Current Synthetic Routes to Peptidyl Mono-Fluoromethyl Ketones (Fmks) and Their Applications

Total Page:16

File Type:pdf, Size:1020Kb

Current Synthetic Routes to Peptidyl Mono-Fluoromethyl Ketones (Fmks) and Their Applications molecules Review Current Synthetic Routes to Peptidyl Mono-Fluoromethyl Ketones (FMKs) and Their Applications Carissa M. Lloyd 1, Neil Colgin 2 and Steven L. Cobb 1,* 1 Department of Chemistry, Faculty of Science, Durham University, Durham DH1 3LE, UK; [email protected] 2 Cambridge Research Biochemicals, 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, Cleveland TS23 4AZ, UK; [email protected] * Correspondence: [email protected] Academic Editor: Derek J. McPhee Received: 26 October 2020; Accepted: 24 November 2020; Published: 28 November 2020 Abstract: Peptidyl mono-fluoromethyl ketones (FMKs) are a class of biologically active molecules that show potential as both protease inhibitors for the treatment of a range of diseases and as chemical probes for the interrogation of cellular processes. This review describes the current solid- and solution-phase routes employed for the synthesis of peptidyl mono-FMKs. In addition, it provides a brief overview of some of the key applications of FMKs in the fields of chemical biology and medicinal chemistry. Keywords: peptide; fluoromethyl ketone; peptide synthesis; peptide modification; fluorine; therapeutic; probe 1. Introduction Peptidyl mono-fluoromethyl ketones (FMKs) are a class of biologically active compounds that have been developed as protease inhibitors [1–5] and as chemical probes for the interrogation of cellular processes [6–8]. Peptidyl FMKs were first reported in 1985 [9] and have since gained preference in the field over the corresponding peptidyl chloromethyl ketones (CMKs), largely due to their lower reactivity towards nucleophiles. For example, peptidyl CMKs have been developed as both cysteine and serine protease inhibitors (e.g., Figure1,( 1)), but their highly reactive nature often causes issues with regards to selectivity. As such, for many peptidyl CMKs, indiscriminate binding of nonproteolytic enzymes leads to undesirable side-effects, rendering them unsuitable for in vivo applications [10]. Peptidyl FMKs are much less prone to nonspecific alkylations due to the intrinsic strength of the C-F bond making them significantly more selective [9] (Figure1,( 2), (3)). Since their discovery, the number of synthetic routes that are available to access peptidyl mono-FMKs remains rather limited, particularly when compared to those that can be used to access the corresponding peptidyl CMKs [11–13] and even peptidyl tri-fluoromethyl ketone systems (Figure1,( 4)) [14–16]. Molecules 2020, 25, 5601; doi:10.3390/molecules25235601 www.mdpi.com/journal/molecules Molecules 2020, 25, x 5601 FOR PEER REVIEW 2 of 16 Molecules 2020, 25, x FOR PEER REVIEW 2 of 16 Figure 1. Representative examples of a peptidyl chloromethyl ketone (1) [12], peptidyl fluoromethyl Figure 1.1. Representative examples of a peptidylpeptidyl chloromethyl ketone (1)[) [12],12], peptidylpeptidyl fluoromethylfluoromethyl ketones (2 [3] and 3 [2]), and a peptidyl tri-fluoromethyl ketone (4) [15]. ketones (2 [[3]3] andand 33 [[2]),2]), andand aa peptidylpeptidyl tri-fluoromethyltri-fluoromethyl ketoneketone ((44)[) [15].15]. This review provides an overview of the current state-of-the-art with regards to solid- and This review provides an overview of the currentcurrent state-of-the-artstate-of-the-art with regards to solid-solid- and solution-phase synthetic routes that can be employed for the synthesis of peptidyl mono-FMKs. In solution-phase synthetic synthetic routes routes that that can can be be employ employeded for for the the synthesis synthesis of ofpeptidyl peptidyl mono-FMKs. mono-FMKs. In addition, a brief summary of the key applications of this class of compound within the fields of Inaddition, addition, a brief a brief summary summary of ofthe the key key applications applications of of this this class class of of compound compound within within the the fields fields ofof chemical biology and medicinal chemistry is given. For a more detailed overview of FMKs within the chemical biologybiology andand medicinalmedicinal chemistrychemistry isis given.given. For a more detailed overview of FMKs within the field of medicinal chemistry, an excellent recent review of this area was published by A. Citarella and fieldfield of medicinal chemistry, anan excellentexcellent recentrecent reviewreview ofof thisthis areaarea was published by A. Citarella and N. Micale [17]. N. Micale [[17].17]. 