Lu 2017Scapterisci-Activation.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From South Africa
First report of the isolation of entomopathogenic AUTHORS: nematode Steinernema australe (Rhabditida: Tiisetso E. Lephoto1 Vincent M. Gray1 Steinernematidae) from South Africa AFFILIATION: 1 Department of Microbiology and A survey was conducted in Walkerville, south of Johannesburg (Gauteng, South Africa) between 2012 Biotechnology, University of the Witwatersrand, Johannesburg, and 2016 to ascertain the diversity of entomopathogenic nematodes in the area. Entomopathogenic South Africa nematodes are soil-dwelling microscopic worms with the ability to infect and kill insects, and thus serve as eco-friendly control agents for problem insects in agriculture. Steinernematids were recovered in 1 out CORRESPONDENCE TO: Tiisetso Lephoto of 80 soil samples from uncultivated grassland; soil was characterised as loamy. The entomopathogenic nematodes were identified using molecular and morphological techniques. The isolate was identified as EMAIL: Steinernema australe. This report is the first of Steinernema australe in South Africa. S. australe was first [email protected] isolated worldwide from a soil sample obtained from the beach on Isla Magdalena – an island in the Pacific DATES: Ocean, 2 km from mainland Chile. Received: 31 Jan. 2019 Revised: 21 May 2019 Significance: Accepted: 26 Aug. 2019 • Entomopathogenic nematodes are only parasitic to insects and are therefore important in agriculture Published: 27 Nov. 2019 as they can serve as eco-friendly biopesticides to control problem insects without effects on the environment, humans and other animals, unlike chemical pesticides. HOW TO CITE: Lephoto TE, Gray VM. First report of the isolation of entomopathogenic Introduction nematode Steinernema australe (Rhabditida: Steinernematidae) Entomopathogenic nematodes are one of the most studied microscopic species of nematodes because of their from South Africa. -
Incorporating Genomics Into the Toolkit of Nematology
Journal of Nematology 44(2):191–205. 2012. Ó The Society of Nematologists 2012. Incorporating Genomics into the Toolkit of Nematology 1 2 1,* ADLER R. DILLMAN, ALI MORTAZAVI, PAUL W. STERNBERG Abstract: The study of nematode genomes over the last three decades has relied heavily on the model organism Caenorhabditis elegans, which remains the best-assembled and annotated metazoan genome. This is now changing as a rapidly expanding number of nematodes of medical and economic importance have been sequenced in recent years. The advent of sequencing technologies to achieve the equivalent of the $1000 human genome promises that every nematode genome of interest will eventually be sequenced at a reasonable cost. As the sequencing of species spanning the nematode phylum becomes a routine part of characterizing nematodes, the comparative approach and the increasing use of ecological context will help us to further understand the evolution and functional specializations of any given species by comparing its genome to that of other closely and more distantly related nematodes. We review the current state of nematode genomics and discuss some of the highlights that these genomes have revealed and the trend and benefits of ecological genomics, emphasizing the potential for new genomes and the exciting opportunities this provides for nematological studies. Key words: ecological genomics, evolution, genomics, nematodes, phylogenetics, proteomics, sequencing. Nematoda is one of the most expansive phyla docu- piece of knowledge we can currently obtain for any mented with free-living and parasitic species found in particular life form (Consortium, 1998). nearly every ecological niche(Yeates, 2004). Traditionally, As in many other fields of biology, the nematode C. -
Mole Crickets Scapteriscus Spp
Mole Crickets Scapteriscus spp. Southern mole cricket, Scapteriscus borellii Tawny mole cricket, Scapteriscus vicinus DESCRIPTION OF INSECT All stages live in the soil and are rarely see on the surface. Immature stage Nymphs of both species are similar in appearance to adults, but lack wings. Nymphs proceed through 8-10 instars ranging in size from 0.2 to 1.25 inches in length. Each instar is progressively larger with wing buds apparent on later instars. Color varies from gray to brown. Pronotum (large shield behind head) with distinctive mottling or spots, depending on species and location. Mature stage Adults are somewhat cylindrically shaped, light colored crickets 1.26 to 1.38 inches in length. Adults have two pairs of wings, but only fly at night during two brief flight periods in fall and early spring. Spring flights are generally more extensive than fall flights. Damaging stage(s) Both nymphs and adults cause damage Predictive models (degree day, plant phenology, threat temperatures, other) Eggs being to hatch at threat temperatures of 65° F and higher (spring/early summer in most locations). Egg-laying and hatch timing are affected by soil moisture. Threat temperatures can be used to trigger preventive treatments. See the article, “Threat temperatures” for more information. Preventive treatments should be applied prior to egg-hatch (early June) or at the time of peak hatch (last week of June, first week of July in most years and locations). Weekly soap flushes in June and early July is the best method to determine when hatch is occurring, and the best time to treat. -
