Massive Clusters in the Milky Way Ignacio Negueruela Gainesville, April 2016

Total Page:16

File Type:pdf, Size:1020Kb

Massive Clusters in the Milky Way Ignacio Negueruela Gainesville, April 2016 RSGC crowd Ricardo Dorda, Amparo Marco Universidad de Alicante , Spain Carlos González-Fernández CASU, Cambridge, UK Wd1 crowd J. Simon Clark, Ben W. Ritchie Open University , UK Paul A. Crowther, Simon Goodwin Shefeld , UK Francisco Najarro CAB–CSIC, Spain Massive clusters in the Milky Way Ignacio Negueruela Gainesville, April 2016 What are we calling a young massive cluster? Definition of “massive” depends on context In the Milky Way, ( Focuswe go Meeting for initial at mass the Beijing ! Mcl ≥ 10 M" IAU GA, 2013 ) #n astrophysical la$oratory on its ownFiger - cf. 2005 'pperCrowther+ limit to the 2010 stellar mass (#rches, ) *1+,, ; talk by -a$allero-.ieves/ VdBH 222 7+ d -epheid *56s 8l'e giants Age ~18 Ma Distance 6 kpc 4 Mass ~2x10 M⊙ V #vLSR≈= 1&2-100±3 km/s ℓ = Marco et al. 2014; A&A 567, A73 +!34 Distribution of young massive clusters in the Milky Way Cygnus Mercer 81 Center Arches Quintuplet Mercer 30 Norma RSG1 Stephenson2Scutum RSGC3 Alicante 10 Crux Alicante 7 Westerlund 1 NGC 3603 Sagitarius Carina Masgomas-1 Tr14+16 Westerlund 2 Orion Perseus Young massive clusters º Even if these (LMC) clusters are not quite as spectacular as those found in genuine starburst galaxies, they are still more massive than any of the open clusters seen in the Milky Way todayº Larsen & Richtler 1999, A&A 345, 59 Spiral starburst galaxy NGC 3310 The young globular NGC 1850, in the LMC The young globular NGC 1755, in the LMC !ST image #rom $ikipe&ia' M 11 The interme&iate- age cluster M11, in the Mil%y $ay *SO,$-.' M 11 McNamara & Sanders (1977) A&A 54, 569 5tar counts: 23 M" :irial9 6 M" Bruch & Sanders (1983) A&A 121, 237 e.g. N6- 6,+: 80 M" Battinelli & Capuzzo-Dolcetta5ee also (1991, MNRAS 249, 76) The young cluster NGC 663, in the Mil%y $ay Michael Siniscalchi @ helixgate1net) Bruch & Sanders (1983) A&A 121, 237 e.g. N6- 6,+: 80 M" < moreMarco like et el.,! in prep.M" The young cluster NGC 663, in the Mil%y $ay Michael Siniscalchi @ helixgate1net) Distribution of young massive clusters in the Milky Way Cygnus Mercer 81 Center Arches Quintuplet Mercer 30 Norma RSG1 Stephenson2Scutum RSGC3 Alicante 10 Crux Alicante 7 Westerlund 1 NGC 3603 Sagitarius Carina Masgomas-1 Tr14+16 Westerlund 2 Orion Perseus NGC 653 NGC 663, the )ore of Cas+B8 90’ = 65 pc @ 2.5 kpc NGC 654 Alicante 9 – cluster candidate Negueruela et al. (2011) Alicante 7 – cluster RSGC3 – big cluster Negueruela et al. (2011) Clark et al. (2009) 30’ = 52 pc @ 6 kpc 6limpse +, view towards l = 734, $ = 4 Alicante 10 – pretty big cluster González-Fernández & Negueruela (2012) Westerlund 1 is the most massive young open cluster so far known in the Milky Way. At least 150 evolved massive ( ) stars observed imply " M > 3 M 2 (Clark et al. 2005, A&A M 434,0 1 949M)" Star counts in the IR imply (Gennaro et ! al. 2011, M MNRAS ≥ 5x1 412, M "2469; talks by Lu & Andersen) 5Myr Age Ma d ~ 4 kpc ≈ 4 6.3 Myr V # ≈ 10 ,&3Myr with high rotation Gennaro et al. 2011, MNRAS 412, 2469 Negueruela et al. 2010, A&A, 516, A78 Old Geneva tracks Age Ma d ~ 6≿ kpc 5 V # ≈ 12 This is not isolated case! PMS tracks always give younger ages 5Myr 6.3 Myr Naylor 2009, MNRAS 399, 432 ,&3Myr with high rotation Bell et al. 2012, MNRAS 424, 3178 Negueruela et al. 2010, A&A, 516, A78 Old Geneva tracks Age Ma d ~ 6≿ kpc 5 V # ≈ 12 This is a 9.2-d (almost- detached) eclipsing binary Wd1-13 (Bonanos 2007, AJ 133, 2696) Dynamical determination Evidence for two separate indicates both members had evolutionary channels for massive initial , li!ely " stars ( ): (RitchieM et@ >al. 3 2010, M" A&A 520, A48M") Single A! O →MBSGB →YHG→RSG→WR #nother member with " Binary O→BHG/LBV→WR (Koumpia & Bonanos 2012, A&A 547, A30) M@ 0 M" FLAMES spe!"roscopi! sur%ey ≥ 40% of observed stars are binaries. Most (all?) WR stars are binaries. W43a (B0 Ia ) Porb = 16.3 days Ritchie et al. 2009, A&A 507, 1597 Ritchie et al. 2011, BSRSL 80, 628 Clark et al. 2011, A&A 531, A28 W239 (WC9d) Porb = 5.1 days A real vel#!i"y dispersi#n No evidence for dynamically separate subclusters Radial vel#ci"ies f#r Wd1 members, c#rrected f#r (inari"y and $lsa"i#n vsys= -42.9±4.6 km/s (Clark et al., in preparation) $ield centred on Westerlund % (Negueruela et al., in preparation) Kothes & Dougherty (2007, A&A 468, 993) Westerlund 1 is completely isolated! S$''ary ! Chere is a significant population of massive (Mcl >10 M") in the Milky Way& Cheir detection is mainly hindered $y high extinction& ! Stepheson 2, with M 0 5x10 M", is part of a h'ge str'cture& 2 Westerl'nd 1, containing 10 M ", formed monolythically, in a single b'rst& h & χ Per, the core of Per OB1 7oth Ritter8 A6+: 0401093' 50’ = 30 pc @ 2.1 kpc &tephenson 2 D4 > 25 )&*s (Davies et al. 2007, ApJ 671, 781; Negueruela et al. 2012, A&A 547, D2 A14) ! Implied mass 0 5x10 M" AV ≈ 11 Behind dust layer (LDN 515) Age 18-20 Myr D49 @ d = 6kpc D1 Stephenson 1990 (AJ 99, 1867) Nakaya et al. 2001 (AJ 122, 876) Ortolani et al. 2002 (A&A 391, 179) 6DIME5F 3%colour image &tephenson 2 > 25 )&*s (Davies et al. 2007, ApJ 671, 781; Negueruela et al. 2012, A&A 547, A14) Clark et al. 2014, A&A 561, A15 Westerlund 1 is completely isolated! Westerlund 1 is completely isolated! .