2. Current Current Synthetic Synthetic Routes Routes to to Peptidyl Peptidyl Mono-FMKs 2. Current Synthetic Routes to Peptidyl Mono-FMKs 2.1. Solution-Phase Solution-Phase Routes Routes 2.1. Solution-Phase Routes 2.1.1. Halogen-Exchange Halogen-Exchange 2.1.1. Halogen-Exchange An earlyearly attempted attempted solution-phase solution-phase peptidyl peptidyl mono-FMK mono-FMK synthesis synthesis looked to looked use the displacementto use the An early attempted solution-phase peptidyl mono-FMK synthesis looked to use the displacementof bromide or of chloride bromide with or a chloride source of with inorganic a sour fluoridece of inorganic in a halogen-exchange fluoride in a reaction.halogen-exchange However, displacement of bromide or chloride with a source of inorganic fluoride in a halogen-exchange reaction.this approach However, did not this produce approach the desired did not FMK produce (7), but the rather, desired resulted FMK in(7 a), nonfluorinatedbut rather, resulted compound in a reaction. However, this approach did not produce the desired FMK (7), but rather, resulted in a nonfluorinated(6) along with various compound unwanted (6) along side-products with various (Scheme unwanted1)[9 ].side-products (Scheme 1) [9]. nonfluorinated compound (6) along with various unwanted side-products (Scheme 1) [9]. Scheme 1. AttemptedAttempted formation formation of of a a peptidyl peptidyl mono-fluoromethyl mono-fluoromethyl ketone ketone (FMK) (FMK) ( (77)) through through a Scheme 1. Attempted formation of a peptidyl mono-fluoromethyl ketone (FMK) (7) through a halogen-exchange reaction [[9].9]. halogen-exchange reaction [9]. Since then,then, aa successfulsuccessful halogen-exchange halogen-exchange method method has has been been developed developed and and was was reported reported by Kolb by Since then, a successful halogen-exchange method has been developed and was reported by Kolbet al. et in 1986al. in (Scheme1986 (Scheme2)[ 18]. 2) Initial [18]. isolationInitial isolation of 3-phthalimido-1-bromo-4-phenyl-2-butanone of 3-phthalimido-1-bromo-4-phenyl-2-butanone (8) from Kolb et al. in 1986 (Scheme 2) [18]. Initial isolation of 3-phthalimido-1-bromo-4-phenyl-2-butanone (N8)-phthaloyl from N-phthaloyl phenylalanine phenylalanine was achieved was through achieved generation through of thegeneration corresponding of the diazoketonecorresponding via (8) from N-phthaloyl phenylalanine was achieved through generation of the corresponding diazoketonethe acid chloride via the (not acid shown). chloride Subsequent (not shown). bromination Subsequent of bromination the diazoketone of the according diazoketone to previously according diazoketone via the acid chloride (not shown). Subsequent bromination of the diazoketone according toknown previously conditions known [19 conditions,20] led to the[19,20] formation led to the of 8 formation. Further reactionof 8. Further of 8 with reaction KF/l8-crown-6 of 8 with KF/l8- led to to previously known conditions [19,20] led to the formation of 8. Further reaction of 8 with KF/l8- crown-6FMK 9 in led a 45% to FMK yield 9 (Schemein a 45%2 ).yield Reduction (Scheme by 2). sodium Reduction borohydride by sodium enabled borohydride removal enabled of the phthaloyl removal crown-6 led to FMK 9 in a 45% yield (Scheme 2). Reduction by sodium borohydride enabled removal of the phthaloyl protecting group, however, this simultaneously reduced the ketone functionality of the phthaloyl protecting group, however, this simultaneously reduced the ketone functionality Molecules 2020, 25, 5601 