<<

513

Index

a – – Jacobsen epoxidation 68–69 acid/base catalysts 135–136 – hydrogenation, see asymmetric – ethyl acetate hydrogenation 141 hydrogenation – influence of support 142 –industrialuse 65 – influence of tin 142 asymmetric hydrogenation 65–67 – heterolytic cleavage 135 – Monsanto l-Dopa Process 65 acid-base reactions 22–23 –S-Naproxen 66–67 acid catalysts 262 atom efficiency concept 284, 350, 504 acidic zeolites 247 – atom economy 350, 505 – alkali metal ion replacement 248 – BASF process 350, 504 – Bronsted acidity 248 – E-factor 350, 504 – ethylation 251 Auger electron spectroscopy (AES) 201 – H-ZSM-5 250 automobile catalysts 461 – nonuniform distribution 249 automotive exhaust catalysis 335–337 – Si/Al ratio 248 – exhaust gases 350, 503 acrolein production 396 – metals 350, 503 acrylamide 90–91 – NSR catalytic system 350, 504 acrylonitrile 90–91 – oxygen storage component 337 activity/catalyst activity 4–7, 413, 414 – process development 350, 505 adipodinitrile 63 adsorption/ion-exchange method 226–228 b aging 177 backmixing 455, 510 aldol condensation 345–346 benzaldehyde hydrogenation 416–420 alkaline fuel cell (AFC) 327 – gas-liquid transport resistance 420 metathesis 69–72 – Pd/C catalysts 416 alkylation 307–308 – trickle-bed reactor 419 α elimination 30 benzaldehyde oxidation 295, 499 α-methylstyrene 456, 512 β elimination 30 ammonia synthesis 266–268 β-hydrogen 388 – mechanism of 266 BET equation 192 – from natural gas 267 biocatalysis anchoring 228, 234 – advantages and disadvantages 82 aromatization 156, 173, 306 – cofactors 97, 484 asymmetric catalysis 63–64 – competitive vs. uncompetitive inhibition – chiral phosphine ligands 67 97, 484 – enantioselective isomerization 67–68 biocatalysts 81 – epoxidation biodiesel 362, 378, 507 ––(+)-disparlure 68 bioethanol 362

Industrial Catalysis: A Practical Approach, Third Edition. Jens Hagen. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 514 Index

biofuel(s) 361–366 – vs. selectivity 14, 473 – base-catalyzed technique 363 – targeted reaction control 2 – catalytical cracking 365 catalysis reactor 433–457 – feedstocks 378, 507 – CSTR 435 – second generation technologies 363 – design equation 455, 510 – terpenes and resins 364 – heterogeneous catalyzed reaction 436 – thermochemical route 364 – mass of catalyst 437 biomass – POLYMATH-program 437 – conversion 376–377 – rate law parameters 436 – feedstocks 378, 507 – stirred tanks 452 bio-oil 364, 365 catalyst(s) 459–462 biorefinery 366–369 – in chemical industry 459 – chemical catalysis 366 – chemistry catalysts 460 – definition 366 – custom catalysts 462 biphasic system 74, 75, 348 – FCC 460 Bronsted theory 22 – hydrogenation catalysts 461 bubble-column reactors 452 – market distribution 460 bulk catalysts – polymerization catalyst 461 – flame hydrolysis 217 catalyst characterization 189–203 – fusion and alloy leaching 214–215 catalyst deactivation 177 – heteropolyacids 219 – causes of 178 – hydrothermal synthesis 217–219 – coking 183 – precipitation 212–214 – gas phase 186 – sol-gel (gelation) process 215–217 – mechanisms 179 butadiene hydrocyanation 48, 63 – physical and chemical factors 177 butadiene telomerization 61–63 – poisoning effect, metals – – classification 179 c ––treatment 181 calcination 222, 250, 251 – poisoning of semiconductor catalysts carbohydrates 369–373 182 – cellulose 369 – poisoning of solid acids 182 – hydrogenolysis 371 – in reforming process 184 – hydrolytic hydrogenation 371 – thermal process and sintering – 