Monophyly of Clade III Nematodes Is Not Supported by Phylogenetic Analysis of Complete Mitochondrial Genome Sequences
UC Davis UC Davis Previously Published Works Title Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Permalink https://escholarship.org/uc/item/7509r5vp Journal BMC Genomics, 12(1) ISSN 1471-2164 Authors Park, Joong-Ki Sultana, Tahera Lee, Sang-Hwa et al. Publication Date 2011-08-03 DOI http://dx.doi.org/10.1186/1471-2164-12-392 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Park et al. BMC Genomics 2011, 12:392 http://www.biomedcentral.com/1471-2164/12/392 RESEARCHARTICLE Open Access Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Joong-Ki Park1*, Tahera Sultana2, Sang-Hwa Lee3, Seokha Kang4, Hyong Kyu Kim5, Gi-Sik Min2, Keeseon S Eom6 and Steven A Nadler7 Abstract Background: The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. -
Long-Term Mole Cricket Control on Horizon
Long-term mole cricket control on horizon A nematode product patented for use by the University of Florida to provide long-term biological con- trol of turf-damaging mole crickets will be available next year from Becker Underwood. This product, known as Nematac S, will be cost-effective and highly beneficial for a wide range of consumers, from golf- course managers to ranchers. By Angela Brammer UF graduate student The parasitic nematode Stein- ernema scapterisci attacks only for- eign mole crickets — those that are most damaging to turfgrasses in the Southeast. The nematodes live in the soil and enter the mole cricket through openings in the body, such as the mouth or spiracles. Once in- side, they release bacteria that feed on the mole cricket, usually killing it within 48 hours. The nematodes feed on the bacteria and reproduce inside the mole cricket, and the next generation emerges to search for another host once it dies. Steinernema scapterisci spreads slowly on its own, mostly relying on University of Florida/Dr. K.B. Nguyen its host for dispersal. After infection, Steinernema scapterisci nematodes emerge from the body of a dead a mole cricket may fly up to a mile, tawny mole cricket. taking its parasitic nematodes along for the ride. Nematodes then emerge on insecticides to prevent such dam- Applying them just beneath the sur- into the new location once the host age. face provides some protection from cricket dies. Because of this, it may In the 1980s, University of Flor- desiccation and ultraviolet light. be possible to effectively cover an ida scientists imported the mole Surface distribution should be fol- area of mole cricket infestation by cricket nematode from South Amer- lowed by irrigation to help the applying the nematodes to the “hot ica. -
Entomopathogenic Nematodes (Nematoda: Rhabditida: Families Steinernematidae and Heterorhabditidae) 1 Nastaran Tofangsazi, Steven P
EENY-530 Entomopathogenic Nematodes (Nematoda: Rhabditida: families Steinernematidae and Heterorhabditidae) 1 Nastaran Tofangsazi, Steven P. Arthurs, and Robin M. Giblin-Davis2 Introduction Entomopathogenic nematodes are soft bodied, non- segmented roundworms that are obligate or sometimes facultative parasites of insects. Entomopathogenic nema- todes occur naturally in soil environments and locate their host in response to carbon dioxide, vibration, and other chemical cues (Kaya and Gaugler 1993). Species in two families (Heterorhabditidae and Steinernematidae) have been effectively used as biological insecticides in pest man- agement programs (Grewal et al. 2005). Entomopathogenic nematodes fit nicely into integrated pest management, or IPM, programs because they are considered nontoxic to Figure 1. Infective juvenile stages of Steinernema carpocapsae clearly humans, relatively specific to their target pest(s), and can showing protective sheath formed by retaining the second stage be applied with standard pesticide equipment (Shapiro-Ilan cuticle. et al. 2006). Entomopathogenic nematodes have been Credits: James Kerrigan, UF/IFAS exempted from the US Environmental Protection Agency Life Cycle (EPA) pesticide registration. There is no need for personal protective equipment and re-entry restrictions. Insect The infective juvenile stage (IJ) is the only free living resistance problems are unlikely. stage of entomopathogenic nematodes. The juvenile stage penetrates the host insect via the spiracles, mouth, anus, or in some species through intersegmental membranes of the cuticle, and then enters into the hemocoel (Bedding and Molyneux 1982). Both Heterorhabditis and Steinernema are mutualistically associated with bacteria of the genera Photorhabdus and Xenorhabdus, respectively (Ferreira and 1. This document is EENY-530, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. -
