Prediction Models for Soccer Sports Analytics

Total Page:16

File Type:pdf, Size:1020Kb

Prediction Models for Soccer Sports Analytics Linköping University | Department of Computer and Information Science Master thesis, 30 ECTS | Computer Science 202018 | LIU-IDA/LITH-EX-A--2018/021--SE Prediction models for soccer sports analytics Edward Nsolo Supervisor : Niklas Carlson Examiner : Patrick Lambrix Linköpings universitet SE–581 83 Linköping +46 13 28 10 00 , www.liu.se Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och admin- istrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sam- manhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 years starting from the date of publication barring exceptional circum- stances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the con- sent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping Uni- versity Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. c Edward Nsolo Abstract In recent times there has been a substantial increase in research interest of soccer due to an increase of availability of soccer statistics data. With the help of data provider firms, access to historical soccer data becomes more simple and as a result data scientists started researching in the field. In this thesis, we develop prediction models that could be applied by data scientists and other soccer stakeholders. As a case study, we run several machine learning algorithms on historical data from five major European leagues and make a com- parison. The study is built upon the idea of investigating different approaches that could be used to simplify the models while maintaining the correctness and the robustness of the models. Such approaches include feature selection and conversion of regression predic- tion problems to binary classification problems. Furthermore, a literature review study did not reveal research attempts about the use of a generalization of binary classification predictions that applies different target class upper boundaries other than 50% frequency binning. Thus, this thesis investigated the effects of such generalization against simplic- ity and performance of such models. We aimed to extend the traditional discretization of classes with equal frequency binning function which is standard for converting regression problems into the binary classification in many applications. Furthermore, we ought to establish important players’ features in individual leagues that could help team managers to have cost-efficient transferring strategies. The approach of selecting those features was achieved successfully by the application of wrapper and filter algorithms. Both methods turned out to be useful algorithms as the time taken to build the models was minimal, and the models were able to make good predictions. Fur- thermore, we noticed different features matter for different leagues. Therefore, in accessing the performance of players, such consideration should be kept in mind. Different machine learning algorithms were found to behave differently under different conditions. How- ever, Naïve Bayes was determined to be the best-fit in most cases. Moreover, the results suggest that it is possible to generalize binary classification problems and maintain the performance to a reasonable extent. But, it should be observed that the early stages of gen- eralization of binary classification models involve a tedious work of training datasets, and that fact should be a tradeoff when thinking to use this approach. Acknowledgments Firstly, I would like to express my sincere gratitude to my thesis examiner and supervisor Prof. Patrick Lambrix and Prof. Niklas Carlson of Linköping university for the opportunity of Thesis project that was carried under their supervision. Their continuous support, guidance, and patience motivated me in the right direction which led to the successful accomplishment of this thesis. Secondly, I would like to extend the hand of gratitude to fellow schoolmates, friends, and family for their company, advice, and encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Lastly, I would like to thank almighty God for the good health and opportunity of a schol- arship to study in Sweden. This publication has been produced during scholarship period at Linköping University, thus, I would like to give a special appreciation to Swedish Institute scholarship. v Contents Abstract iii Acknowledgments v Contents vi List of Figures viii List of Tables x 1 Introduction 1 1.1 Purpose . 