5-hydroxymethylfurfural 371 185–186 – levulinic acid 372 catalyst development 395 – xylose dehydration 372 – benzene hydrogenation 398–401 catalysis 1 – – catalyst selection 399 – benzaldehyde hydrogenation 15 ––CSTR 399 – biocatalysts (enzymes) 11 – – mechanism and kinetics 399 –catalyticcycle 1 – – reaction analysis 398 – in chemical bonding 1 – industrial stage 396 – in chemical industry 2 – kinetic data calculation 430, 509–510 – in crude-oil processing and – laboratory level 395 petrochemistry 2 – microeffects and macroeffects 396 – definition 1 – nonlinear regression 407 – future aspects 463–471 – rapid process development 430, 510 – – heterogeneous catalysts 465–471 – reaction rate 430, 509 – – homogeneous catalysis 463–465 – research stage 395 – heterogeneous and homogeneous 10, 11 – target quantities and influences 397 – – advantages and disadvantages 12 catalyst poisoning 179 – – organic and aqueous phase 13 catalyst regeneration 186–189 –history 1,2 – in-situ and ex-situ process 187 – methanol synthesis 15, 474 – loss of activity 186 –phases 2 – oxidation and leaching 187 Index 515

– presulfiding 188 d – recycling process 189 dehydrogenation 170, 183, 262, 442 catalyst screening 401–404 dehydrogenative coking 183 catalyst selection and testing 401 dehydrohalogenation 164, 356 – procedures 402 deoxygenation 365 – screening 401 dewaxing process 253, 255 – – 2-cyanonitro hydrogenation 403 Diels-Alder reaction 346 – – measurement methods 402 differential circulating reactor 407–411 – – 2-nitrobenzonitrile hydrogenation differential reactor 403, 404 – circulating reactor 407–411 – – nonsystematic influences 401 – nonlinear regression 407 catalytic afterburning 264, 341–344 direct methanol fuel cell (DMFC) 326 – conversion values and areas 342 dry impregnation 221 – design process 343 DuPont process 48 – hydrocarbons and VOCs 341, 342 catalytic C–C-linkage 290–292 e catalytic converter, automobiles 1 effective reaction rate 99, 101, 107 catalytic cracking 255, 302–304 egg-shell catalyst 223 catalytic microreactors 454–455 elastomers 381 catalytic reactive distillation 306, 453 electrocatalysis – catalyst investigation 190 – DMFC disadvantages 332, 503 – chemical 189, 195–203 – electrocatalytic hydrogenation 332, 502 – physical 189, 190–195 – electrochemical hydrogenation 332, 502 ––adsorbates 193 – electrode reactions 332, 502 – – catalysts and support materials 193 – electroorganic synthesis processes 332, – – chemisorption 194 502 ––isotherms 192 – fuel cell reaction 332, 502 – – macropore distribution 191 – – anodic reaction 328–329 ––reactionsof 306 – – cathodic reaction 329–331 ––schemeof 307 – – methanol oxidation 331–332 – – sorptometer 194 – – principles 324–325 Cativa process 76, 482 – vs. heterogeneous catalysis 319 cellulose degradation 378, 507 electronic factors cellulose hydrogenation 378, 507 – ionic catalysts 135–136 chain-growth process 385 – – bimetallic catalysts 140–144 chemisorption 99, 103, 115–117, 148, – – metallic state 136 170 – – semiconductors 144–147 cinnamaldehyde 294, 498 – – solid-state catalysts 135 coke formation 175, 183 – redox mechanism 134 coking 183 16/18-electron rule 32–33 complex formation 20–22 electron spectroscopy for chemical analysis – allyl complexes 21 (ESCA) 199–201 – olefin-metal bonding 21 electroorganic synthesis processes 319–324 continuous stirred-tank reactor (CSTR) – electrochemical addition 323–324 399, 435 – hydrogenation 320–322 conversion XA 6 – – advantages 320 coordinated ligands 31–32 – – cyclohexanone 322 – alkoxide ions attack 31 – – noble metals 321 – alkyl complexes 32 – – overpotential electrodes 321 – electrophilic attack 31 – – Pd black electrodes 321 coprecipitated catalysts 225–226 – – platinum 321 crotonaldehyde hydrogenation 141, 142 – – reaction sequence 320 Cu/Ni alloys 138 – – rhodium 322 cyclohexane oxidation 49, 57–58 – oxidation 322–323 516 Index