First Report and Comparative Study of Steinernema Surkhetense (Rhabditida: Steinernematidae) and Its Symbiont Bacteria from Subcontinental India
Journal of Nematology 49(1):92–102. 2017. Ó The Society of Nematologists 2017. First Report and Comparative Study of Steinernema surkhetense (Rhabditida: Steinernematidae) and its Symbiont Bacteria from Subcontinental India 1 1 1 2 3 AASHIQ HUSSAIN BHAT, ISTKHAR, ASHOK KUMAR CHAUBEY, VLADIMIR PUzA, AND ERNESTO SAN-BLAS Abstract: Two populations (CS19 and CS20) of entomopathogenic nematodes were isolated from the soils of vegetable fields from Bijnor district, India. Based on morphological, morphometrical, and molecular studies, the nematodes were identified as Steinernema surkhetense. This work represents the first report of this species in India. The infective juveniles (IJs) showed morphometrical and morphological differences, with the original description based on longer IJs size. The IJs of the Indian isolates possess six ridges in their lateral field instead of eight reported in the original description. The analysis of ITS-rDNA sequences revealed nucleotide differences at 345, 608, and 920 positions in aligned data. No difference was observed in D2-D3 domain. The S. surkhetense COI gene was studied for the first time as well as the molecular characterization of their Xenorhabdus symbiont using the sequences of recA and gyrB genes revealing Xenorhabdus stockiae as its symbiont. These data, together with the finding of X. stockiae, suggest that this bacterium is widespread among South Asian nematodes from the ‘‘carpocapsae’’ group. Virulence of both isolates was tested on Spodoptera litura. The strain CS19 was capable to kill the larvae with 31.78 IJs at 72 hr, whereas CS20 needed 67.7 IJs. Key words: D2-D3 domain, entomopathogenic nematode, ITS-rDNA, mt COI gene, Xenorhabdus stockiae. -
Olfaction Shapes Host–Parasite Interactions in Parasitic Nematodes
Olfaction shapes host–parasite interactions in PNAS PLUS parasitic nematodes Adler R. Dillmana, Manon L. Guillerminb, Joon Ha Leeb, Brian Kima, Paul W. Sternberga,1, and Elissa A. Hallemb,1 aHoward Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125; and bDepartment of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 Contributed by Paul W. Sternberg, July 9, 2012 (sent for review May 8, 2012) Many parasitic nematodes actively seek out hosts in which to host recognition (19). IJs then infect the host either by entering complete their lifecycles. Olfaction is thought to play an important through natural orifices or by penetrating through the insect role in the host-seeking process, with parasites following a chem- cuticle (20). Following infection, IJs release a bacterial endo- ical trail toward host-associated odors. However, little is known symbiont into the insect host and resume development (21–23). about the olfactory cues that attract parasitic nematodes to hosts The bacteria proliferate inside the insect, producing an arsenal or the behavioral responses these cues elicit. Moreover, what little of secondary metabolites that lead to rapid insect death and is known focuses on easily obtainable laboratory hosts rather digestion of insect tissues. The nematodes feed on the multi- than on natural or other ecologically relevant hosts. Here we in- plying bacteria and the liberated nutrients of broken-down in- vestigate the olfactory responses of six diverse species of ento- sect tissues. They reproduce in the cadaver until resources are mopathogenic nematodes (EPNs) to seven ecologically relevant depleted, at which time new IJs form and disperse in search of potential invertebrate hosts, including one known natural host new hosts (24). -
Nematodes As Biocontrol Agents This Page Intentionally Left Blank Nematodes As Biocontrol Agents
Nematodes as Biocontrol Agents This page intentionally left blank Nematodes as Biocontrol Agents Edited by Parwinder S. Grewal Department of Entomology Ohio State University, Wooster, Ohio USA Ralf-Udo Ehlers Department of Biotechnology and Biological Control Institute for Phytopathology Christian-Albrechts-University Kiel, Raisdorf Germany David I. Shapiro-Ilan United States Department of Agriculture Agriculture Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, Georgia USA CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: þ44 (0)1491 832111 Tel: þ1 617 395 4056 Fax: þ44 (0)1491 833508 Fax: þ1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Web site: www.cabi-publishing.org ßCAB International 2005. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mech- anically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Nematodes as biocontrol agents / edited by Parwinder S. Grewal, Ralf- Udo Ehlers, David I. Shapiro-Ilan. p. cm. Includes bibliographical references and index. ISBN 0-85199-017-7 (alk. paper) 1. Nematoda as biological pest control agents. I. Grewal, Parwinder S. II. Ehlers, Ralf-Udo. III. Shaprio-Ilan, David I. SB976.N46N46 2005 632’.96–dc22 2004030022 ISBN 0 85199 0177 Typeset by SPI Publisher Services, Pondicherry, India Printed and bound in the UK by Biddles Ltd., King’s Lynn This volume is dedicated to Dr Harry K. -
