Scyllarid Lobster Biology and Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
U , '' Regional (;"Ntre of I:::;~, I Central Marine Fisheries Research Institute T - ~ '\~ ~ ~3L'!" ICAR Marine Fisheries P.O
CMFRI S ammelt S ,4(J(Jt (JU Recent Advances in Se"ed Production and Growout Techniques for Marine Finfish and Shellfish ,1 I Compiled and Edited by Dr. G.Gopakumar, Principal Scientist & Director, Summer School and '. Dr. Boby Ignatius, Scientist (SS) Central Marine Fisheries Research Institute j' U , '' Regional (;"ntre of i:::;~, I Central Marine Fisheries Research Institute t - ~ '\~ ~ ~3l'!" ICAR Marine Fisheries P.O . Tamil Nadu - 623 520 ' ~~ ... ~"'~~ SEED PRODUCTION OF THE SAND LOBSTER THENUS ORIENTALIS (LUND) Joe K. Kizhakudan Research Centre of CMFRI, Chennai 3f With the decline in many commercial fisheries worldwide and an ever increasing demand for seafood protein, there is a growing need for augmenting the production of high-protein, high-value resources like lobsters. Aquaculture remains the ideal measure to augment production and ensure conseNation, and even enhancement. of natural stocks. Aquaculture provides a two-pronged solution towards increasing the fish production through ., farming of hatchery-produced seed of commercially important finfishes and shellfishes , enhancing natural stocks by sea ranching hatchery-produced seed of commercially important finfishes and shellfishes Lobsters are among the most priced seafood delicacies enjoying a special demand in international markets. As against a world average annual productio'n of2.1 lakh tonnes, India's average annual lobster production is about 2000 tonnes. With the distinction of being perhaps, the only seafood resource in India's trade economy, which remains relatively low down the ladder in terms of quantity of production but brings in maximum foreign exchange, lobsters have been the subject of study for more than two decades now. -
Lobsters-Identification, World Distribution, and U.S. Trade
Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de temperature zones. From such partition food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob Nephropoidea), the squat lobsters the world because of species distribu ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con lobsters, Homarus americanus, caught the purpose of reporting fishery statis tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e. -
Food Habits of Groupers Epinephelus Marginatus (Lowe, 1834) and Epinephelus Costae (Steindachner, 1878) in the Mediterranean Coast of Spain
Hidrobiológica 2005, 15 (1): 27-34 Food habits of groupers Epinephelus marginatus (Lowe, 1834) and Epinephelus costae (Steindachner, 1878) in the Mediterranean Coast of Spain Hábitos alimenticios de los meros, Epinephelus marginatus (Lowe, 1834) y Epinephelus costae (Steindachner, 1878) de la costa mediterránea de España Vicente Gracia López1 Francesc Castelló i Orvay2 1 Centro de Investigaciones Biológicas del Noroeste (CIBNOR) Mar Bermejo 195, Col. Playa Palo Sta. Rita, La Paz, B.C.S. 23090, México. E.mail: [email protected] 2Laboratory of Aquaculture. Department of Animal Biology. Faculty of Biology. Universitat de Barcelona. Avda. Diagonal, 645. 08028. Barcelona, Spain. Gracia López V. y F. Castelló i Orvay 2005. Food habits of groupers Epinephelus marginatus (Lowe, 1834) and Epinephelus costae (Steindachner, 1878) in the Mediterranean Coast of Spain. Hidrobiológica 15 (1):27-34. ABSTRACT Stomach contents of Epinephelus marginatus were analyzed to determine their food habits and the relationship with the predator size. Also, the food habits of Epinephelus costae were studied and results obtained for both species were compared according to the ecological categories of preys found in the stomach contents, percentage number (N%) and frequency of occurrence (F%). Results revealed that fishes (33.3%), crustaceans (30.1%) and mollusks (36.6%) were the main preys consumed by E. marginatus. The main prey consumed by Epinephelus costae was fishes (97.1%) and mollusks (2.9%) were occasionally found inside their stomachs. Comparison of ecological categories of prey for both species indicated that E. marginatus fed on benthonic species and E. costae on pelagic species. The relation between diet and size of E. -
Multiannual Plan for the Fisheries Exploiting Demersal Stocks in the Western Mediterranean Sea”