2 1.2 Research questions . 2 1.3 Delimitations . 3 2 Related work 5 3 Theory 7 3.1 Software (Weka) . 7 3.2 Min-max normalization . 8 3.3 Feature selection methods . 8 3.4 Class imbalance . 9 3.5 SMOTE (Synthetic Minority Oversampling Technique) . 9 3.6 TigerJython with Weka . 10 3.7 Machine learning algorithms . 10 3.8 Evaluation of the prediction models . 12 4 Research methods, techniques, and methodology 15 4.1 Pre-study . 15 4.2 Experimental study . 16 4.3 Methodology . 16 5 Data pre-processing 23 5.1 Data collection . 23 5.2 Data rescaling, missing values, and duplicates. 23 5.3 Converting regression problem to binary classification problem . 24 6 Feature selection 27 6.1 Feature selection with wrapper method . 27 6.2 Feature selection with filter attribute evaluator . 31 7 Performance of prediction models 35 7.1 Accuracy results of the prediction models . 35 7.2 F1 Score results of the prediction models . 36 vi 7.3 AUC-ROC results of the prediction models . 37 8 Discussion and conclusion 41 8.1 What are the best mechanisms for selecting essential features for predicting the performance of top players in European leagues? . 41 8.2 What are the essential features for developing prediction models for top play- ers in European leagues? . 42 8.3 What are the useful classification models for predicting performance of top players in European leagues? . 43 8.4 How can binary prediction models be generalized? . 43 9 Future research 45 Bibliography 47 A Wrapper method results of the combined-leagues 51 B Attributes selected by Wrapper method of the combined leagues 57 C Execution time of wrapper method for the combined leagues 61 D Aggregated results of filter method for the combined leagues 65 E Model accuracy results of wrapper datasets for the combined leagues 67 F Model accuracy of filter-datasets for the combined leagues 71 G F1 score results of wrapper datasets for the combined leagues 75 H F1 Score results of the filter-datasets for the combined leagues 79 I AUC-ROC results of the wrapper datasets for the combined leagues 83 J AUC-ROC results of the filter-datasets 87 K Accuracy results for individual leagues 91 L F1 score results for individual leagues 97 M AUC-ROC results for individual leagues 103 vii List of Figures 4.1 A procedure for analyzing soccer sport historical data . 17 4.2 Data preparation model . 18 4.3 Knowledge flow activities for data formatting process . 19 4.4 Feature selection with wrapper method knowledge flow model . 20 4.5 Feature selection with filter method knowledge flow model . 21 6.1 Merit of subsets of attributes selected . 28 6.2 Execution time of wrapper subset evaluator . 31 7.1 Model accuracy results . 36 7.2 Overall F1 Score results of the combined leagues . 37 7.3 Overall AUC-ROC results . 38 C.1 Execution time of wrapper attribute evaluator for defenders datasets . 61 C.2 Execution time of wrapper method for goalkeepers datasets . 62 C.3 Execution time of wrapper method for midfielders datasets . 62 C.4 Execution time of wrapper method for forwards datasets . 63 E.1 Prediction model accuracy for defenders wrapper-dataset . 67 E.2 Prediction model accuracy for midfielders wrapper-dataset . 68 E.3 Model accuracy for the goalkeepers wrapper-datasets . 68 E.4 prediction model accuracy for forwards wrapped datasets . 69 F.1 Model accuracy for defenders filter-datasets . 71 F.2 Model accuracy for midfielders filter-datasets . 72 F.3 Model accuracy for goalkeepers filter-datasets . 72 F.4 Model accuracy for forwards filter-datasets . 73 G.1 F1 Score results of the defenders wrapper-datasets . 75 G.2 F1 Score results of the midfielders wrapper-datasets . 76 G.3 F1 Score results of the goalkeepers wrapped datasets . 76 G.4 F1 Score results of the forwards wrapped datasets . 77 H.1 F1 Score results of the defenders filter-datasets . 79 H.2 F1 Score results of the midfielders filter-datasets .
Recommended publications
