A Third Red Supergiant Rich Cluster in the Scutum-Crux Arm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Massive Association Around the Obscured Open Cluster RSGC3 Tent of the Clusters Is Uncertain.Membershipin RSGC1 and Ste2 2
Astronomy & Astrophysics manuscript no. 16102 c ESO 2018 October 31, 2018 A massive association around the obscured open cluster RSGC3,⋆ I. Negueruela1, C. Gonz´alez-Fern´andez1 , A. Marco1, and J. S. Clark2 1 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Apdo. 99, E03080 Alicante, Spain e-mail: [email protected] 2 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK Preprint online version: October 31, 2018 ABSTRACT Context. Four clusters of red supergiants have been discovered in a region of the Milky Way close to base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. If the clusters are physically connected, this Scutum Complex would be the largest and most massive star-forming region ever identified in the Milky Way. Aims. The spatial extent of one of these clusters, RSGC3, has not been investigated. In this paper we explore the possibility that a population of red supergiants could be located in its vicinity. Methods. We utilised 2MASS JHKS photometry to identify candidate obscured luminous red stars in the vicinity of RSGC3. We observed a sample of candidates with the TWIN spectrograph on the 3.5-m telescope at Calar Alto, obtaining intermediate-resolution spectroscopy in the 8000–9000Å range. We re-evaluated a number of classification criteria proposed in the literature for this spectral range and found that we could use our spectra to derive spectral types and luminosity classes. -
A Long-Period Cepheid Variable in the Starburst Cluster Vdbh222 Journal Item
Open Research Online The Open University’s repository of research publications and other research outputs A long-period Cepheid variable in the starburst cluster VdBH222 Journal Item How to cite: Clark, J. S.; Negueruela, I.; Lohr, M. E.; Dorda, R.; González-Fernández, C.; Lewis, F. and Roche, P. (2015). A long-period Cepheid variable in the starburst cluster VdBH222. Astronomy & Astrophysics, 584, article no. L12. For guidance on citations see FAQs. c 2015 ESO https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1051/0004-6361/201527360 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk A&A 584, L12 (2015) Astronomy DOI: 10.1051/0004-6361/201527360 & c ESO 2015 Astrophysics Letter to the Editor A long-period Cepheid variable in the starburst cluster VdBH222 J. S. Clark1, I. Negueruela2,M.E.Lohr1, R. Dorda2, C. González-Fernández3 ,F.Lewis4,5,andP.Roche5 1 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK e-mail: [email protected] 2 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain 3 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 4 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 5 School of Physics & Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff,UK Received 14 September 2015 / Accepted 21 October 2015 ABSTRACT Context. -
Instruction Manual
1 Contents 1. Constellation Watch Cosmo Sign.................................................. 4 2. Constellation Display of Entire Sky at 35° North Latitude ........ 5 3. Features ........................................................................................... 6 4. Setting the Time and Constellation Dial....................................... 8 5. Concerning the Constellation Dial Display ................................ 11 6. Abbreviations of Constellations and their Full Spellings.......... 12 7. Nebulae and Star Clusters on the Constellation Dial in Light Green.... 15 8. Diagram of the Constellation Dial............................................... 16 9. Precautions .................................................................................... 18 10. Specifications................................................................................. 24 3 1. Constellation Watch Cosmo Sign 2. Constellation Display of Entire Sky at 35° The Constellation Watch Cosmo Sign is a precisely designed analog quartz watch that North Latitude displays not only the current time but also the correct positions of the constellations as Right ascension scale Ecliptic Celestial equator they move across the celestial sphere. The Cosmo Sign Constellation Watch gives the Date scale -18° horizontal D azimuth and altitude of the major fixed stars, nebulae and star clusters, displays local i c r e o Constellation dial setting c n t s ( sidereal time, stellar spectral type, pole star hour angle, the hours for astronomical i o N t e n o l l r f -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
16 Aug 2012 E Uegat Rudteosue Pncutrstephenso Cluster Open Obscured the Around Supergiants Red L Am,Spain) Palma, (La Ouain Ohrors Ayrg Eg,Dve Ta.2007 Ages Typical Al