Oceana contribution to the European Commission’s public consultation on the “ Multiannual plan for the fisheries exploiting demersal stocks in the Western Mediterranean Sea” 1 Contents Executive summary . 3 1. Introduction . 4 2. The bleak reality of Western Mediterranean demersal stocks as a consequence of ignoring scientific advice . 5 3. Oceana proposals for a multi-annual management plan for demersal stocks in the Western Mediterranean Sea . 6 3 .1 The scope of the plan . 6 a) Area of application . 6 b) Member States concerned . 7 c) Stocks and fisheries under the scope of the plan . 8 3.2. Objectives, a timeframe, quantifiable reference points and safeguards . 9 3.3. Changing the paradigm: fishing opportunities according to scientific advice . 10 3.4. Reducing unwanted catches . 11 3.5. Protecting juveniles and spawners . 12 3.6. Ensuring the conservation of sensitive habitats (SH) and vulnerable marine ecosystems (VMEs) relevant to demersal fisheries . 13 3.7. Monitoring, control and surveillance (MCS) . 14 3.8. Data collection, scientific advice and scientific research . 14 GLOSSARY AND ACRONYMS . 15 ANNEX I . 16 ANNEX II . 19 ANNEX III . 20 ANNEX IV . 21 REFERENCES . 22 Oceana1 is a non-profit organization working in Europe to protect marine ecosystems and to recover marine stocks as to ensure the long- term sustainability of the fisheries. Oceana is therefore contributing to the public consultation on the “Multiannual plan for the fisheries exploiting demersal stocks in the Western Mediterranean Sea” open on the DG MARE website -
DOCTORAL THESIS a Physio-Ecological Study of Ephyrae
DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Graduate School of Biosphere Science Hiroshima University September 2014 DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Department of environmental Dynamics and Management Graduate School of Biosphere Science Hiroshima University September 2014 Abstract The moon jellyfish Aurelia aurita s.l. is the most common scyphozoan jellyfish in the coastal waters around the world, and the mass occurrences of this species have been reported from various regions. In recent decades, A. aurita blooms have become increasingly prominent in East Asian seas, causing serious problems to human sectors such as fisheries and coastal power plant operations. Therefore, it is important to identify causes for the enhancement of A. aurita populations to forecast likely outbreaks prior to the season of medusa blooms. In the population dynamics of scyphozoan jellyfish, the following two factors are important to determine the size of adult (medusa) population: (1) the abundance of benthic polyps, which reproduce asexually and undergo seasonal strobilation to release planktonic ephyrae, and (2) the mortality of ephyrae before recruitment to the medusa stage. Although much knowledge has been accumulated about physio-ecology of the polyp stage by previous studies, only few studies have been conducted for the ephyra stage. The success for survival through larval stage is basically affected by two factors, viz. food availability and predation. -
Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an Assessment of Macaronesian and Cape Verde Biogeographic Marine Ecoregions
Zootaxa 4413 (3): 401–448 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4413.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:2DF9255A-7C42-42DA-9F48-2BAA6DCEED7E Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an assessment of Macaronesian and Cape Verde biogeographic marine ecoregions JOSÉ A. GONZÁLEZ University of Las Palmas de Gran Canaria, i-UNAT, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: [email protected]. ORCID iD: 0000-0001-8584-6731. Abstract The complete list of Canarian marine decapods (last update by González & Quiles 2003, popular book) currently com- prises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde ar- chipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gath- ering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; diver- gent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos. -
Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan Denis Audo