3 of 16 Molecules 2020, 25, x FOR PEER REVIEW 3 of 16 protectingMolecules 2020 group,, 25, x FOR however, PEER REVIEW this simultaneously reduced the ketone functionality which had3 of to 16 be reinstalledwhich had by to Swern be reinstalled oxidation by (Swern10)[21 oxidation,22]. Vederas (10) et[21,22]. al. utilised Vederas a similar et al. utilised approach a similar for the approach synthesis 13 ofwhich afor theC-labelled had synthesis to be peptidyl reinstalled of a 13C-labelled FMK by probeSwern peptidyl which oxidation wasFMK ( used10 probe) [21,22]. to investigatewhich Vederas was used theet al. mode toutilised investigate of actiona similar ofthe theapproach mode HAV of 3C 13 enzymeforaction the [of 23synthesis the]. HAV of 3C a enzymeC-labelled [23]. peptidyl FMK probe which was used to investigate the mode of action of the HAV 3C enzyme [23]. SchemeScheme 2. 2.Formation Formation ofof FMKFMK 10 via a halogen-exchange halogen-exchange reaction reaction [18]. [18 ]. Scheme 2. Formation of FMK 10 via a halogen-exchange reaction [18]. 2.1.2.2.1.2. Synthesis Synthesis via via Direct Direct Fluorination Fluorination ofof aa DiazoDiazo Intermediate 2.1.2. Synthesis via Direct Fluorination of a Diazo Intermediate AnotherAnother initially initially unsuccessful attempt attempt involved involved the reaction the reaction of HF ofwith HF a diazomethyl with a diazomethyl ketone; ketone;a methodAnother a method analogous initially analogous unsuccessfulto that used to that attemptfor usedthe synthesisinvolved for the thof synthesise CMKsreaction (chloromethyl of HF CMKs with (chloromethyla diazomethylketones)
Recommended publications
  • STUDIES in NATURAL PRODUCT CHEMISTRY THESIS PRESENTED to the UNIVERSITY 0? for the DEGREE of Phd by JAMES PYOTT JOHNSTON
    STUDIES IN NATURAL PRODUCT CHEMISTRY THESIS PRESENTED TO THE UNIVERSITY 0? GLASGOW FOR THE DEGREE OF PhD BY JAMES PYOTT JOHNSTON 1969 ProQuest Number: 11011932 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11011932 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKTCOV/LEDGl'IEHTS • I should like, to record my sincere gratitude to the many people who have assisted me in this work during the past three years* I am particularly grateful to my supervisor, Dr* K.H* Overton, for his expert guidance and sustained interest and to Dr* G. Ferguson, who supervised the X-ray crystallographic studies* The analyses- and spectra quoted throughout are the result of the careful work carried out by the technical staff in this department and I should like, to acknowledge their important contribution* Special thanks are due to Roberta for perseverence in typing the manuscript* Thesa investigations were, performed during the tenure of a Carnegie Scholarship and I wish to express my gratitude to this body for its financial assistance and to Professor R*A.
    [Show full text]
  • Atg4b Antibody A
    Revision 1 C 0 2 - t Atg4B Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 9 Web: [email protected] 2 www.cellsignal.com 5 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Endogenous 48 Rabbit Q9Y4P1 23192 Product Usage Information 2. Ohsumi, Y. (2001) Nat Rev Mol Cell Biol 2, 211-6. 3. Kabeya, Y. et al. (2000) EMBO J 19, 5720-8. Application Dilution 4. Kabeya, Y. et al. (2004) J Cell Sci 117, 2805-12. 5. Mariño, G. et al. (2003) J Biol Chem 278, 3671-8. Western Blotting 1:1000 6. Sou, Y.S. et al. (2008) Mol Biol Cell 19, 4762-75. 7. Hemelaar, J. et al. (2003) J Biol Chem 278, 51841-50. Storage 8. Kabeya, Y. et al. (2004) J Cell Sci 117, 2805-12. 9. Tanida, I. et al. (2004) J Biol Chem 279, 36268-76. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% 10. Fujita, N. et al. (2008) Mol Biol Cell 19, 4651-9. glycerol. Store at –20°C. Do not aliquot the antibody. 11. Fujita, N. et al. (2009) Autophagy 5, 88-9. Specificity / Sensitivity Atg4B Antibody detects endogenous levels of total Atg4B protein. This antibody detects a band at ~27 kDa of unknown origin. Species Reactivity: Human, Mouse, Rat Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Ser372 of human Atg4B protein.