Astronomy & Astrophysics manuscript no. wyffos c ESO 2012 August 17, 2012 Red supergiants around the obscured open cluster Stephenson2,⋆ I. Negueruela1, A. Marco1, C. Gonz´alez-Fern´andez1 , F. Jim´enez-Esteban2,3,4, J. S. Clark5, M. Garcia6,7, and E. Solano2,3 1 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain e-mail: [email protected] 2 Centro de Astrobiolog´ıa (INTA-CSIC), Departamento de Astrof´ısica, PO Box 78, E-28691, Villanueva de la Ca˜nada, Madrid, Spain 3 Spanish Virtual Observatory, Spain 4 Saint Louis University, Madrid Campus, Division of Science and Engineering, Avda. del Valle 34, E-28003 Madrid, Spain 5 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 6 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 7 Departamento de Astrof´ısica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain Preprint online version: August 17, 2012 ABSTRACT Context. Several clusters of red supergiants have been discovered in a small region of the Milky Way close to the base of the Scutum- Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. Amongst these clusters, Stephenson 2, with a core grouping of 26 red supergiants, is a strong candidate to be the most massive cluster in the Galaxy. Aims. Stephenson 2 is located close to a region where a strong over-density of red supergiants had been found. -
Scutum Apus Aquarius Aquila Ara Bootes Canes Venatici Capricornus Centaurus Cepheus Circinus Coma Berenices Corona Austrina Coro
Polaris Ursa Minor Cepheus Camelopardus Thuban Draco Cassiopeia Mizar Ursa Major Lacerta Lynx Deneb Capella Perseus Auriga Canes Venatici Algol Cygnus Vega Cor Caroli Andromeda Lyra Bootes Leo Minor Castor Triangulum Corona Borealis Albireo Hercules Pollux Alphecca Gemini Vulpecula Coma Berenices Pleiades Aries Pegasus Sagitta Arcturus Taurus Cancer Aldebaran Denebola Leo Delphinus Serpens [Caput] Regulus Equuleus Altair Canis Minor Pisces Betelgeuse Aquila Procyon Orion Serpens [Cauda] Ophiuchus Virgo Sextans Monoceros Mira Scutum Rigel Aquarius Spica Cetus Libra Crater Capricornus Hydra Sirius Corvus Lepus Deneb Kaitos Canis Major Eridanus Antares Fomalhaut Piscis Austrinus Sagittarius Scorpius Antlia Pyxis Fornax Sculptor Microscopium Columba Caelum Corona Austrina Lupus Puppis Grus Centaurus Vela Norma Horologium Phoenix Telescopium Ara Canopus Indus Crux Pictor Achernar Hadar Carina Dorado Tucana Circinus Rigel Kentaurus Reticulum Pavo Triangulum Australe Musca Volans Hydrus Mensa Apus SampleOctans file Chamaeleon AND THE LONELY WAR Sample file STAR POWER VOLUME FOUR: STAR POWER and the LONELY WAR Copyright © 2018 Michael Terracciano and Garth Graham. All rights reserved. Star Power, the Star Power logo, and all characters, likenesses, and situations herein are trademarks of Michael Terracciano and Garth Graham. Except for review purposes, no portion of this publication may be reproduced or transmitted, in any form or by any means, without the express written consent of the copyright holders. All characters and events in this publication are fictional and any resemblance to real people or events is purely coincidental. Star chartsSample adapted from charts found at hoshifuru.jp file Portions of this book are published online at www.starpowercomic.com. This volume collects STAR POWER and the LONELY WAR Issues #16-20 published online between Oct 2016 and Oct 2017. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Massive Open Star Clusters Using the VVV Survey III
A&A 564, L9 (2014) Astronomy DOI: 10.1051/0004-6361/201322619 & c ESO 2014 Astrophysics Letter to the Editor Massive open star clusters using the VVV survey III. A young massive cluster at the far edge of the Galactic bar, S. Ramírez Alegría1,2, J. Borissova1,2,A.N.Chené3, E. O’Leary3,P.Amigo1,2, D. Minniti2,4,R.K.Saito5, D. Geisler6, R. Kurtev1,2,M.Hempel2,4, M. Gromadzki1,J.R.A.Clarke1, I. Negueruela7, A. Marco7, C. Fierro1,8, C. Bonatto9, and M. Catelan2,4 1 Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030 Valparaíso, Chile e-mail: [email protected] 2 The Millennium Institute of Astrophysics (MAS), Santiago, Chile 3 Gemini North Observatory, USA 4 Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 5 Universidade Federal de Sergipe, Departamento de Física, Av. Marechal Rondon s/n, 49100-000 São Cristóvão SE, Brazil 6 Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Chile 7 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Spain 8 Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico 9 Universidade Federal do Rio Grande do Sul, Departamento de Astronomia, CP 15051, RS 91501-970 Porto Alegre, Brazil Received 5 September 2013 / Accepted 11 March 2014 ABSTRACT Context. Young massive clusters are key to map the Milky Way’s structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. -
Chemical Abundances of Four Red Supergiants Star Clusters (Rsgcs) in Scutum-Crux Arm
Star Clusters: From the Milky Way to the Early Universe Proceedings IAU Symposium No. 351, 2019 c International Astronomical Union 2020 A. Bragaglia, M. Davies, A. Sills & E. Vesperini, eds. doi:10.1017/S1743921319006902 Chemical abundances of four red supergiants star clusters (RSGCs) in Scutum-Crux arm Sang-Hyun Chun Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea email: [email protected] Abstract. We investigate the spectral properties of red supergiant stars in the four RSGCs (RSGC2, RSGC3, RSGC4, RSGC5, and Alicante 10) in the Scutum-Crux arm of the Milky Way. The high-resolution (R ∼ 45, 000) near-infrared (H and K bands) spectra for 41 red supergiants were obtained using IGRINS at Gemini South telescope. The calibration of effective tempera- tures and gravities are derived based on the EWTi and EWCO using supergiants