  • Tactical Line-Up Uruguay - France # 57 06 JUL 2018 17:00 Nizhny Novgorod / Nizhny Novgorod Stadium / RUS
    2018 FIFA World Cup Russia™ Quarter-final Tactical Line-up Uruguay - France # 57 06 JUL 2018 17:00 Nizhny Novgorod / Nizhny Novgorod Stadium / RUS Uruguay (URU) Shirt: light blue Shorts: black Socks: black/light blue # Name Pos 1 Fernando MUSLERA GK 2 Jose GIMENEZ DF 3 Diego GODIN (C) DF 6 Rodrigo BENTANCUR X MF 8 Nahitan NANDEZ MF 9 Luis SUAREZ FW 11 Cristhian STUANI FW 14 Lucas TORREIRA MF 15 Matias VECINO MF 17 Diego LAXALT MF 22 Martin CACERES DF Substitutes 4 Guillermo VARELA DF 5 Carlos SANCHEZ MF 7 Cristian RODRIGUEZ MF 10 Giorgian DE ARRASCAETA FW 12 Martin CAMPANA GK 13 Gaston SILVA DF 16 Maximiliano PEREIRA DF Matches played 18 Maximiliano GOMEZ FW 15 Jun EGY - URU 0 : 1 ( 0 : 0 ) 19 Sebastian COATES DF 20 Jun URU - KSA 1 : 0 ( 1 : 0 ) 25 Jun URU - RUS 3 : 0 ( 2 : 0 ) 20 Jonathan URRETAVISCAYA FW 30 Jun URU - POR 2 : 1 ( 1 : 0 ) 23 Martin SILVA GK 21 Edinson CAVANI I FW Coach Oscar TABAREZ (URU) France (FRA) Shirt: white Shorts: white Socks: white # Name Pos 1 Hugo LLORIS (C) GK 2 Benjamin PAVARD X DF 4 Raphael VARANE DF 5 Samuel UMTITI DF 6 Paul POGBA X MF 7 Antoine GRIEZMANN FW 9 Olivier GIROUD X FW 10 Kylian MBAPPE FW 12 Corentin TOLISSO X MF 13 Ngolo KANTE MF 21 Lucas HERNANDEZ DF Substitutes 3 Presnel KIMPEMBE DF 8 Thomas LEMAR FW 11 Ousmane DEMBELE FW 15 Steven NZONZI MF 16 Steve MANDANDA GK 17 Adil RAMI DF 18 Nabil FEKIR FW Matches played 19 Djibril SIDIBE DF 16 Jun FRA - AUS 2 : 1 ( 0 : 0 ) 20 Florian THAUVIN FW 21 Jun FRA - PER 1 : 0 ( 1 : 0 ) 26 Jun DEN - FRA 0 : 0 22 Benjamin MENDY DF 30 Jun FRA - ARG 4 : 3 ( 1 : 1 ) 23 Alphonse AREOLA GK 14 Blaise MATUIDI N MF Coach Didier DESCHAMPS (FRA) GK: Goalkeeper A: Absent W: Win GD: Goal difference VAR: Video Assistant Referee DF: Defender N: Not eligible to play D: Drawn Pts: Points AVAR 1: Assistant VAR MF: Midfielder I: Injured L: Lost AVAR 2: Offside VAR FW: Forward X: Misses next match if booked GF: Goals for AVAR 3: Support VAR C: Captain MP: Matches played GA: Goals against FRI 06 JUL 2018 15:08 CET / 16:08 Local time - Version 1 22°C / 71°F Hum.: 53% Page 1 / 1.
    [Show full text]
  • 21.00CET Full Time Report Italy Spain
    Match 49 #ITAESP Full Time Report Semi-finals - Tuesday 6 July 2021 Wembley Stadium - London Italy Spain Italy win 4 - 2 on penalties (0) (4) 21.00CET (2) (0) 1 Half-time Penalties Penalties Half-time 1 21 Gianluigi Donnarumma GK 23 Unai Simón GK 2 Giovanni Di Lorenzo 2 César Azpilicueta 3 Giorgio Chiellini C 5 Sergio Busquets C 6 Marco Verratti 8 Koke 8 Jorginho 11 Ferran Torres 10 Lorenzo Insigne 12 Eric García 13 Emerson 18 Jordi Alba 14 Federico Chiesa 19 Dani Olmo 17 Ciro Immobile 21 Mikel Oyarzabal 18 Nicolò Barella 24 Aymeric Laporte 19 Leonardo Bonucci 26 Pedri 1 Salvatore Sirigu GK 1 David de Gea GK 26 Alex Meret GK 13 Robert Sánchez GK 5 Manuel Locatelli 3 Diego Llorente 9 Andrea Belotti 4 Pau Torres 11 Domenico Berardi 6 Marcos Llorente 12 Matteo Pessina 7 Álvaro Morata 15 Francesco Acerbi 9 Gerard Moreno 16 Bryan Cristante 10 Thiago Alcántara 20 Federico Bernardeschi 14 José Gayà 23 Alessandro Bastoni 16 Rodri 24 Alessandro Florenzi 17 Fabián Ruiz 25 Rafael Tolói 20 Adama Traoré Coach: Coach: Roberto Mancini Luis Enrique Referee: VAR: Felix Brych (GER) Marco Fritz (GER) Assistant referees: Assistant VAR: Mark Borsch (GER) Christian Dingert (GER) Stefan Lupp (GER) Christian Gittelmann (GER) Fourth official: Bastian Dankert (GER) Sergei Karasev (RUS) Reserve Assistant Referee: Attendance: 57,811 Maksim Gavrilin (RUS) 1 2 23:43:28CET Goal Y Booked R Sent off Substitution P Penalty O Own goal C Captain GK Goalkeeper Star of the match * Misses next match if booked 06 Jul 2021 Match 49 #ITAESP Full Time Report Semi-finals - Tuesday 6 July 2021 Wembley Stadium - London Italy Spain Italy win 4 - 2 on penalties (4) Extra time (2) 1 Penalties Penalties 1 Penalties 5 Manuel Locatelli X X 19 Dani Olmo 9 Andrea Belotti 9 Gerard Moreno 19 Leonardo Bonucci 10 Thiago Alcántara 20 Federico Bernardeschi X 7 Álvaro Morata 8 Jorginho Attendance: 57,811 2 2 23:43:28CET Goal Y Booked R Sent off Substitution P Penalty O Own goal C Captain GK Goalkeeper Star of the match * Misses next match if booked 06 Jul 2021.