    [Show full text]
  • Phosphatidylethanolamine Positively Regulates Autophagy and Longevity
    Cell Death and Differentiation (2015) 22, 499–508 OPEN & 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd Phosphatidylethanolamine positively regulates autophagy and longevity P Rockenfeller1, M Koska1, F Pietrocola2, N Minois3, O Knittelfelder1, V Sica2, J Franz1, D Carmona-Gutierrez1, G Kroemer*,2,4,5,6,7 and F Madeo*,1,8 Autophagy is a cellular recycling program that retards ageing by efficiently eliminating damaged and potentially harmful organelles and intracellular protein aggregates. Here, we show that the abundance of phosphatidylethanolamine (PE) positively regulates autophagy. Reduction of intracellular PE levels by knocking out either of the two yeast phosphatidylserine decarboxylases (PSD) accelerated chronological ageing-associated production of reactive oxygen species and death. Conversely, the artificial increase of intracellular PE levels, by provision of its precursor ethanolamine or by overexpression of the PE-generating enzyme Psd1, significantly increased autophagic flux, both in yeast and in mammalian cell culture. Importantly administration of ethanolamine was sufficient to extend the lifespan of yeast (Saccharomyces cerevisiae), mammalian cells (U2OS, H4) and flies (Drosophila melanogaster). We thus postulate that the availability of PE may constitute a bottleneck for functional autophagy and that organismal life or healthspan could be positively influenced by the consumption of ethanolamine-rich food. Cell Death and Differentiation (2015) 22, 499–508; doi:10.1038/cdd.2014.219; published online 9 January 2015 Phosphatidylethanolamine (PE) is a phospholipid found in all linked to ageing. Autophagy mainly differs from the proteaso- living organisms. Together with phosphatidylcholine (PC), mal pathway, the other major cellular degradation mechanism, phosphatidylserine (PS) and phosphatidylinositol (PI), PE in two aspects.
    [Show full text]
  • Cysteine Proteases in Protozoan Parasites
    UC San Diego UC San Diego Previously Published Works Title Cysteine proteases in protozoan parasites. Permalink https://escholarship.org/uc/item/6sb6c27b Journal PLoS neglected tropical diseases, 12(8) ISSN 1935-2727 Authors Siqueira-Neto, Jair L Debnath, Anjan McCall, Laura-Isobel et al. Publication Date 2018-08-23 DOI 10.1371/journal.pntd.0006512 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW Cysteine proteases in protozoan parasites Jair L. Siqueira-Neto1*, Anjan Debnath1, Laura-Isobel McCall1¤, Jean A. Bernatchez1, Momar Ndao2,3, Sharon L. Reed4, Philip J. Rosenthal5 1 Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America, 2 National Reference Centre for Parasitology, The Research Institute of the McGill University Health Center, Montreal, Canada, 3 Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, 4 Departments of Pathology and Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America, 5 Department of Medicine, University of California, San Francisco, San Francisco, California, a1111111111 United States of America a1111111111 a1111111111 ¤ Current address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, a1111111111 United States of America a1111111111 * [email protected] Abstract OPEN ACCESS Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, includ- Citation: Siqueira-Neto JL, Debnath A, McCall L-I, ing cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion Bernatchez JA, Ndao M, Reed SL, et al.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Ricardaâ•Žs Doktorarbeit
    Insights into membrane binding of PROPPINs and Reconstitution of mammalian autophagic conjugation systems Dissertation for the award of the degree "Doctor rerum naturalium" (Dr. rer. nat.) of the Georg-August-Universität Göttingen in the GGNB program of Biomolecules: Structure - Function - Dynamics of the Georg-August University School of Science (GAUSS) submitted by Ricarda Angela Busse from Leinefelde, now Leinefelde-Worbis, Germany Göttingen, 2012 Members of the Thesis Committee: Dr. Karin Kühnel (1st Reviewer) Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Prof. Dr. Michael Thumm (2nd Reviewer) Department of Biochemistry II, University of Göttingen Prof. Dr. Nils Brose Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine Date of the oral examination: January 08th, 2013 Declaration of Authorship Declaration of Authorship Hereby, I confirm that I have created this work Insights into membrane binding of PROPPINs and Reconstitution of mammalian autophagic conjugation systems entirely on my own and that I have only used the sources and materials cited. Göttingen, November 14th, 2012 Ricarda Angela Busse V VI VII For Patrick Acknowledgements First and foremost I would like to thank my advisor Dr. Karin Kühnel for giving me the opportunity to do the research in her lab. Without her supervision and training this thesis would not have been possible. Her door was always open for questions and discussions. Moreover, I would like to thank Prof. Dr. Reinhard Jahn for offering the generous financial support during my thesis and for the regular discussions we had about my work during the department seminars. Next, I would like to express my gratitude to my thesis committee formed by Prof.
