513 Acid/Base Catalysts 135–136 – Ethyl Acetate
Total Page:16
File Type:pdf, Size:1020Kb
513 Index a – – Jacobsen epoxidation 68–69 acid/base catalysts 135–136 – hydrogenation, see asymmetric – ethyl acetate hydrogenation 141 hydrogenation – influence of support 142 –industrialuse 65 – influence of tin 142 asymmetric hydrogenation 65–67 – heterolytic cleavage 135 – Monsanto l-Dopa Process 65 acid-base reactions 22–23 –S-Naproxen 66–67 acid catalysts 262 atom efficiency concept 284, 350, 504 acidic zeolites 247 – atom economy 350, 505 – alkali metal ion replacement 248 – BASF process 350, 504 – Bronsted acidity 248 – E-factor 350, 504 – ethylation 251 Auger electron spectroscopy (AES) 201 – H-ZSM-5 250 automobile catalysts 461 – nonuniform distribution 249 automotive exhaust catalysis 335–337 – Si/Al ratio 248 – exhaust gases 350, 503 acrolein production 396 – metals 350, 503 acrylamide 90–91 – NSR catalytic system 350, 504 acrylonitrile 90–91 – oxygen storage component 337 activity/catalyst activity 4–7, 413, 414 – process development 350, 505 adipodinitrile 63 adsorption/ion-exchange method 226–228 b aging 177 backmixing 455, 510 aldol condensation 345–346 benzaldehyde hydrogenation 416–420 alkaline fuel cell (AFC) 327 – gas-liquid transport resistance 420 alkene metathesis 69–72 – Pd/C catalysts 416 alkylation 307–308 – trickle-bed reactor 419 α elimination 30 benzaldehyde oxidation 295, 499 α-methylstyrene 456, 512 β elimination 30 ammonia synthesis 266–268 β-hydrogen elimination reaction 388 – mechanism of 266 BET equation 192 – from natural gas 267 biocatalysis anchoring 228, 234 – advantages and disadvantages 82 aromatization 156, 173, 306 – cofactors 97, 484 asymmetric catalysis 63–64 – competitive vs. uncompetitive inhibition – chiral phosphine ligands 67 97, 484 – enantioselective isomerization 67–68 biocatalysts 81 – epoxidation biodiesel 362, 378, 507 ––(+)-disparlure 68 bioethanol 362 Industrial Catalysis: A Practical Approach, Third Edition. Jens Hagen. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 514 Index biofuel(s) 361–366 – vs. selectivity 14, 473 – base-catalyzed technique 363 – targeted reaction control 2 – catalytical cracking 365 catalysis reactor 433–457 – feedstocks 378, 507 – CSTR 435 – second generation technologies 363 – design equation 455, 510 – terpenes and resins 364 – heterogeneous catalyzed reaction 436 – thermochemical route 364 – mass of catalyst 437 biomass – POLYMATH-program 437 – conversion 376–377 – rate law parameters 436 – feedstocks 378, 507 – stirred tanks 452 bio-oil 364, 365 catalyst(s) 459–462 biorefinery 366–369 – in chemical industry 459 – chemical catalysis 366 – chemistry catalysts 460 – definition 366 – custom catalysts 462 biphasic system 74, 75, 348 – FCC 460 Bronsted theory 22 – hydrogenation catalysts 461 bubble-column reactors 452 – market distribution 460 bulk catalysts – polymerization catalyst 461 – flame hydrolysis 217 catalyst characterization 189–203 – fusion and alloy leaching 214–215 catalyst deactivation 177 – heteropolyacids 219 – causes of 178 – hydrothermal synthesis 217–219 – coking 183 – precipitation 212–214 – gas phase 186 – sol-gel (gelation) process 215–217 – mechanisms 179 butadiene hydrocyanation 48, 63 – physical and chemical factors 177 butadiene telomerization 61–63 – poisoning effect, metals – – classification 179 c ––treatment 181 calcination 222, 250, 251 – poisoning of semiconductor catalysts carbohydrates 369–373 182 – cellulose 369 – poisoning of solid acids 182 – hydrogenolysis 371 – in reforming process 184 – hydrolytic hydrogenation 371 – thermal process and sintering – 5-hydroxymethylfurfural 371 185–186 – levulinic acid 372 catalyst development 395 – xylose dehydration 372 – benzene hydrogenation 398–401 catalysis 1 – – catalyst selection 399 – benzaldehyde hydrogenation 15 ––CSTR 399 – biocatalysts (enzymes) 11 – – mechanism and kinetics 399 –catalyticcycle 1 – – reaction analysis 398 – in chemical bonding 1 – industrial stage 396 – in chemical industry 2 – kinetic data calculation 430, 509–510 – in crude-oil processing and – laboratory level 395 petrochemistry 2 – microeffects and macroeffects 396 – definition 1 – nonlinear regression 407 – future aspects 463–471 – rapid process development 430, 510 – – heterogeneous catalysts 465–471 – reaction rate 430, 509 – – homogeneous catalysis 463–465 – research stage 395 – heterogeneous and homogeneous 10, 11 – target quantities and influences 397 – – advantages and disadvantages 12 catalyst poisoning 179 – – organic and aqueous phase 13 catalyst regeneration 186–189 –history 1,2 – in-situ and ex-situ process 187 – methanol synthesis 15, 474 – loss of activity 186 –phases 2 – oxidation and leaching 187 Index 515 – presulfiding 188 d – recycling process 189 dehydrogenation 170, 183, 262, 442 catalyst screening 