    [Show full text]
  • Max Eberl Profi-Votum Wiederwahl
    SONDERHEFT 2016 VDV-MANAGER VDV 11 VDV-TREFFEN Max Eberl Profi-Votum Wiederwahl „Fohlenelf“ Aubameyang, Christoph Metzelder galoppiert Weigl und Tuchel bleibt weiter durch Europa ganz vorne Vizepräsident www.spielergewerkschaft.de DAS ECKIGE MUSS INS ECKIGE. Das offizielle Bundesliga Magazin der DFL – jetzt auch als E-Paper für Smartphones und Tablets. Download kostenlos im App Store oder bei Google Play. DFL_Bundesliga_DasEckige_210x297_VDS_Sportjournalist_39L300.indd 1 11.03.16 09:39 WIR PROFIS DAS MAGAZIN DER VDV SONDERHEFT 2016 VDV-ANSTOSS 3 Liebe Mitglieder, liebe Fußballfreunde, warme Sonnenstrahlen, volle mung zur Bundesliga-Auswahl Profisaison gehen. Häufig werden Stadien, stimmungsvolle Fan- VDV 11 gleich drei BVB-Akteure unsere VDV-Teambetreuer von gesänge und der Geruch nach herausragten. So wurde Pierre- den jungen Spielern gefragt, wel- frisch gemähtem Gras: Es geht Emerick Aubameyang von den che Vorteile eine VDV-Mitglied- wieder los und die Vorfreude Profis zum VDV-Spieler der Saison schaft für sie hätte. Die Antwort auf die neue Saison ist riesen- gewählt, während sich Julian Wei- darauf ist einfach: Ihr könnt mit- groß. gl den Titel des stärksten Newco- reden und mitentscheiden, wenn mers sicherte und Thomas Tuchel es um Eure Arbeitsbedingungen zum besten Trainer gekürt wurde. geht. Zudem erhaltet Ihr hervorra- Ihnen sowie allen Spielern der genden und weitgehend kosten- VDV 11 und den Aufsteigern in die losen Service in fast allen für Fuß- Bundesliga, die 2. Bundesliga, die ballprofis relevanten Fragen – wie 3. Liga
    [Show full text]
  • Big-5 Weekly Post
    CIES Football Observatory Issue n°120 - 28/09/2015 Big-5 Weekly Post Best players since the start of the season Premier League Liga Position All players U21 Position All players U21 Laurent Koscielny Chancel Mbemba Iñigo Martínez Carlos Vigaray CB CB Arsenal FC Newcastle United FC Real Sociedad de Fútbol Getafe CF Cédric Soares Jordan Amavi Marcelo Vieira João Cancelo FB FB Southampton FC Aston Villa FC Real Madrid CF Valencia CF Santi Cazorla Emre Can Luka Modrić Víctor Camarasa DM DM Arsenal FC Liverpool FC Real Madrid CF Levante UD Mesut Özil Nathan Redmond Fabián Orellana Alen Halilović AM AM Arsenal FC Norwich FC RC Celta de Vigo Real Sporting de Gijón Riyad Mahrez Raheem Sterling Lionel Messi Isaac Success FW FW Leicester City FC Manchester City FC FC Barcelona Granada CF Ligue 1 Bundesliga Position All players U21 Position All players U21 Thiago Silva Olivier Boscagli Jérôme Boateng Jonathan Tah CB CB Paris St-Germain FC OGC Nice FC Bayern München Bayer 04 Leverkusen Serge Aurier Benjamin Mendy Wendell Nascimento Ulisses Garcia FB FB Paris St-Germain FC Olympique de Marseille Bayer 04 Leverkusen SV Werder Bremen Lassana Diarra Vincent Koziello Ilkay Gündoğan Julian Weigl DM DM Olympique de Marseille OGC Nice BV 09 Borussia Dortmund BV 09 Borussia Dortmund Wahbi Khazri Bernardo Silva Douglas Costa Hakan Çalhanoğlu AM AM FC Girondins de Bordeaux AS Monaco FC Bayern München Bayer 04 Leverkusen Michy Batshuayi Corentin Jean Robert Lewandowski Michael Gregoritsch FW FW Olympique de Marseille ES Troyes Aube Champagne FC Bayern München
    [Show full text]
  • 15 14 15 Spurs Go Top of Premier League