JOURNAL of NEMATOLOGY Article | DOI: 10.21307/Jofnem-2020-089 E2020-89 | Vol
JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-089 e2020-89 | Vol. 52 Isolation, identification, and pathogenicity of Steinernema carpocapsae and its bacterial symbiont in Cauca-Colombia Esteban Neira-Monsalve1, Natalia Carolina Wilches-Ramírez1, Wilson Terán1, María del Pilar Abstract 1 Márquez , Ana Teresa In Colombia, identification of entomopathogenic nematodes (EPN’s) 2 Mosquera-Espinosa and native species is of great importance for pest management 1, Adriana Sáenz-Aponte * programs. The aim of this study was to isolate and identify EPNs 1Biología de Plantas y Sistemas and their bacterial symbiont in the department of Cauca-Colombia Productivos, Departamento de and then evaluate the susceptibility of two Hass avocado (Persea Biología, Pontificia Universidad americana) pests to the EPNs isolated. EPNs were isolated from soil Javeriana, Bogotá, Colombia. samples by the insect baiting technique. Their bacterial symbiont was isolated from hemolymph of infected Galleria mellonella larvae. 2 Departamento de Ciencias Both organisms were molecularly identified. Morphological, and Naturales y Matemáticas, biochemical cha racterization was done for the bacteria. Susceptibility Pontificia Universidad Javeriana, of Epitrix cucumeris and Pandeleteius cinereus adults was evaluated Cali, Colombia. by individually exposing adults to 50 infective juveniles. EPNs were *E-mail: adriana.saenz@javeriana. allegedly detected at two sampled sites (natural forest and coffee edu.co cultivation) in 5.8% of the samples analyzed. However, only natural forest EPN’s could be isolated and multiplied. The isolate was identified This paper was edited by as Steinernema carpocapsae BPS and its bacterial symbiont as Raquel Campos-Herrera. Xenorhabus nematophila BPS. Adults of both pests were susceptible Received for publication to S. -
Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
diversity Review Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review Stela Lazarova 1,* , Danny Coyne 2 , Mayra G. Rodríguez 3 , Belkis Peteira 3 and Aurelio Ciancio 4,* 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Y. Gagarin Str., 1113 Sofia, Bulgaria 2 International Institute of Tropical Agriculture (IITA), Kasarani, Nairobi 30772-00100, Kenya; [email protected] 3 National Center for Plant and Animal Health (CENSA), P.O. Box 10, Mayabeque Province, San José de las Lajas 32700, Cuba; [email protected] (M.G.R.); [email protected] (B.P.) 4 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, 70126 Bari, Italy * Correspondence: [email protected] (S.L.); [email protected] (A.C.); Tel.: +359-8865-32-609 (S.L.); +39-080-5929-221 (A.C.) Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field Citation: Lazarova, S.; Coyne, D.; level, and its response to current changes, will help to explain the observed community shifts. -
Entomopathogenic Nematodes for the Control of Gryllus Sp. (Orthoptera
AGRICULTURAL MICROBIOLOGY / SCIENTIFIC ARTICLE DOI: 10.1590/1808‑1657000442017 Entomopathogenic nematodes for the control of Gryllus sp. (Orthoptera: Gryllidae) under laboratory and field conditions Nematoides entomopatogênicos no controle de Gryllus sp. (Orthoptera: Gryllidae) em condições de laboratório e campo Vanessa Andaló1* , Kellin Patrícia Rossati1, Fábio Janoni Carvalho1 , Jéssica Mieko1, Lucas Silva de Faria1 , Gleice Aparecida de Assis1 , Leonardo Rodrigues Barbosa2 ABSTRACT: Entomopathogenic nematodes are effective in RESUMO: Os nematoides entomopatogênicos (NEPs) são eficazes controlling soil insects and they are used in agricultural systems. contra insetos de solo e têm sido usados em sistemas agrícolas. A ação The virulence of entomopathogenic nematodes on crickets de NEPs sobre grilos (Gryllus L.) (Orthoptera: Gryllidae) foi avaliada (Gryllus L.) (Orthoptera: Gryllidae) was evaluated under different em condições de laboratório e campo, a fim de selecionar populações conditions in order to select populations for application in the para aplicação em área de cultivo. Foram realizados testes de virulên- field. Virulence tests with Heterorhabditis amazonensis RSC05, cia com Heterorhabditis amazonensis RSC05, H. amazonensis MC01, H. amazonensis MC01, Steinernema carpocapsae All (Weiser) Steinernema carpocapsae All (Weiser) e H. amazonensis GL, assim como and H. amazonensis GL were performed. Evaluations were then verificadas a adequação da concentração de juvenis infectantes (100, made of the concentrations of infective juveniles (100, 200, 200, 400 e 600 juvenis infectantes por inseto) e a preferência alimen- 400 and 600 infective juveniles per insect); feeding preference tar sem chance de escolha e com chance de escolha, além do teste de with or without choice; and field tests using traps to evaluate campo utilizando armadilhas para amostragem dos insetos.