Eley–Rideal mechanism 111–113 – acid/base catalysis 292–294 elimination reactions 29 – areas of 281 enantioselective catalysts 64 – vs. bulk chemicals 282 encapsulation 236–237 – C–C bonding reactions 297 energetic aspects 113–114 – chemical trees 282 – hydrogenation 124 – custom synthesis 282 – alkene hydrogenation 123 – hydrogenation 286–288 – catalytic activation energy 114 – stoichiometric vs. catalytic reaction 283 – catalytic hydrogenation 122 Fischer-Tropsch process 313–314, 317, 501 – chemisorption 114 fixed-bed reactors 280, 445–447 – CO complexes, IR bands 119 flame hydrolysis 217 – dissociative chemisorption 115–117 fluid catalytic cracking (FCC) 302–304 – complexes, IR bands 119 fluidized-bed reactors 443 – heterolytic chemisorption 118 fluorous biphasic catalysis 75 – molecular/associative chemisorption 115 fuel cells environmental catalysts 460 – anodic reaction 328–329 enzyme(s) 11 – cathodic reaction 329–331 – cell environment/immobilized form 97, – methanol oxidation 331–332 483 – principles 325–326 – homogeneous vs. heterogeneous 97, 483 fusion and alloy leaching 214–215 – vs. microbial fermentations 97, 484–485 future developments, heterogeneous enzyme-catalyzed reaction 83 catalysts 465–471 – active sites 83 – energy generation 468–469 – aspartame 91–92 – expectations 466 –coenzymes 84 – high-throughput synthesis 470 – competitive inhibition 87 – in-situ techniques 466 – crop protection and pharma 90 – Mo, W carbides and nitrides 471 – determination of 88 – new catalysts 471 – enantiomeric 97, 485 – principle technologies 470 – food industry 90 – raw materials 467–468 – herbicides 95 – S-shaped development cycle 466 – kinetics of 85 – trends and perspectives 466 – L-amino acids 94 – unit operations 471 – Lineweaver-Burk plot 87, 89 – Michaelis constant KM 85 g – noncompetitive inhibition 88 gasification 364, 365 – pharmaceuticals 94 gas-phase oxidation 295, 499 – specificity constant 86 grafting 228–229 – uncompetitive inhibition 88 green chemistry 344–350 decomposition 155 – benefits of 345 etherification 315–316, 357 – definition 344 ethylene oligomerization 59–61 – waste 345 green solvents 349–350 f fats and oils 378, 507 h – derivatization reactions 373 Haber Bosch process 266, 311 – epoxydation reaction 373 Heck coupling 290, 291 – organic hydroperoxides 374 heterogeneous catalysis 11–14, 99–101, – tert.-butylglycerol ethers 375 113–164 FCC (fluid catalytic cracking) process 302, – acidic cracking 207, 491 303, 317, 460, 501 – adsorption equilibria 104 Fermi level 137, 146, 153, 155 – adsorption/ion exchange 238, 495 film diffusion region 100, 101 – aluminosilicate acidity 207, 491 fine chemicals 281–294 – catalyst deactivation 207, 492 Index 517