    Established 1961 Sport MONDAY, DECEMBER 7, 2020 Pandya powers India to thrilling Mbappe brings up century Barcelona suffer fourth Liga 14T20 series victory over Australia 15 as PSG win at Montpellier 15 defeat, go down 2-1 to Cadiz Spurs go top of Premier League Vardy lifts Leicester into third, Palace punish 10-man West Brom LONDON: Tottenham Hotspur’s French goalkeeper Hugo Lloris punches away the ball during the English Premier League football match between Tottenham Hotspur and Arsenal yesterday. — AFP LONDON: Son Heung-min and Harry Kane fired the earlier favor to tee up Kane to smash in from Clubs in tier-three areas of England, with tougher Wilder’s men hit back immediately for only their Tottenham back to the top of the Premier League close range. Son and Kane have now combined for coronavirus restrictions, still have to play behind fifth league goal of the season when Oli yesterday after Jamie Vardy struck in the final 31 Premier League goals, the second most of any closed doors, while tier-two zones such as London McBurnie showed good strength to head home minute to lift Leicester to third in the table. Jose pair after Chelsea’s Didier Drogba and Frank and Liverpool can have crowds of up to 2,000. from a corner. Mourinho’s men beat faltering Arsenal 2-0 in front Lampard (36). Tottenham who have not lost a Sheffield United have just one point from 11 games The hosts then held out more comfortably in of 2,000 vocal fans at Tottenham Hotspur Stadium league match since the opening day of the season, and were punished for a lack of ruthlessness as the second period until they lost possession to leapfrog Chelsea.
    [Show full text]
  • Carteret Analytics
    Carteret Analytics – 24 June 2021 UEFA Euro 2020 Group Stage Analysis Report James Powell - CEO, Carteret Group Matthew Belford - Director, Carteret Group Molly Crawford - Corporate Analyst, Carteret Group ______________________________________________________________________________________________________________________________________________________________________________ UEFA Euro 2020 Championship Group Stage Analysis Report City A.M. James Powell1, Matthew Belford2, Molly Crawford3 Strictly Private and Confidential 24 June 2021 1James Powell, Chief Executive Officer, Carteret Group, London. T: +44 20 3876 2414. E: [email protected] 2Matthew Belford, Director, Carteret Group, London. T: +44 20 3876 2414. E: [email protected] 3Molly Crawford, Corporate Analyst, Carteret Group, London. T: +44 20 3876 2414. E: [email protected] This document is strictly private and confidential, subject to contract and for general information purposes only. No warranty is provided with regard to its content, and Carteret Analytics assumes no liability whatsoever for its content. Nothing in this document constitutes an offer or an invitation or a solicitation to enter into any transaction. The reader should always seek independent and professional advice on any corporate transaction. Carteret Analytics Limited, 85 Gresham Street, London, EC2V 7NQ. T: +44 20 3876 2414. W: www.carteret.group Carteret Analytics - UEFA Euro 2020 Group Stage Analysis Report - Strictly Private and Confidential 24 June 2021 ___________________________________________________________________________________________________________________________________________________________ Key terms are defined in the Glossary Terms highlighted in yellow in this Report are key terms related to the proprietary quantitative analysis utilised by Carteret Analytics to produce the various insights on the players. Each key term will be highlighted in yellow when it is first used in the Report, and each is defined in more detail in the Glossary at Section 5 of this Report (Page 7).