First occurrence of Ibacinae (Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan Denis Audo To cite this version: Denis Audo. First occurrence of Ibacinae (Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan. Journal of Systematic Palaeontology, Taylor & Francis, 2019, 17 (6), pp.533-538. 10.1080/14772019.2017.1405085. hal-02274560 HAL Id: hal-02274560 https://hal.sorbonne-universite.fr/hal-02274560 Submitted on 30 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. First occurrence of Ibacinae (Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan Denis Audoa, b aUMR CNRS 6118 Géosciences, Université de Rennes I, Campus de Beaulieu, avenue du général Leclerc, 35042 Rennes cedex, France. E-mail: [email protected] bMuséum national d’Histoire naturelle, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris, France. Abstract The fossil record of slipper lobsters (Scyllaridae) is very poor, even though the earliest species of the modern slipper lobsters (Neoscyllaridae) are known from the Early Cretaceous. Among the clades “subfamilies” of slipper lobsters, perhaps the most remarkable is Ibacinae (currently monogeneric), which contains species with a very wide carapace (cephalothoracic shield) and very deep incisions. -
On a Hitherto Unknown Phyllosoma Larval Species of the Slipper Lobster Scyllarus (Decapoda, Scyllaridae) in the Hawaiian Archipelago L
Pacific Science (1977), vol. 31, no. 2 © 1977 by The University Press of Hawaii. All rights reserved On a Hitherto Unknown Phyllosoma Larval Species of the Slipper Lobster Scyllarus (Decapoda, Scyllaridae) in the Hawaiian Archipelago l MARTIN W. JOHNSON 2 IN A PREVIOUS ANALYSIS of plankton from thorax has a short spine situated at the 140 scattered oceanographic stations in the base of each of legs 1-4 (Figure 1-2). Coxal Hawaiian area, mainly around Oahu Island, and subexopodal spines (Figure I-I, sp.) are six scyllarid larval species were found (John present and the exopods of legs I, 2, and 3 son 1971). Five ofthese species were assigned are provided with 21, 21, and 19 pairs of respectively to Parribacus antarcticus (Lund); swimming setae, respectively; pleopods and Scyllarides squamosus (H. Milne Edwards); uropods are bilobed buds (Figure 1-3). The Arctides regalis Holthuis; Scyllarus timidus eyestalks are 2.4 mm long and the first Holthuis; and Scyllarus modestus Holthuis. antennae are about equal in length to the These five species comprise all of the then slender second antennae (Figure 1-4). Only known adult slipper lobsters of the Hawaiian very rudimentary second maxillae and first area. The sixth larval species, a Scyllarus, maxillipeds are present and the second maxi1 could not be identified specifically and lipeds bear no exopod buds (Figure 1-5). appears to represent an unknown adult species of that genus inhabiting the area. It is of interest to report here yet another unknown larva ofScyllarus that was probably Scyllarus sp. phyllosoma. Length 30.1 mm, produced in this relatively isolated oceanic final fully gilled stage (Figure 2-6). -
Goldstein Et Al 2019
Journal of Crustacean Biology Advance Access published 24 August 2019 Journal of Crustacean Biology The Crustacean Society Journal of Crustacean Biology 39(5), 574–581, 2019. doi:10.1093/jcbiol/ruz055 Downloaded from https://academic.oup.com/jcb/article-abstract/39/5/574/5554142/ by University of New England Libraries user on 04 October 2019 Development in culture of larval spotted spiny lobster Panulirus guttatus (Latreille, 1804) (Decapoda: Achelata: Palinuridae) Jason S. Goldstein1, Hirokazu Matsuda2, , Thomas R. Matthews3, Fumihiko Abe4, and Takashi Yamakawa4, 1Wells National Estuarine Research Reserve, Maine Coastal Ecology Center, 342 Laudholm Farm Road, Wells, ME 04090 USA; 2Mie Prefecture Fisheries Research Institute, 3564-3, Hamajima, Shima, Mie 517-0404 Japan; 3Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 2796 Overseas Hwy, Suite 119, Marathon, FL 33050 USA; and 4Department of Aquatic Bioscience, Graduate School of Agricultual and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan HeadA=HeadB=HeadA=HeadB/HeadA Correspondence: J.S. Goldstein: e-mail: [email protected] HeadB=HeadC=HeadB=HeadC/HeadB (Received 15 May 2019; accepted 11 July 2019) HeadC=HeadD=HeadC=HeadD/HeadC Ack_Text=DisHead=Ack_Text=HeadA ABSTRACT NList_lc_rparentheses_roman2=Extract1=NList_lc_rparentheses_roman2=Extract1_0 There is little information on the early life history of the spotted spiny lobster Panulirus guttatus (Latreille, 1804), an obligate reef resident, despite its growing importance as a fishery re- BOR_HeadA=BOR_HeadB=BOR_HeadA=BOR_HeadB/HeadA source in the Caribbean and as a significant predator. We cultured newly-hatched P. guttatus BOR_HeadB=BOR_HeadC=BOR_HeadB=BOR_HeadC/HeadB larvae (phyllosomata) in the laboratory for the first time, and the growth, survival, and mor- BOR_HeadC=BOR_HeadD=BOR_HeadC=BOR_HeadD/HeadC phological descriptions are reported through 324 days after hatch (DAH). -
Phylogenetic Evidence from Freshwater Crayfishes That Cave Adaptation Is Not an Evolutionary Dead- End David B