– CO adsorption 205, 489 high-throughput experimentation –Cu2O 206, 490 427–430 – decreasing lifetime 208, 493 – 384-fold single bead reactor 429 – dissociative adsorption 208, 493 – microchemical reactor system 428 – egg shell catalysts 495 – parallel reactor systems 429 – vs. electrocatalysis 319 – Stage I and II technologies 428 –electronicfactors,see electronic factors – Stage-II parallel high pressure reactor – Fischer–Tropsch synthesis 205, 488 system 429 – gas-phase reactions 108–111 5-HMF 378, 508 – impregnated catalysts 237, 494 homogeneous catalysis 17–45, 47–76, 473 – impregnated vs. precipitated catalysts – Cativa process 76, 482 237, 494 – chemical production 49 – incipient wetness impregnation 238, 496 – chiral hydrogenation catalysis 76, 480 – in industrial process 14, 473 –COreactions 48 – insulators 206, 490 – ee-value 76, 480 – kinetic region 101 – enantiomers and diastereomers 76, 481 – kinetic treatment – enantioselective synthesis 76, 480 – – effective reaction rate 107 – heptanal 76, 479 – – formal reaction kinetics 107 –heterolyticprocess 48 – – gas-phase reaction 107 – homolytic process 48 – Langmuir isotherm 203–204, 486 – hydrogenation 47 – lattice planes to surfaces 206, 489 – industrial process 48–49 – LEED method 208, 493 – isomerization process 48 – mesoporous support 238, 495 – l-asparagine and d-asparagine 76, 480 – metals and support materials interactions – large-scale process 77, 483 207, 491 – ligand-accelerated catalysis 76, 481 – methane, ethylene and propylene – methanol carbonylation 76, 480 activation 205, 488 – organo transition metal catalysis, see – microkinetics and macrokinetics 204, 488 transition metal catalysis – Miller indices 206, 489 – 1-pentene 77, 482 – phosphine CO2 reduction 204, 487 – recycling process 73–76, 482 – phosphine PH3 decomposition 204, – – adsorption 74 486–487 – – membrane separation 73–74 – promoters 207, 491 – – phase separation/extraction 74 – Pt/Re reforming catalysts 209, 494 – – thermal separation 73 – Raney–Nickel 238, 495 – SHOP process 77, 482 – rectifier effect 207, 490 – stereoselective coupling 76, 480 – semiconductor and acid catalysts 206, – Takasago synthesis of L-menthol 76, 481 490 – TPPTS 77, 482 – shell vs. bulk catalysts 237, 494 – two-phase liquid-liquid systems 74 – surface complexes of molecules – Wacker–Hoechst process 76, 479 205–206, 489 homogeneous catalysts 10 – texture 207, 491 – heteropoly acids 238, 495 – temperature-programmed desorption – organic polymer disadvantages 237, 495 195, 208, 493 – oxidation catalysts 237, 494 – temperature-programmed reduction honeycomb catalysts 211, 230, 237, 338, 196, 208, 493 339, 462 – zeolites 207, 492 hydrocarbon oxidation 277–281 heterogeneous catalyst 186–189, 211–238 hydrocracking 255, 304–306, 317, 501 – active phases 211 – characteristics 305 – catalyst carrier 211 – design parameters 305 – promoters 211 – reactions 304 – solid catalyst preparation 213 hydrodealkylation 437–439 heteropolyacids (HPA) 219 hydrodenitrogenation (HDN) 305 518 Index

hydrodesulfurization (HDS) 176, 197, 316, – mass-transfer coefficients 425 501 – reactor length 424–425 hydroformylation 50, 311 – trickle bed reactor 420–427 hydrogenation 15, 169, 268–270, 347 ––ISIMprogram 423 – in food industry 269 ––plug-flowmodel 421 – reaction mechanism 269 – – residence time distributions 420, 421 hydrogenolysis 176 – – semi-empirical model 421 hydrogen peroxide to propylene oxide – – surface reaction 422 (HPPO) process 277, 278 hydroisomerization 308–309 l hydrothermal synthesis 217–219 Langmuir–Hinshelwood mechanism hydrotreating 300–302 109–111, 154, 411, 436 – HDS process 302 Langmuir isotherm 105, 111, 203, 486 – objectives 300 Lewis acid behavior 22 – process conditions 301 ligand dissociation/association process 19 H-ZSM-5 245, 247 ligand effects 26 lignin oxidation 369 i lignocellulose 364 ibuprofen 296, 500 lignocellulose feedstock (LCF) biorefinery immobilization 232–237 368–369 – advantages 