in IGIRNS library. The resulted temperatures and gravities are consistent with previous results. Model spectra were synthesized using derived stellar parameters from which we estimate metallicities and chemical abundances like α-elements. In our preliminary result, we find that overall four RSGCs indeed have sub-solar metallicities as already known in previous studies. The metallicity properties of RSGCs are far off the nominal metallicity trend in this region, and this suggests recent low-metallicity gas fueling into the inner disk and bulge. Keywords. stars: abundances, stars: late-type, (stars:) supergiants, Galaxy: disk 1. Introduction Massive stars are important to investigate the structures and chemical evolution of galaxies because of their luminous brightness and chemical enrichment as supernova. -
Sydney Observatory Night Sky Map September 2012 a Map for Each Month of the Year, to Help You Learn About the Night Sky
Sydney Observatory night sky map September 2012 A map for each month of the year, to help you learn about the night sky www.sydneyobservatory.com This star chart shows the stars and constellations visible in the night sky for Sydney, Melbourne, Brisbane, Canberra, Hobart, Adelaide and Perth for September 2012 at about 7:30 pm (local standard time). For Darwin and similar locations the chart will still apply, but some stars will be lost off the southern edge while extra stars will be visible to the north. Stars down to a brightness or magnitude limit of 4.5 are shown. To use this chart, rotate it so that the direction you are facing (north, south, east or west) is shown at the bottom. The centre of the chart represents the point directly above your head, called the zenith, and the outer circular edge represents the horizon. h t r No Star brightness Moon phase Last quarter: 08th Zero or brighter New Moon: 16th 1st magnitude LACERTA nd Deneb First quarter: 23rd 2 CYGNUS Full Moon: 30th rd N 3 E LYRA th Vega W 4 LYRA N CORONA BOREALIS HERCULES BOOTES VULPECULA SAGITTA PEGASUS DELPHINUS Arcturus Altair EQUULEUS SERPENS AQUILA OPHIUCHUS SCUTUM PISCES Moon on 23rd SERPENS Zubeneschamali AQUARIUS CAPRICORNUS E SAGITTARIUS LIBRA a Saturn Centre of the Galaxy Antares Zubenelgenubi t s Antares VIRGO s t SAGITTARIUS P SCORPIUS P e PISCESMICROSCOPIUM AUSTRINUS SCORPIUS Mars Spica W PISCIS AUSTRINUS CORONA AUSTRALIS Fomalhaut Centre of the Galaxy TELESCOPIUM LUPUS ARA GRUSGRUS INDUS NORMA CORVUS INDUS CETUS SCULPTOR PAVO CIRCINUS CENTAURUS TRIANGULUM -
GIANO-TNG Spectroscopy of Red Supergiants in the Young Star Cluster RSGC3 L
A&A 585, A14 (2016) Astronomy DOI: 10.1051/0004-6361/201526649 & c ESO 2015 Astrophysics GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3 L. Origlia1, E. Oliva2, N. Sanna2, A. Mucciarelli3, E. Dalessandro3, S. Scuderi4, C. Baffa2, V. Biliotti2, L. Carbonaro2, G. Falcini2, E. Giani2, M. Iuzzolino2, F. Massi2, M. Sozzi2, A. Tozzi2, A. Ghedina5, F. Ghinassi5, M. Lodi5, A. Harutyunyan5, and M. Pedani5 1 INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 3 University of Bologna, Physics & Astronomy Dept., Viale Berti Pichat 6-2, 40127 Bologna, Italy 4 INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 5 INAF–TNG, ORM Astronomical Observatory, 38787 Garafia, TF, Spain Received 1 June 2015 / Accepted 22 September 2015 ABSTRACT Aims. The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R ' 50 000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Results. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. -
These Sky Maps Were Made Using the Freeware UNIX Program "Starchart", from Alan Paeth and Craig Counterman, with Some Postprocessing by Stuart Levy
These sky maps were made using the freeware UNIX program "starchart", from Alan Paeth and Craig Counterman, with some postprocessing by Stuart Levy. You’re free to use them however you wish. There are five equatorial maps: three covering the equatorial strip from declination −60 to +60 degrees, corresponding roughly to the evening sky in northern winter (eq1), spring (eq2), and summer/autumn (eq3), plus maps covering the north and south polar areas to declination about +/− 25 degrees. Grid lines are drawn at every 15 degrees of declination, and every hour (= 15 degrees at the equator) of right ascension. The equatorial−strip maps use a simple rectangular projection; this shows constellations near the equator with their true shape, but those at declination +/− 30 degrees are stretched horizontally by about 15%, and those at the extreme 60−degree edge are plotted twice as wide as you’ll see them on the sky. The sinusoidal curve spanning the equatorial strip is, of course, the Ecliptic −− the path of the Sun (and approximately that of the planets) through the sky. The polar maps are plotted with stereographic projection. This preserves shapes of small constellations, but enlarges them as they get farther from the pole; at declination 45 degrees they’re about 17% oversized, and at the extreme 25−degree edge about 40% too large. These charts plot stars down to magnitude 5, along with a few of the brighter deep−sky objects −− mostly star clusters and nebulae. Many stars are labelled with their Bayer Greek−letter names. Also here are similarly−plotted maps, based on galactic coordinates.