Recommended publications
  • A Massive Association Around the Obscured Open Cluster RSGC3 Tent of the Clusters Is Uncertain.Membershipin RSGC1 and Ste2 2
    Astronomy & Astrophysics manuscript no. 16102 c ESO 2018 October 31, 2018 A massive association around the obscured open cluster RSGC3,⋆ I. Negueruela1, C. Gonz´alez-Fern´andez1 , A. Marco1, and J. S. Clark2 1 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Apdo. 99, E03080 Alicante, Spain e-mail: [email protected] 2 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK Preprint online version: October 31, 2018 ABSTRACT Context. Four clusters of red supergiants have been discovered in a region of the Milky Way close to base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. If the clusters are physically connected, this Scutum Complex would be the largest and most massive star-forming region ever identified in the Milky Way. Aims. The spatial extent of one of these clusters, RSGC3, has not been investigated. In this paper we explore the possibility that a population of red supergiants could be located in its vicinity. Methods. We utilised 2MASS JHKS photometry to identify candidate obscured luminous red stars in the vicinity of RSGC3. We observed a sample of candidates with the TWIN spectrograph on the 3.5-m telescope at Calar Alto, obtaining intermediate-resolution spectroscopy in the 8000–9000Å range. We re-evaluated a number of classification criteria proposed in the literature for this spectral range and found that we could use our spectra to derive spectral types and luminosity classes.
    [Show full text]
  • A Long-Period Cepheid Variable in the Starburst Cluster Vdbh222 Journal Item
    Open Research Online The Open University’s repository of research publications and other research outputs A long-period Cepheid variable in the starburst cluster VdBH222 Journal Item How to cite: Clark, J. S.; Negueruela, I.; Lohr, M. E.; Dorda, R.; González-Fernández, C.; Lewis, F. and Roche, P. (2015). A long-period Cepheid variable in the starburst cluster VdBH222. Astronomy & Astrophysics, 584, article no. L12. For guidance on citations see FAQs. c 2015 ESO https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1051/0004-6361/201527360 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk A&A 584, L12 (2015) Astronomy DOI: 10.1051/0004-6361/201527360 & c ESO 2015 Astrophysics Letter to the Editor A long-period Cepheid variable in the starburst cluster VdBH222 J. S. Clark1, I. Negueruela2,M.E.Lohr1, R. Dorda2, C. González-Fernández3 ,F.Lewis4,5,andP.Roche5 1 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK e-mail: [email protected] 2 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain 3 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 4 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 5 School of Physics & Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff,UK Received 14 September 2015 / Accepted 21 October 2015 ABSTRACT Context.
    [Show full text]
  • Formation of Very Young Massive Clusters and Implications for Globular Clusters
    Formation of Very Young Massive Clusters and implications for globular clusters Sambaran Banerjee and Pavel Kroupa To be published in The Origin of Stellar Clusters, ed. S. Stahler (Springer) Abstract How Very Young Massive star Clusters (VYMCs; also known as “star- 4 burst” clusters), which typically are of & 10 M and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and com- putational studies provide clues about their formation scenarios and the underly- ing physical processes involved. This chapter is focused on reviewing the decade- long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modeling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by address- ing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date lit- erature, in an integrated fashion, several new insights and discussions are provided.
    [Show full text]
  • 16 Aug 2012 E Uegat Rudteosue Pncutrstephenso Cluster Open Obscured the Around Supergiants Red L Am,Spain) Palma, (La Ouain Ohrors Ayrg Eg,Dve Ta.2007 Ages Typical Al
    Astronomy & Astrophysics manuscript no. wyffos c ESO 2012 August 17, 2012 Red supergiants around the obscured open cluster Stephenson2,⋆ I. Negueruela1, A. Marco1, C. Gonz´alez-Fern´andez1 , F. Jim´enez-Esteban2,3,4, J. S. Clark5, M. Garcia6,7, and E. Solano2,3 1 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain e-mail: [email protected] 2 Centro de Astrobiolog´ıa (INTA-CSIC), Departamento de Astrof´ısica, PO Box 78, E-28691, Villanueva de la Ca˜nada, Madrid, Spain 3 Spanish Virtual Observatory, Spain 4 Saint Louis University, Madrid Campus, Division of Science and Engineering, Avda. del Valle 34, E-28003 Madrid, Spain 5 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 6 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 7 Departamento de Astrof´ısica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain Preprint online version: August 17, 2012 ABSTRACT Context. Several clusters of red supergiants have been discovered in a small region of the Milky Way close to the base of the Scutum- Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. Amongst these clusters, Stephenson 2, with a core grouping of 26 red supergiants, is a strong candidate to be the most massive cluster in the Galaxy. Aims. Stephenson 2 is located close to a region where a strong over-density of red supergiants had been found.