    [Show full text]
  • Dos Locos Y Un Balón
    MANCHESTER CITY 2019-2020* DESCIFRANDO EL JUEGO DE PEP Albert Quera & Jordi Pérez Dos locos y un balón Valoración de los jugadores Antes de empezar con el análisis de los 44 partidos de la temporada 19/20 del Manchester City de Josep Guardiola vamos a hacer, en modo introducción, la valoración de los jugadores durante todos estos encuentros. Desde Ederson y Claudio Bravo hasta Agüero. Pasando por Rodri, Bernardo Silva y Gündogan. Vamos a ello: Ederson: (7,5), uno de los jugadores más importantes de la plantilla. Su juego de pies es ​ oro para el Manchester City. Claudio Bravo: (5,5), cumplidor. No ha contado con muchos minutos pero ha dejado ​ buenas actuaciones bajo palos. Cancelo: (5,5), no ha contado con muchos minutos. Pero cuando ha jugado, su profundidad ​ ha sido clave. Walker: (6,5), formando la línea de tres atrás ha sido una figura esencial. No es el mejor ​ lateral del mundo, para nada. Pero ha sido clave para Pep, y su posicionamiento interior ha sido importante para la presión tras pérdida y segundas jugadas. Otamendi: (5,5), su rendimiento tras la lesión de Laporte ha sido muy bajo. Imprecisiones, ​ errores de posicionamiento y mala lectura del juego a nivel defensivo. Fernandinho: (6,5), cumplidor. Fuera de su posición, siendo central, ha dejado grandes ​ actuaciones. Defensivamente muy sólido. Stones: (5), pocos minutos. Central que ha dejado mucho que desear a nivel defensivo. No ​ ha contado lo suficiente para Pep. Laporte: (8), el segundo mejor jugador de la plantilla. Y sino es el mejor, el más importante. ​ Una figura capital en defensa, sin ir más lejos, el bajo rendimiento del City en defensa viene tras su lesión.
    [Show full text]
  • 2018/19 UEFA Europa League Technical Report
    Technical report 2018/19 CONTENTS OVERVIEW 4 6 16 Introduction Road The final to Baku 22 24 The winning Results coach ANALYSIS 28 32 34 Talking Goals of Squad of points the season the season STATISTICS 36 40 56 Number Team Roll of crunching profiles honour INTRODUCTION Group A Group B Bayer 04 FC Zürich AEK PFC Ludogorets FC Salzburg Celtic FC RB Leipzig Rosenborg BK Leverkusen (FCZ) Larnaca FC 1945 (SBG) (CEL) (LEI) (RBK) (BL) (LAR) (LUD) Group C Group D FC Zenit SK Slavia Praha FC Girondins FC København GNK Dinamo Fenerbahçe SK FC Spartak RSC Anderlecht (ZEN) (SLP) de Bordeaux (FCK) Zagreb (FEN) Trnava (AND) (BOR) (DZ) (TRN) Group E Group F (From left): Savvas Constantinou, Ghenadie Scurtul, Jarmo Matikainen, Stefan Majewski, Thomas Schaaf and Milenko Ačimovič from the UEFA Technical Observers Group, and Frank Ludolph, UEFA’s head of football education services, at the final Arsenal FC Sporting FC Vorskla Qarabağ FK Real Betis Olympiacos FC AC Milan F91 Dudelange (ARS) Clube de Portugal Poltava (QAR) Balompié (O LY ) (ACM) (DUD) (SCP) (VOR) (BTS) Association (CFA) and a member of the Jira Group G Group H Panel, provided detailed insight into how Chelsea and Arsenal had made it an all- OBSERVING English final, and Stefan Majewski, a former Poland international and current sport director of the Polish Football Association (PZPN), provided some equally illuminating Villarreal CF SK Rapid Wien Rangers FC FC Spartak Eintracht SS Lazio Apollon Olympique THE TACTICAL (VLR) (RPD) (RAN) Moskva Frankfurt (LAZ) Limassol FC de Marseille analysis of Slavia Praha’s captivating THE TACTICAL (SPM) (EIN) (APO) (OM) charge to the quarter-finals.