    [Show full text]
  • Proteasy a Jejich Využití V Medicíně Optimalizace Imobilizace Ureasy
    UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra biochemie Proteasy a jejich využití v medicíně Optimalizace imobilizace ureasy DIPLOMOVÁ PRÁCE Autor: Bc. Jitka Hutařová Studijní program: N1406 Biochemie Studijní obor: Biochemie Forma studia: Prezenční Vedoucí práce: doc. RNDr. Ludmila Zajoncová, Ph.D. Rok: 2016 1 Prohlášení Prohlašuji, že jsem svoji diplomovou práci vypracovala samostatně s využitím informačních zdrojů, které jsou v práci citovány. V Olomouci dne 12. 12. 2016 ……………………………… 2 Poděkování Chtěla bych poděkovat své vedoucí diplomové práce doc. RNDr. Ludmile Zajoncové, Ph.D. za odborné vedení práce, trpělivost a ochotu, kterou mi při zpracování věnovala. Dále bych ráda poděkovala Mgr. Miroslavu Jořenkovi za cenné rady a spolupráci. Poděkováni patří i doc. RNDr. Petru Tarkowskému, Ph.D., který mi umožnil pracovat na plynovém chromatografu. Děkuji také rodině za podporu při studiu. 3 Bibliografická identifikace Jméno a příjmení autora Bc. Jitka Hutařová Název práce Proteasy a jejich využití v medicíně Optimalizace imobilizace ureasy Typ práce Diplomová Pracoviště Katedra biochemie Vedoucí práce doc. RNDr. Ludmila Zajoncová, Ph.D. Rok obhajoby práce 2016 Abstrakt Teoretická část této diplomové práce se zabývá klasifikací proteas, jsou zde popsány jednotlivé rodiny proteas, jejich inhibitory, výskyt a využití, především v medicíně (systémová enzymoterapie). Teoretická část zahrnuje také informace o preparátu Wobenzym, blíže jsou popsány enzymy v něm obsažené (bromelain, papain, trypsin, chymotrypsin). Druhá část je věnována také urease, jejím vlastnostem, výskytu, purifikaci, imobilizaci a praktickým aplikacím. Experimentální část se zabývá optimalizací imobilizace ureasy na magnetické mikročástice Perlosa MG 200 z hlediska volby vhodných podmínek pro imobilizaci. U imobilizované ureasy byla stanovena specifická aktivita, aktivita enzymu během skladování při laboratorní teplotě bez a po ošetření glycinem.