401–404 dehydrogenative coking 183 catalyst selection and testing 401 dehydrohalogenation 164, 356 – procedures 402 deoxygenation 365 – screening 401 dewaxing process 253, 255 – – 2-cyanonitro hydrogenation 403 Diels-Alder reaction 346 – – measurement methods 402 differential circulating reactor 407–411 – – 2-nitrobenzonitrile hydrogenation differential reactor 403, 404 – circulating reactor 407–411 – – nonsystematic influences 401 – nonlinear regression 407 catalytic afterburning 264, 341–344 direct methanol fuel cell (DMFC) 326 – conversion values and areas 342 dry impregnation 221 – design process 343 DuPont process 48 – hydrocarbons and VOCs 341, 342 catalytic C–C-linkage 290–292 e catalytic converter, automobiles 1 effective reaction rate 99, 101, 107 catalytic cracking 255, 302–304 egg-shell catalyst 223 catalytic microreactors 454–455 elastomers 381 catalytic reactive distillation 306, 453 electrocatalysis – catalyst investigation 190 – DMFC disadvantages 332, 503 – chemical 189, 195–203 – electrocatalytic hydrogenation 332, 502 – physical 189, 190–195 – electrochemical hydrogenation 332, 502 ––adsorbates 193 – electrode reactions 332, 502 – – catalysts and support materials 193 – electroorganic synthesis processes 332, – – chemisorption 194 502 ––isotherms 192 – fuel cell reaction 332, 502 – – macropore distribution 191 – – anodic reaction 328–329 ––reactionsof 306 – – cathodic reaction 329–331 ––schemeof 307 – – methanol oxidation 331–332 – – sorptometer 194 – – principles 324–325 Cativa process 76, 482 – vs. heterogeneous catalysis 319 cellulose degradation 378, 507 electronic factors cellulose hydrogenation 378, 507 – ionic catalysts 135–136 chain-growth process 385 – – bimetallic catalysts 140–144 chemisorption 99, 103, 115–117, 148, – – metallic state 136 170 – – semiconductors 144–147 cinnamaldehyde 294, 498 – – solid-state catalysts 135 coke formation 175, 183 – redox mechanism 134 coking 183 16/18-electron rule 32–33 complex formation 20–22 electron spectroscopy for chemical analysis – allyl complexes 21 (ESCA) 199–201 – olefin-metal bonding 21 electroorganic synthesis processes 319–324 continuous stirred-tank reactor (CSTR) – electrochemical addition 323–324 399, 435 – hydrogenation 320–322 conversion XA 6 – – advantages 320 coordinated ligands 31–32 – – cyclohexanone 322 – alkoxide ions attack 31 – – noble metals 321 – alkyl complexes 32 – – overpotential electrodes 321 – electrophilic attack 31 – – Pd black electrodes 321 coprecipitated catalysts 225–226 – – platinum 321 crotonaldehyde hydrogenation 141, 142 – – reaction sequence 320 Cu/Ni alloys 138 – – rhodium 322 cyclohexane oxidation 49, 57–58 – oxidation 322–323 516 Index Eley–Rideal mechanism 111–113 – acid/base catalysis 292–294 elimination reactions 29 – areas of 281 enantioselective catalysts 64 – vs. bulk chemicals 282 encapsulation 236–237 – C–C bonding reactions 297 energetic aspects 113–114 – chemical trees 282 – acetylene hydrogenation 124 – custom synthesis 282 – alkene hydrogenation 123 – hydrogenation 286–288 – catalytic activation energy 114 – stoichiometric vs. catalytic reaction 283 – catalytic hydrogenation 122 Fischer-Tropsch process 313–314, 317, 501 – chemisorption 114 fixed-bed reactors 280, 445–447 – CO complexes, IR bands 119 flame hydrolysis 217 – dissociative chemisorption 115–117 fluid catalytic cracking (FCC) 302–304 – ethylene complexes, IR bands 119 fluidized-bed reactors 443 – heterolytic chemisorption 118 fluorous biphasic catalysis 75 – molecular/associative chemisorption 115 fuel cells environmental catalysts 460 – anodic reaction 328–329 enzyme(s) 11 – cathodic reaction 329–331 – cell environment/immobilized form 97, – methanol oxidation 331–332 483 – principles 325–326 – homogeneous vs. heterogeneous 97, 483 fusion and alloy leaching 214–215 – vs. microbial fermentations 97, 484–485 future developments, heterogeneous enzyme-catalyzed reaction 83 catalysts 465–471 – active sites 83 – energy generation 468–469 – aspartame 91–92 – expectations 466 –coenzymes 84 – high-throughput synthesis 470 – competitive inhibition 87 – in-situ techniques 466 – crop protection and pharma 90 – Mo, W carbides and nitrides 471 – determination of 88 – new catalysts 471 – enantiomeric amines 97, 485 – principle technologies 470 – food industry 90 – raw materials 467–468 – herbicides 95 – S-shaped development cycle 466 – kinetics of 85 – trends and perspectives 466 – L-amino acids 94 – unit operations 471 – Lineweaver-Burk plot 87, 89 – Michaelis constant KM 85 g – noncompetitive inhibition 88 gasification 364, 365 – pharmaceuticals 94 gas-phase oxidation 295, 499 – specificity constant 86 grafting 228–229 – uncompetitive inhibition 88 green chemistry 344–350 ethanol decomposition 155 – benefits of 345 etherification 315–316, 357 – definition 344 ethylene oligomerization