233 LLDPE 390, 392, 508 – chemical fixation 234 loop reactors 452 – disadvantages 233 Lovacat 388 immobilized catalysts 10, 236 low-energy electron diffraction (LEED) impregnation 220–225 198–199 incipient wetness impregnation 221 industrial process, heterogeneous catalysis m – bulk chemicals maleic anhydride (MA) 278–280, 296, 499 – – gas-phase and liquid-phase membrane reactors 452–453 hydrogenation 294, 498 mercury porosimetry 190, 191 – in environmental protection 264–266 mesoporous support materials 236 – phthalic anhydride 280–281 mesoporous zeolites 219 – refinery process 262–264 metal clusters 14 infrared spectroscopy 38–40, 199 metal-doped zeolites 252–255 inhibitors 176–177 metallic state 136 inorganic chemical production 261 metallocene catalysts 393, 509 insertion reactions 28 metal–olefin backbonding 21 insulators 157–164 metal oxide catalysts 273 integral reactor 411–416 metathesis reaction 69 ionic liquids (IL) 75, 347–349, 505 – homogeneous catalysts 71 ion scattering spectroscopy (ISS) 201–202 –OCT 72 IR spectroscopy 119, 199 – petrochemistry 72 isobutene oligomerization 204, 487 – transition metal carbene 70 isomorphic substitution, zeolites 251–252 – tungsten carbene complex 70, 71 isotopic labelling 35 methanation reaction 204, 488 methanol carbonylation 52, 54 j methanol synthesis 270–272 jet loop reactor 410, 411 – carbon dioxide 271 – catalyst performance 272 k – high-pressure process 270 kinetic modeling and simulation – hydrogenation 271 405, 416–427 – mechanism of 270, 271 – benzaldehyde hydrogenation 416–420 – temperature dependence 272 – liquid feed and holdup 424 – water-gas shift equilibrium 270 Index 519 methanol to gasoline (MTG) Process 255, p 316, 500 PEM fuel cell 326, 333, 503 methanol to olefins (MTO) Process 256 pentasils 240, 470 metathesis step 48 petroleum refining 460 methylaluminoxanes 386 phase-transfer catalysis (PTC) 353–359 Michaelis-Menten equation 97, 483–484 – Aliquat 336, 353 microstructured reactors 457, 512 – base-catalyzed 355 Miller indices 126 – benefits of 355, 359, 506 Mobil–Badger Process 256 – in carbonylation reactions 357–358, 359, mole balance 8–10, 438 506 molecular chemisorption 115, 118 – cetrimide 353 molten carbonate fuel cells (MCFC) 327 – crown ethers 359, 506 monolithic catalysts 229–230 – factors affecting 359, 506 monosaccharides and disaccharides 366 – hypochlorite 357 multibed reactors 441–442 – mechanism of 355 multifunctional reactor 457, 512 – molecular structure 359, 505 multiplet theory 124 – 2-phenylbutyronitrile 358–359 multiproduct plant 282 – phosgene 356–357 multipurpose plant 282 – structure of 354 multistep synthesis reactors 282 – TBAB 353 multitubular reactors 442 – TEBA 353 – variants 354 Phillips catalysts 384 n Phillips-Triolefin-process 72 naphtha reforming 188 phthalic anhydride (PA) 280–281, 296, 499 natural gas conversion 312–313 phthalonitrile 456, 512 neutral ligands 17 physisorption 102, 103 nickel catalysts 207, 492 pilot-plant reactors 395 NMR Spectroscopy 40–42 plug flow reactor (PFR) 433–434 noble metal catalysts 269 poisoning of metals 179–181 NO removal systems 338 x polyethylene 390 – honeycomb catalysts, air purification POLYMATH nonlinear regression program 339 88 – lean-burning engines 340 polymerization catalysis 381–392, 460 – transition metal oxides 338 – chain-growth polymers 383 n-type semiconductors 145 – continuous polymerization process 392, 508 o – isotactic and syndiotactic polymers 382 Olefin insertion 29 – 1-octene 392, 508 olefins conversion