    [Show full text]
  • Diet, Autophagy, and Cancer: a Review
    1596 Review Diet, Autophagy, and Cancer: A Review Keith Singletary1 and John Milner2 1Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois and 2Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland Abstract A host of dietary factors can influence various cellular standing of the interactions among bioactive food processes and thereby potentially influence overall constituents, autophagy, and cancer. Whereas a variety cancer risk and tumor behavior. In many cases, these of food components including vitamin D, selenium, factors suppress cancer by stimulating programmed curcumin, resveratrol, and genistein have been shown to cell death. However, death not only can follow the stimulate autophagy vacuolization, it is often difficult to well-characterized type I apoptotic pathway but also can determine if this is a protumorigenic or antitumorigenic proceed by nonapoptotic modes such as type II (macro- response. Additional studies are needed to examine autophagy-related) and type III (necrosis) or combina- dose and duration of exposures and tissue specificity tions thereof. In contrast to apoptosis, the induction of in response to bioactive food components in transgenic macroautophagy may contribute to either the survival or and knockout models to resolve the physiologic impli- death of cells in response to a stressor. This review cations of early changes in the autophagy process. highlights current knowledge and gaps in our under- (Cancer Epidemiol Biomarkers Prev 2008;17(7):1596–610) Introduction A wealth of evidence links diet habits and the accompa- degradation. Paradoxically, depending on the circum- nying nutritional status with cancer risk and tumor stances, this process of ‘‘self-consumption’’ may be behavior (1-3).
    [Show full text]
  • On ATG4B As Drug Target for Treatment of Solid Tumours—The Knowns and the Unknowns
    cells Review On ATG4B as Drug Target for Treatment of Solid Tumours—The Knowns and the Unknowns Alexander Agrotis and Robin Ketteler * MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)20-7679-4063 Received: 3 December 2019; Accepted: 19 December 2019; Published: 24 December 2019 Abstract: Autophagy is an evolutionary conserved stress survival pathway that has been shown to play an important role in the initiation, progression, and metastasis of multiple cancers; however, little progress has been made to date in translation of basic research to clinical application. This is partially due to an incomplete understanding of the role of autophagy in the different stages of cancer, and also to an incomplete assessment of potential drug targets in the autophagy pathway. While drug discovery efforts are on-going to target enzymes involved in the initiation phase of the autophagosome, e.g., unc51-like autophagy activating kinase (ULK)1/2, vacuolar protein sorting 34 (Vps34), and autophagy-related (ATG)7, we propose that the cysteine protease ATG4B is a bona fide drug target for the development of anti-cancer treatments. In this review, we highlight some of the recent advances in our understanding of the role of ATG4B in autophagy and its relevance to cancer, and perform a critical evaluation of ATG4B as a druggable cancer target. Keywords: autophagy; ATG4; pancreatic ductal adenocarcinoma (PDAC); drug screening; small molecule compound; screening assay; biomarker 1. Introduction Autophagy is a cellular stress response that has been identified as a target pathway for intervention in various diseases such as neuro-degenerative disorders, pathogen infection, and various types of cancer [1].
    [Show full text]
  • Huang Y Et Al, PML-Rarα and Autophagy Activation Title Page
    Huang Y et al, PML-RARα and autophagy activation Title page PML-RARα enhances autophagic activity through inhibiting Akt/mTOR pathway Running title: PML-RARα and autophagy activation Ying Huang1,2, Xu-Yun Zhao1, Ting-Ting Chen1, Jia-Kai Hou2, Jing Zhang2, Jie Yang1, Scott C. Kogan3 and Guo-Qiang Chen1, 2 Affiliation notes: 1Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China; 2Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences & SJTU-SM, Shanghai, China. 3Comprehensive Cancer Center and Department of Laboratory Medicine, University of California, San Francisco, CA. Correspondence: Prof. Guo-Qiang Chen. No.280, Chong-Qing South Rd, Shanghai 200025, CHINA. Tel/Fax: +86-21-64154900; Email: [email protected]. Grant supports: This work is supported in part by grants from National Basic Research Program of China (973 Program) (NO2009CB918404), National Natural Science Foundation of China (NSFC, 30630034, 30870523, 90813034), Chinese Academy of Sciences (KSCX2-YW-R-097), Science and Technology Commission of Shanghai (08JC1413400) as well as leading academic discipline project of Shanghai Municipal Education Commission (J50201). Dr. Guo-Qiang Chen is supported by Shanghai Ling-Jun Talent Program. 1 Huang Y et al, PML-RARα and autophagy activation Abstract Autophagy is a highly conserved, closely-regulated homeostatic cellular activity that allows for the bulk degradation of long-lived proteins and cytoplasmic organelles. Its roles in cancer initiation and progression and in determining the response of tumor cells to anticancer therapy are complicated, and the potential significance of autophagy in the pathogenesis and therapeutic response of acute myeloid leukemia has a little investigation.