    [Show full text]
  • The Player Trading Game 2017
    The Player Trading Game 2017 footballbenchmark.com What is KPMG Football Benchmark? Consolidated and verified database of football clubs' financial and operational performance. Business intelligence tool enabling relevant comparisons with competitors. An ever-growing platform that includes data from over 150 European football clubs. A tool offering insights into many aspects of football clubs' operations, including, but not limited to, revenue generators, expense categories, profitability indicators, balance sheet items and stadium statistics. footballbenchmark.com Credits: Paris Saint-Germain FC © 2017 KPMG Advisory Ltd., a Hungarian limited liability company and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative (“KPMG International”), a Swiss entity. All rights reserved. Table of contents Foreword 4 How we calculate player trading balance for the purposes of this report 7 The European Top 20 8 Where are the “big fish”? 13 Basis of preparation and limiting conditions 15 © 2017 KPMG Advisory Ltd., a Hungarian limited liability company and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative (“KPMG International”), a Swiss entity. All rights reserved. 4 The Player Trading Game Foreword Only one year ago, the whole media and fans, it is noticeable that football world was stunned when the ratio between the fee paid for Manchester United FC broke record transfers and the operating the transfer record by signing revenues of the acquiring club has Frenchman Paul Pogba for EUR 105 remained stable at approximately million. Despite being considered 23% in the last 10 years. In view of by many as a disproportionate and that, Neymar’s acquisition by Paris unsustainable trend, this summer Saint-Germain FC (at 42%) could we have witnessed a further pull be considered as an exception, of the financial muscle exercised and more aligned to the ratio at the by clubs.
    [Show full text]
  • Big-5 Weekly Post
    CIES Football Observatory Issue n°99- 17/02/2015 Big-5 Weekly Post Experience capital: most promising players, by age category and position Experience capital: number of matches played in adult championships weighted by league level and club results. For more information, see CIES Football Observatory Monthly Report 2. Goalkeepers Big-5 Other leagues2 U201 Mouez Hassen, Nice (FRA) 12.1 Georgi Kitanov, Cherno More Varna (BUL) 23.8 U21 Stefanos Kapino, Mainz (GER) 33.1 Yvon Mvogo, Young Boys (SUI) 25.6 U22 Jan Oblak, Atlético Madrid (ESP) 57.2 Oliver Zelenika, Lokomotiva Zagreb (CRO) 26.4 U23 Thibaut Courtois, Chelsea (ENG) 200.6 Mathew Ryan, Club Brugge (BEL) 83.1 Full backs Big-5 Other leagues2 U20 Luke Shaw, Manchester United (ENG) 65.8 Eduard Sobol, Metalurg Donetsk (UKR) 29.4 U21 Benjamin Mendy, Marseille (FRA) 60.8 Jetro Willems, PSV (NED) 94.5 U22 Juan Bernat, Bayern München (GER) 75.3 Jonas Svensson, Rosenborg (NOR) 62.9 U23 David Alaba, Bayern München (GER) 155.2 Laurens De Bock, Club Brugge (BEL) 82.4 Centre backs Big-5 Other leagues2 U20 Niklas Süle, Hoffenheim (GER) 36.4 Milan Škriniar, MŠK Žilina (SVK) 21.8 U21 Marquinhos Aoás, PSG (FRA) 66.8 Karim Rekik, PSV (NED) 52.2 U22 Raphaël Varane, Real Madrid (ESP) 84.8 Emil Bergström, Djurgårdens (SWE) 46.7 U23 Phil Jones, Manchester United (ENG) 143.0 Bruno Martins Indi, Porto (POR) 115.7 Defensive/Central midfielders Big-5 Other leagues2 U20 Carlos Gruezo, Stuttgart (GER) 51.0 Tonny Vilhena, Feyenoord (NED) 76.8 U21 Mateo Kovačić, Internazionale (ITA) 81.5 Kyle Ebecilio, Twente (NED)