    [Show full text]
  • Massive Open Star Clusters Using the VVV Survey III
    A&A 564, L9 (2014) Astronomy DOI: 10.1051/0004-6361/201322619 & c ESO 2014 Astrophysics Letter to the Editor Massive open star clusters using the VVV survey III. A young massive cluster at the far edge of the Galactic bar, S. Ramírez Alegría1,2, J. Borissova1,2,A.N.Chené3, E. O’Leary3,P.Amigo1,2, D. Minniti2,4,R.K.Saito5, D. Geisler6, R. Kurtev1,2,M.Hempel2,4, M. Gromadzki1,J.R.A.Clarke1, I. Negueruela7, A. Marco7, C. Fierro1,8, C. Bonatto9, and M. Catelan2,4 1 Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030 Valparaíso, Chile e-mail: [email protected] 2 The Millennium Institute of Astrophysics (MAS), Santiago, Chile 3 Gemini North Observatory, USA 4 Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 5 Universidade Federal de Sergipe, Departamento de Física, Av. Marechal Rondon s/n, 49100-000 São Cristóvão SE, Brazil 6 Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Chile 7 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Spain 8 Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico 9 Universidade Federal do Rio Grande do Sul, Departamento de Astronomia, CP 15051, RS 91501-970 Porto Alegre, Brazil Received 5 September 2013 / Accepted 11 March 2014 ABSTRACT Context. Young massive clusters are key to map the Milky Way’s structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters.
    [Show full text]
  • The Very Reddened Open Clusters Pismis 23 (Lyngå 10) and Stephenson 2?,??
    A&A 390, 931–935 (2002) Astronomy DOI: 10.1051/0004-6361:20020716 & c ESO 2002 Astrophysics The very reddened open clusters Pismis 23 (Lyngå 10) and Stephenson 2?;?? S. Ortolani1,E.Bica2,B.Barbuy3,andY.Momany1 1 Universit`a di Padova, Dept. di Astronomia, Vicolo dell’Osservatorio 2, 35122 Padova, Italy e-mail: [email protected] 2 Universidade Federal do Rio Grande do Sul, Dept. de Astronomia, CP 15051, Porto Alegre 91500-970, Brazil e-mail: [email protected] 3 Universidade de S˜ao Paulo, CP 3386, S˜ao Paulo 01060-970, Brazil e-mail: [email protected] Received 15 March 2002 / Accepted 7 May 2002 Abstract. Pismis 23 and Stephenson 2 are two very reddened open clusters, projected close to the Galactic plane. We present VI and JH photometry for Pismis 23 and I and Gunn z for Stephenson 2. We derive a relatively old age of ∼700 Myr for Pismis 23, with a reddening value of E(B−V) = 1:73 and a distance d ≈ 2:6 kpc from the Sun. Stephenson 2 has a clump of red supergiants, indicating a young age of about 20 Myr, somewhat younger and more distant (d ≈ 6 kpc) than recently reported in the literature. The age estimate for such a young object is crucial for the distance estimate. The high reddening of these two clusters relative to predictions from the diffuse interstellar medium at their distances is due to discrete intervening clouds. Key words. open clusters and associations: individual: Pismis 23, Stephenson 2 – stars: Hertzsprung-Russell (HR) and C-M diagrams 1.