technology (OCT) 72 – polypropylene production 391 oligomerization 48 – step-growth polymers 382 organic chemicals production 261–262 – synthesis methods 382 – catalytic hydrogenations 262 polypropylene 392, 508 – dehydrogenation 262 pore diffusion region 100 – oxidation process 262 pore size spectrum 191 oxidation 288–290 pore volume impregnation (PVI) 221 oxidative addition 23–28 precipitation 73, 212–214 oxidative coupling 27–28 production of catalyst 211 oxo synthesis 50–52 product selectivity 246–247 –advantages 51 promoters 172–176 –discovery 50 – catalyst-poison-resistant 172 – process 50 – cesium 174 – rhodium catalysts 50 – CoMoS 176 oxygen storage component (OSC) 337 – electronic character 172 520 Index

promoters (contd.) Schulz–Flory distribution 59 screening 401–404 – γ-Al2O3 phase 175 – potassium 174 secondary ion mass spectrometry (SIMS) – structure 172, 173 202–203 – textural 172 selective catalytic reduction (SCR) oxidation 272–277 338–340 – Bi/Mo catalysts, acrolein 274 selectivity 7–8, 167 – postulated reaction mechanism 275 semiconductors 144–157 – stoichiometry 276 – activity and selectivity series 152 propylene oxide (PO) 277 – binary oxide catalysts 155 proton exchange membrane fuel cell –Cr2O3/Al2O3 catalysts 156 (PEMFC) 326 – electronic theory 148 – electron-withdrawing effect 156 Pt/Al2O3 catalysts 222 – excitation energy 144 Pt/SiO2 catalysts 222 p-type semiconductors 145 – metal oxides 148 – nonstoichiometric oxides and sulfides r 145 Raney catalysts 215 – nonstoichiometric semiconductor oxides Raney nickel 416 147 rate law 438 – oxidation reaction 150 reactant selectivity 243–246 – oxidation/reduction mechanism 151 reaction rates 121 shallow-bed reactors 442 reductive cleavage 27–28 shape selectivity, zeolites 243–247 reductive elimination 23–27 – product selectivity 246 refinery process 299–317 – reactant selectivity 243–246 – catalytic cracking 302–304 – restricted transition state selectivity – – coke formation 302 246–247 – – reactions of 302 shell catalysts 223 – – in refinery technology 303 shell higher olefin process (SHOP) – cracking process 316, 501 –advantages 60 – etherification reactions 315–316 –biphasicsystem 59 reforming process 316, 500 – schematic representation 61 renewable raw materials 361 single-bed reactors 441 – aromatic compounds 378, 506 single-site catalyst 387 – biodiesel catalysts 378, 507 sintering 185–186 – biodiesel production 378, 507 sodalite cage 240 – biofuel production 378, 507 SOHIO process 274, 276 – bio-oil characterization 378, 507 sol-gel (gelation) process 215 – glycerol reaction, isobutene 378, 507 solid catalysts preparation methods 213 – TBGE 378, 507 –supportedcatalysts – value chains 369 – – adsorption/ion-exchange 226–228 – – carbohydrates 369–373 – – anchoring/grafting 228–229 – – fats and oils 373–375 solid oxide fuel cells (SOFC) 327 – – terpenes 375–376 solid-state catalysts 135 restricted transition state selectivity 247 SO2 oxidation 204, 487 ring-opening metathesis polymerization space–time yield (STY) 6 (ROMP) 388–389, 393, 509 space velocity 6 Ruhrchemie/Rhone Poulenc process SSPC 234–236 52, 53 stability 8 steam reforming process 175, 310–311, s 316, 501 sandwich compounds 386, 388 – chemical reactions 310 scanning transmission electron microscopy – Fischer-Tropsch process 311 (STEM) 198 – sulfur compounds 310 Index 521 steric effects 124–134 temperature-programmed desorption (TPD) – catalytic transformations 134 195 – in chemical reactions 129 temperature-programmed oxidation (TPO) – competitive adsorption 131 196–197 – cooperative adsorption 131 temperature-programmed reduction (TPR) – ethylene hydrogenation 130 196 – hydrodesulfurization 129 temperature-programmed sulfidation (TPS) – key/keyhole mechanism 125 196 – Langmuir-Hinshelwood mechanism 132 terpenes 364, 367, 375–378 – lattice distance and types 125 test reactors and kinetic modeling 405 – metal-catalyzed reactions 129 thermoplastics 381 – platinum catalysts 133 thermosets 381 – Pt atoms 133 three-phase reactors 443–450 – single-crystal surfaces 126, 128 three-way catalyst 335, 350, 503 steric hindrance 18 Ti-MCM-41 378, 507 stoichiometry 119 transesterification 363 strong metal–support interaction (SMSI) transition metal catalysis 13, 17 169 – addition and simultaneous activation supercritical fluids 75 24 supported catalysts 166–172, 219–230 – alkylphosphines 26 – adsorption/ion-exchange method – β-elimination 44, 478 226–228 – β-hydride elimination 44, 477 – anchoring/grafting 228–229 – catalytic mechanisms 34 – associative and dissociative chemisorption – coordination and exchange sites 18–20 170 – – phosphorus ligands 18, 19 – coprecipitation 225–226 – – triphenylphosphine platinum complexes – costs 166–167 18 – endothermic reaction 171 – CO stretching frequency 44–45, – factors affecting 167 478–479 – functions of 167 –H2 activation reaction 44, 477 – impregnation 220–225 – ligand-exchange reactions 43, 476 – – calcination 222 – mechanisms of 25 – – industrial process 223 – model reactions 35 – – production process 220 – olefin isomerization 43, 477 – methane 171 – oxidation state 43, 475 – n-hexane reforming 170 – oxidative coupling and addition – regenerability 167 44, 478 – selection of 167 – phosphine ligands 23 – structure of 168 – phosphine-modified cobalt catalysts 37 – tasks 167 – platinum hydride complex 43, 477 supported liquid-phase catalysts (SLPC) – reactions 43, 475–476 236 – rhodium complexes 43, 476 supported solid-phase catalysts (SSPC) – tert-phosphine-modified catalysts 37 234–236 – unmodified cobalt catalyst 36 surface acidity 158 – Wilkinson’s catalysis 44, 478 surface titration method 193 transmission electronmicroscopy (TEM) suspension reactors 447–450 197–198 Suzuki coupling 58–59, 291 trialkylphosphine ligands 23 synthesis gas reaction 8 trickle-bed reactor 456, 512 triphenylphosphine 235 t turnover frequency 6–7, 97, 483 tacticity 392, 508 turnover number 5, 7, 128 Takasago process 67 two-phase reactors 440–443 522 Index

u ––α and β-cage 240 ultra-high-molecular weight polyethylene – – characteristics 242 (UHMWPE) 388 ––truncatedoctahedra 240 – conventional catalysts 258, 496 v – conventional zeolites 259, 498 volcano plot 121, 130 – dealumination 259, 498 – definition 258, 496 w – Fischer–Tropsch synthesis 258, 497 55 – 57 – hydrogenation 258, 497 washcoat 229, 230, 336 – H-zeolites 259, 497 wet impregnation 221 – metal-doped 252–255 Wilkinson’s catalyst 19, 65 – Mobil–Badger Process 256 – modification possibilities 258, 496 x – organic syntheses 257 xylene Isomerization 247, 257 – shape-selective catalysis 258, 497 – zeolite-catalyzed alkylation 259, 497 z Ziegler catalysts 461 zeolites 218, 239–259 Ziegler-Natta catalyst 383–389 – applications 255 – ansa-bridge 388 – catalytic cracking 255 – heterogeneous 392, 508 – catalytic properties 242–251 – – organic modifier 384 – – acidity 247–251 ––Ti-basedcatalysts 384 – – advantages 242 – homogeneous 386 – composition and structure 239–242 – metallocenes 386–388 – – advantages 241 – Ti/Al catalysts 392, 508