    [Show full text]
  • 2020-21 Panini Impeccable Hobby Soccer Checklist
    2020/21 Impeccable Premier League Soccer Card Totals 292 Players with Cards TOTAL TOTAL Auto Auto Gold Team Relic Metal Base CARDS HITS Only Relic Silver Aaron Connolly 33 33 33 Aaron Cresswell 171 0 171 Aaron Ramsdale 204 33 33 171 Aaron Wan-Bissaka 1145 1145 475 350 320 Adam Lallana 171 0 171 Adam Webster 483 483 483 Adama Traore 665 585 300 33 252 80 Ademola Lookman 346 175 175 171 Aleksandar Mitrovic 254 3 3 80 171 Alex McCarthy 253 82 82 171 Alex Telles 549 549 374 175 Alexandre Lacazette 240 160 160 80 Alexis Mac Allister 80 0 80 Alisson 136 136 26 33 77 Allan 33 33 33 Allan Saint-Maximin 204 33 33 171 Alphonse Areola 204 33 33 171 Andre Schurrle 175 175 175 Andreas Christensen 94 94 94 Andre-Frank Zambo Anguissa 204 33 33 171 Andros Townsend 109 109 33 76 Andy Robertson 47 47 47 Anthony Gordon 80 0 80 Anthony Martial 189 109 33 76 80 Antonee Robinson 204 33 33 171 Ashley Barnes 169 89 89 80 Ashley Westwood 204 33 33 171 Asmir Begovic 350 350 350 Aymeric Laporte 493 493 493 Ayoze Perez 157 77 77 80 Ben Chilwell 431 431 398 33 Ben Davies 134 134 134 Ben Mee 562 562 485 77 Ben White 171 0 171 Bernardo Silva 811 811 461 350 Bernd Leno 113 33 33 80 Billy Sharp 489 489 489 Bobby De Cordova-Reid 171 0 171 Brandon Williams 604 524 524 80 Bruno Fernandes 530 530 497 33 Bukayo Saka 320 320 287 33 Caglar Soyuncu 833 833 833 Callum Hudson-Odoi 77 77 77 Callum Robinson 204 33 33 171 GroupBreakChecklists.com 2019-20 Impeccable Premier League Soccer Card Totals TOTAL TOTAL Auto Auto Gold Team Relic Metal Base CARDS HITS Only Relic Silver Callum
    [Show full text]
  • Pre-Season Tour 2018
    MANCHESTER CITY PRE-SEASON TOUR 2018 MANCHESTER CITY PRE-SEASON TOUR 2017 1 THROUGHOUT ITS PROUD HISTORY, OUR FOOTBALL CLUB HAS BUILT A DEEP, LASTING KINSHIP WITH COMMUNITIES IN MANCHESTER AND IN CITIES FURTHER AFIELD. THE FANS SHOW IT IN THEIR UNWAVERING PASSION FOR THE CLUB; WE SHOW IT THROUGH OUR DEDICATION TO BUILDING, FOR THEM, THE SUCCESSFUL AND SUSTAINABLE FOOTBALL CLUB FOR THE FUTURE. IT IS A RESPONSIBILITY THAT THE CLUB IS HONOURED TO SHOULDER. CONTACTS COMMUNICATIONS DEPARTMENT CHIEF EXECUTIVE OFFICER CHIEF COMMUNICATIONS SIMON HEGGIE CONTACTS FOR USA FERRAN SORIANO OFFICER HEAD OF MEDIA RELATIONS SIMON HEGGIE VICKY KLOSS E: [email protected] STEPH TOMAN DIRECTOR OF FOOTBALL T: +44 161 438 7738 TOBY CRAIG TXIKI BEGIRISTAIN CHIEF FINANCIAL OFFICER M: +44 7791 857 452 ANDY YOUNG CONTACTS FOR FIRST TEAM MANAGER ALEX ROWEN COMMUNITY SHIELD MEDIA RELATIONS MANAGER PEP GUARDIOLA CHIEF INFRASTRUCTURE ALEX ROWEN OFFICER E: [email protected] CARLOS VICENTE HEAD OF ELITE JON STEMP M: +44 7885 268 047 DEVELOPMENT SQUAD PAUL HARSLEY CLUB AMBASSADOR CARLOS VICENTE MIKE SUMMERBEE INTERNATIONAL MEDIA HEAD OF RELATIONS MANAGER GLOBAL FOOTBALL LIFE PRESIDENT E: [email protected] BRIAN MARWOOD BERNARD HALFORD M: +44 7850 096 527 TOBY CRAIG DIRECTOR OF CORPORATE AND COMMERCIAL COMMUNICATIONS E: [email protected] T: +44 20 7874 5519 M: +44 7710 380 248 STEPHANIE TOMAN HEAD OF MARKETING COMMUNICATIONS E: [email protected] T: +44 161 438 7989 M: +44 7736 464 316 All information correct at time of
    [Show full text]