    [Show full text]
  • GIANO-TNG Spectroscopy of Red Supergiants in the Young Star Cluster RSGC3 L
    A&A 585, A14 (2016) Astronomy DOI: 10.1051/0004-6361/201526649 & c ESO 2015 Astrophysics GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3 L. Origlia1, E. Oliva2, N. Sanna2, A. Mucciarelli3, E. Dalessandro3, S. Scuderi4, C. Baffa2, V. Biliotti2, L. Carbonaro2, G. Falcini2, E. Giani2, M. Iuzzolino2, F. Massi2, M. Sozzi2, A. Tozzi2, A. Ghedina5, F. Ghinassi5, M. Lodi5, A. Harutyunyan5, and M. Pedani5 1 INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 3 University of Bologna, Physics & Astronomy Dept., Viale Berti Pichat 6-2, 40127 Bologna, Italy 4 INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 5 INAF–TNG, ORM Astronomical Observatory, 38787 Garafia, TF, Spain Received 1 June 2015 / Accepted 22 September 2015 ABSTRACT Aims. The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R ' 50 000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Results. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances.
    [Show full text]
  • THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
    THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 141 — 1 June 2016 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Editorial Dear Colleagues, It is my pleasure to present you the 141st issue of the Magellanic Clouds Newsletter. There is a lot of interest in massive stars, star clusters, supernova remnants and binaries, but also several exciting new results about the large-scale structure of the Magellanic Clouds System. The next issue is planned to be distributed on the 1st of August 2016. Editorially Yours, Jacco van Loon 1 Refereed Journal Papers Non-radial pulsation in first overtone Cepheids of the Small Magellanic Cloud R. Smolec1 and M. Sniegowska´ 2 1Nicolaus Copernicus Astronomical Center, Warsaw, Poland 2Warsaw University Observatory, Warsaw, Poland We analyse photometry for 138 first overtone Cepheids from the Small Magellanic Cloud, in which Optical Gravitational Lensing Experiment team discovered additional variability with period shorter than first overtone period, and period ratios in the (0.60,0.65) range. In the Petersen diagram, these stars form three well-separated sequences. The additional variability cannot correspond to other radial mode. This form of pulsation is still puzzling. We find that amplitude of the additional variability is small, typically 2–4 per cent of the first overtone amplitude, which corresponds to 2–5 mmag. In some stars, we find simultaneously two close periodicities corresponding to two sequences in the Petersen diagram. The most important finding is the detection of power excess at half the frequency of the additional variability (at subharmonic) in 35 per cent of the analysed stars.
    [Show full text]
  • Programme Book
    BETELGEUSE WORKSHOP 2012 THE PHYSICS OF RED SUPERGIANTS 26-29 NOVEMBER, 2012 PARIS (FRANCE) PROGRAMME BOOK ii Acknowledgements ...........................................................................................................iv! Scientific3Organizing3Committee .........................................................................................v! Local3Organizing3Committee ...............................................................................................v! Local3information ..............................................................................................................vi! Venue .......................................................................................................................................................................................vi! Public!transportation........................................................................................................................................................vi! Meeting!room ..................................................................................................................................................................... vii! Instructions3for3the3Proceedings ......................................................................................viii! List3of3participants .............................................................................................................ix! Daily3schedule .................................................................................................................xiii!
    [Show full text]
  • Sio and H2O Maser Observations of Red Supergiants in Star Clusters
    PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. SiO and H2O Maser Observations of Red Supergiants in Star Clusters Embedded in the Galactic Disk Shuji Deguchi1, Jun-ichi Nakashima2 Yong Zhang2, Selina S. N. Chong2, Kazutaka Koike1 and Sun Kwok2 1Nobeyama Radio Observatory, National Astronomical Observatory, and Graduate University for Advanced Studies, Minamimaki, Minamisaku, Nagano 384-1305 2Department of Physics, University of Hong Kong, Pokfulam Rd, Hong Kong, China (PASJ 62, No. 2, the April 25 2010 issue in press) (Received 2009 October 9; accepted 2010 February 1) Abstract We present the result of radio observations of red supergiants in the star cluster, Stephenson’s #2, and candidates for red supergiants in the star clusters, Mercer et al. (2005)’s #4, #8, and #13, in the SiO and H2O maser lines. The Stephenson’s #2 cluster and nearby aggregation at the South-West contain more than 15 red supergiants. We detected one at the center of Stephenson’s #2 and three in the south-west aggregation in the SiO maser line, and three of these 4 were also detected in the H2O maser line. The average radial velocity of the 4 detected objects is 96 km s−1, giving a kinematic distance of 5.5 kpc, which locates this cluster near the base of the Scutum-Crux spiral arm. We also detected 6 SiO emitting objects associated with the other star clusters. In addition, mapping observations in the CO J = 1–0 line toward these clusters revealed that an appreciable amount of molecular gas still remains around Stephenson’s #2 cluster in contrast to the prototypical red-supergiant cluster, Bica et al.’s #122.
