatto por todo apoio e orienta¸c~aoque me deram ao longo deste trabalho. Tamb´emagrade¸co`asfam´ıliasFattore e Serres, que me abrigaram sempre que precisei e cuja aten¸c~aojamais poderei retribuir `aaltura. N~aoesquecerei jamais o apoio de Luciano Alexandre Pecetti e sua fam´ılia. Todos os colegas e amigos do Instituto de F´ısica, em especial do Departamento de Astronomia, merecem meus mais sinceros agradecimentos. Aos amigos da Hora Feliz, ao Renato Blumberg de Oliveira e ao Eduardo Balbinot, meus agradecimentos pela companhia, pelo ch´ae pela fogueira. ii Resumo Neste trabalho investigamos um dos processos que pode levar `aforma¸c~aode aglomerados abertos, focando-nos nas intera¸c~oesocorridas durante a passagem de um aglomerado globular atrav´esdo disco Gal´actico, cujos efeitos podem resultar no surgimentos daqueles. Tais intera¸c~oespodem ser uma alternativa aos cen´ariosconvencionais de forma¸c~aoestelar.
    [Show full text]
  • Massive Clusters in the Milky Way Ignacio Negueruela Gainesville, April 2016
    RSGC crowd Ricardo Dorda, Amparo Marco Universidad de Alicante , Spain Carlos González-Fernández CASU, Cambridge, UK Wd1 crowd J. Simon Clark, Ben W. Ritchie Open University , UK Paul A. Crowther, Simon Goodwin Shefeld , UK Francisco Najarro CAB–CSIC, Spain Massive clusters in the Milky Way Ignacio Negueruela Gainesville, April 2016 What are we calling a young massive cluster? Definition of “massive” depends on context In the Milky Way, ( Focuswe go Meeting for initial at mass the Beijing ! Mcl ≥ 10 M" IAU GA, 2013 ) #n astrophysical la$oratory on its ownFiger - cf. 2005 'pperCrowther+ limit to the 2010 stellar mass (#rches, ) *1+,, ; talk by -a$allero-.ieves/ VdBH 222 7+ d -epheid *56s 8l'e giants Age ~18 Ma Distance 6 kpc 4 Mass ~2x10 M⊙ V #vLSR≈= 1&2-100±3 km/s ℓ = Marco et al. 2014; A&A 567, A73 +!34 Distribution of young massive clusters in the Milky Way Cygnus Mercer 81 Center Arches Quintuplet Mercer 30 Norma RSG1 Stephenson2Scutum RSGC3 Alicante 10 Crux Alicante 7 Westerlund 1 NGC 3603 Sagitarius Carina Masgomas-1 Tr14+16 Westerlund 2 Orion Perseus Young massive clusters º Even if these (LMC) clusters are not quite as spectacular as those found in genuine starburst galaxies, they are still more massive than any of the open clusters seen in the Milky Way todayº Larsen & Richtler 1999, A&A 345, 59 Spiral starburst galaxy NGC 3310 The young globular NGC 1850, in the LMC The young globular NGC 1755, in the LMC !ST image #rom $ikipe&ia' M 11 The interme&iate- age cluster M11, in the Mil%y $ay *SO,$-.' M 11 McNamara & Sanders (1977) A&A 54, 569 5tar counts: 23 M" :irial9 6 M" Bruch & Sanders (1983) A&A 121, 237 e.g.
    [Show full text]