    [Show full text]
  • Appendix 1 – Protocol for Preventing Or Reversing Chronic Disease The
    Appendix 1 – Protocol for Preventing or Reversing Chronic Disease The first author has developed a protocol over the past decade for preventing or reversing chronic disease based on the following systemic medical principle: “at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective”[1]. The protocol methodology refines the age-old principles of both reducing harm in addition to providing treatment, and allows better identification of factors that contribute to the disease process (so that they may be eliminated if possible). These contributing factors are expansive and may include a combination of Lifestyle choices (diet, exercise, smoking), iatrogenic and biotoxin exposures, environmental/occupational exposures, and psychosocial stressors. This strategy exploits the existing literature to identify patterns of biologic response using biomarkers from various modalities of diagnostic testing to capture a much broader list of potential contributing factors. Existing inflammatory bowel diseases (IBD) Biomarker Identification to Remove Contributing Factors and Implement Treatment The initial protocol steps are diagnostic. The main output of these diagnostics will be identification of the biomarker levels and symptoms that reflect abnormalities, and the directions of change required to eliminate these abnormalities. In the present study, hundreds of general and specific biomarkers and symptoms were identified from the core IBD literature. The highest frequency (based on numbers of record appearances) biomarkers and symptoms were extracted, and are listed in Table 1 (highest frequency items first, reading down each column before proceeding to the next column). They are not necessarily consensus biomarkers. They are biomarkers whose values were altered by a treatment or contributing factor, and reported in the core IBD literature.
    [Show full text]
  • Collins Reagent
    Collins reagent Collins reagent is the complex of chromium(VI) oxide with pyridine in dichloromethane.[2] This metal-pyridine complex, a red solid, is Collins reagent used to oxidize primary alcohols to the aldehyde. This complex is a hygroscopic orange solid.[1] Contents Names IUPAC name Synthesis and structure Pyridine - trioxochromium (2:1) Reactions Other names Other reagents Dipyridine chromium(VI) oxide[1] Safety and environmental aspects Identifiers References CAS Number 26412-88-4 (http://w ww.commonchemistr Synthesis and structure y.org/ChemicalDetai l.aspx?ref=26412-88 The complex is produced by treating chromium trioxide with -4) [2] pyridine. The complex is diamagnetic. According to X-ray 3D model Interactive image (ht (JSmol) crystallography, the complex is 5-coordinate with mutually trans tps://chemapps.stola pyridine ligands. The Cr-O and Cr-N distances are respectively 163 f.edu/jmol/jmol.php? and 215 picometers.[3] model=c1ccncc1.c1c In terms of history, the complex was first produced by Sisler et al.[4] cncc1.O%3D%5BC r%5D%28%3DO%2 Reactions 9%3DO) ChemSpider 79908 (http://www.c Collins reagent is especially useful for oxidations of acid sensitive hemspider.com/Che compounds. Primary and secondary alcohols are oxidized respectively mical-Structure.7990 to aldehydes and ketones in yields of 87-98%.[5] 8.html) Like other oxidations by Cr(VI), the stoichiometry of the oxidations is PubChem 88565 (https://pubch CID complex because the metal undergoes 3e reduction and the substrate em.ncbi.nlm.nih.gov/ is oxidized by 2 electrons: compound/88565) InChI 3 RCH2OH + 2 CrO3(pyridine)2 → 3 RCHO + 3 H2O + Cr O + 4 pyridine InChI=1S/2C5H5N.Cr.3O/c2*1-2-4-6-5-3-1;;;;/ 2 3 h2*1-5H;;;; Key: NPRDHMWYZHSAHR-UHFFFAOYSA- The reagent is typically used in a sixfold excess.
    [Show full text]