    [Show full text]
  • Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. I
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Draft version September 9, 1999 Preprint typeset using LATEX style emulateapj v. 04/03/99 ULTRAVIOLET IMAGING POLARIMETRY OF THE LARGE MAGELLANIC CLOUD. I. OBSERVATIONS Andrew A. Cole,1;4 Kenneth H. Nordsieck,1;2 Steven J. Gibson,3 & Walter M. Harris2 Draft version September 9, 1999 ABSTRACT We have used the rocket-borne Wide-Field Imaging Survey Polarimeter (WISP) to image a 1◦:5 4◦:8 × area of the western side of the Large Magellanic Cloud (LMC) at a wavelength of λ = 2150 Aanda˚ resolution of 10 1:05. These are the first wide-field ultraviolet polarimetric images in astronomy. We find the UV background× light of the LMC to be linearly polarized at levels ranging from our sensitivity limit of 4% to as high as 40%. In general, the polarization in a pixel increases as the flux decreases; the weighted mean value of≈ polarization across the WISP field is 12.6% 2.3%. The LMC’s diffuse UV ± 8 1 2 1 1 background, in uncrowded areas, rises from a minimum of 5.6 3.1 10− erg s− cm− A˚− Sr− 2 8 1 2 ±1 ×1 2 (23.6 0.5 mag arcsec− )to9.3 1.1 10− erg s− cm− A˚− Sr− (23.1 0.2 mag arcsec− )in regions± near the bright associations.± We× use our polarization maps to investigate± the geometry of the interstellar medium in the LMC, and to search for evidence of a significant contribution of scattered light from OB associations to the diffuse galactic light of the LMC.
    [Show full text]
  • Braking Stars in the Young Magellanic Cloud Massive Clusters
    Mem. S.A.It. Vol. 89, 42 c SAIt 2018 Memorie della Braking stars in the Young Magellanic Cloud Massive Clusters F. D’Antona1, A. Milone2, M. Tailo3, P. Ventura1, E. Vesperini4, and M. Di Criscienzo1 1 Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Roma, Via Frascati, I-00040 Monte Porzio Catone, Italy, e-mail: [email protected] 2 Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita` di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy 3 Dipartimento di Fisica, Universita` degli Studi di Cagliari, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy 4 Department of Astronomy, Indiana University, Bloomington, IN (USA) Abstract. The presence of extended main sequence turnoff (eMSTO) regions in the Young Massive Clusters in the Magellanic Clouds was explained either as due to an “age spread”, or to “rotational spread”. Both models presented points of strength and flimsiness. The rota- tional model is becoming now favored, because if explains both the increase of the apparent age spread with the cluster age, and the presence of a split main sequence in the younger clus- ters (age <400Myr), interpreted with the presence of a scarcely rotating blue main sequence and a rapidly rotating red main sequence, this latter ending into an extended main sequence turnoff (eMSTO) region. The slowly–rotating bMS always includes stars which are apparently ∼30% “younger” than the rest. We show that, in a coeval stellar sample, this feature signals the presence of stars caught in the stage of braking from an initial rapidly rotating configu- ration; these stars are thus in a “younger” nuclear evolution stage (less hydrogen consumed in core burning) than stars directly born slowly–rotating in the same star–formation episode.
    [Show full text]