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Florida International University Florida International University FIU Digital Commons Center for Coastal Oceans Research Faculty Institute of Water and Enviornment Publications 9-20-2017 Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead- end David B. Stern George Washington University Jesse Breinholt University of Florida Carlos Pedrazaz-Lara Universidad Nacional Autónoma de México Marilu Lopez-Mejia Universidad de Quintana Roo Christopher L. Owen George Washington University See next page for additional authors Follow this and additional works at: https://digitalcommons.fiu.edu/merc_fac Part of the Life Sciences Commons Recommended Citation Stern, David B.; Breinholt, Jesse; Pedrazaz-Lara, Carlos; Lopez-Mejia, Marilu; Owen, Christopher L.; Bracken-Grissom, Heather D.; Fetzner, James W. Jr.; and Crandall, Keith A., "Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end" (2017). Center for Coastal Oceans Research Faculty Publications. 26. https://digitalcommons.fiu.edu/merc_fac/26 This work is brought to you for free and open access by the Institute of Water and Enviornment at FIU Digital Commons. It has been accepted for inclusion in Center for Coastal Oceans Research Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Authors David B. Stern, Jesse Breinholt, Carlos Pedrazaz-Lara, Marilu Lopez-Mejia, Christopher L. Owen, Heather D. Bracken-Grissom, James W. Fetzner Jr., and Keith A. Crandall This article is available at FIU Digital Commons: https://digitalcommons.fiu.edu/merc_fac/26 BRIEF COMMUNICATION doi:10.1111/evo.13326 Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end David B. -
The Biology and Fisheries of the Slipper Lobster
The Biology and Fisheries of the Slipper Lobster Kari L. Lavalli College of General Studies Boston University Bo~ton, Massachusetts, U.S.A. Ehud Spanier The Leon Recanati Institute for Maritime Studies and Department of Maritime Civilizations University of Haifa Haifa, Israel 0 ~y~~F~~~~~oup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Cover image courtesy of Megan Elizabeth Stover of the College of General Studies, Boston University, Boston, Massachusetts. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-3398-9 (Hardcover) International Standard Book Number-13: 978-0-8493-3398-9 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part ofthis book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa tion storage or retrieval system, without written permission from the publishers. -
Historic Naturalis Classica, Viii Historic Naturalis Classica
HISTORIC NATURALIS CLASSICA, VIII HISTORIC NATURALIS CLASSICA EDIDERUNT J. CRAMER ET H.K.SWANN TOMUS vm BIBUOGRAPHY OF THE LARVAE OF DECAPOD CRUSTACEA AND LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY WITH 122 FIGURES IN THE TEXT REPRINTED 1960 BY H. R. ENGELMANN (J. CRAMER) AND WHELDON & WESLEY, LTD. WEINHEIM/BERGSTR. CODICOTE/HERTS. BIBLIOGRAPHY OF THE LARVAE OF DECAPOD CRUSTACEA AND LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY WITH 122 FIGURES IN THE TEXT REPRINTED 1960 BY H. R. ENGELMANN (J. CRAMER) AND WHELDON & WESLEY, LTD. WEINHEIM/BERGSTR. CODICOTE/HERTS. COPYRIGHT 1939 & 1942 BY THfi RAY SOCIETY IN LONDON AUTHORIZED REPRINT COPYRIGHT OF THE SERIES BY J. CRAMER PUBLISHER IN WEINHEIM PRINTED IN GERMANY I9«0 i X\ T • THE RAY SOCIETY INSTITUTED MDCCCXLIV This volume (No. 125 of the Series) is issued to the Svhscribers to the RAY SOCIETY JOT the Year 1937. LONDON MCMXXXIX BIBLIOGKAPHY OF THE LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY, M.A., D.Sc, F.L.S. LONDON PRINTED FOR THE RAT SOCIETY SOLD BT BERNARD QUARITCH, LTD. U, GBAFTOK STBKET, NBW BOND STEBBT, LONDON, "W. 1 1939 PRINTED BY ADLABD AND SON, LIMITED 2 1 BLOOJlSBUBY WAY, LONDON, W.C. I Madt and printed in Great Britain. CONTENTS PAOE PBBFACE . " V BiBUOGRAPHY CLASSIFIED LIST . 64 Macrura Natantia 64 Penaeidea 64 Caridea 70 Macrura Reptantia 84 Nephropsidea 84 Eryonidea 88 Scyllaridea 88 Stenopidea 91 Thalassinidea 92 Anomura ; 95 Galatheidea . 95 Paguridea 97 Hippidea 100 Dromiacea 101 Brachyura 103 Gymnopleura 103 Brachygnatha 103 Oxyrhyncha 113 Oxystomata . 116 INDEX TO GENERA 120 PREFACE IT has been my intention to publish a monograph of Decapod larvae which should contain a bibliography, a part dealing with a number of general questions relating to the post-embryonic development of Decapoda and Euphausiacea, and a series of sections describing the larvae of all the groups, so far as they are known.