A Guide to the Pronunciation and Meaning of Cetacean Taxonomic Names
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2017 377 Encyclopedia of Whales, Dolphins and Porpoises
2017 BOOK REVIEWS 377 Encyclopedia of Whales, Dolphins and Porpoises By Erich Hoyt. 2017. Firefly Books. 300 pages, 49.95 CAD, Cloth. Written by a British-based, dual-citizen Canadian tion that individual animals could be photographed and who is a research scientist, conservationist, and author, identified by distinctive species-specific features, such the Encyclopedia of Whales, Dolphins and Porpoises as flukes, dorsal fins, pigmentation patterns, scars, and provides an interesting and beautiful global overview wounds. this led to great advances in previously dif- of cetaceans. Part pictorial guide, part research over - ficult areas to research such as migration, distribution, view, part coffee table book, and part call to action, and social behaviour. In a general book such as this and brimming with incredibly beautiful photographs obviously not all biological facts can be provided, but showing cetaceans in action, this book will appeal to it does provide an interesting and sometimes astound- many readers in its attractive, easy-to-read format. ing array of biological information. It is quite enlight- the reader will learn a great deal. the book contains ening how little is still known about some cetacean many interesting facts about this hugely popular yet species, even breeding areas and species taxonomy, mystical group of marine mammals. In recounting the and how recently much of the known scientific infor- history of cetacean research and monitoring, the author mation has been gathered. It was sobering to learn that emphasized the major progress made with the realiza- almost half of all cetaceans globally are considered 378 THE CANADIAN FIELD -N ATURALIST Vol. -
Evolutionary History of the Porpoises
bioRxiv preprint doi: https://doi.org/10.1101/851469; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evolutionary history of the porpoises (Phocoenidae) across the 2 speciation continuum: a mitogenome phylogeographic perspective 3 4 Yacine Ben Chehida1, Julie Thumloup1, Cassie Schumacher2, Timothy Harkins2, Alex 5 Aguilar3, Asunción Borrell3, Marisa Ferreira4, Lorenzo Rojas-Bracho5, Kelly M. Roberston6, 6 Barbara L. Taylor6, Gísli A. Víkingsson7, Arthur Weyna8, Jonathan Romiguier8, Phillip A. 7 Morin6, Michael C. Fontaine1,9* 8 9 1 Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, 10 Groningen, The Netherlands 11 2 Swift Biosciences, 674 S. Wagner Rd., Suite 100, Ann Arbor, MI 48103, USA 12 3 IRBIO and Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, 13 University of Barcelona, Diagonal 643, 08071 Barcelona, Spain 14 4 MATB-Sociedade Portuguesa de Vida Selvagem, Estação de Campo de Quiaios, Apartado EC Quiaios, 3080- 15 530 Figueira da Foz, Portugal & CPRAM-Ecomare, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da 16 Nazaré, Portugal 17 5 Instituto Nacional de Ecología, Centro de Investigación Científica y de Educación Superior de Ensenada, 18 Carretera Ensenada-Tijuana 3918, Fraccionamiento Zona Playitas, Ensenada, BC 22860, Mexico 19 6 Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La 20 Jolla, California 92037, USA 21 7 Marine and Freshwater Research Institute, PO Box 1390, 121 Reykjavik, Iceland 22 8 Institut des Sciences de l’Évolution (Université de Montpellier, CNRS UMR 5554), Montpellier, France 23 9 Laboratoire MIVEGEC (Université de Montpellier, UMR CNRS 5290, IRD 229), Centre IRD de Montpellier, 24 Montpellier, France 25 26 *Corresponding author: Michael C. -
Inia Araguaiaensisand Inia Geoffrensis
Interactions between children, teenagers and botos (Inia araguaiaensis and Inia geoffrensis) in markets and fairs of Eastern Amazon Angélica Lúcia Figueiredo Rodrigues, Gabriel Melo-Santos, Iara Ramos-Santos, Ana Marta Andrade, Danilo Leal Arcoverde, Leonardo Sena, Maria Luisa da Silva Date of deposit 09 05 2019 Document version Author’s accepted manuscript Access rights © 2019, Elsevier Ltd. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. Citation for Figueiredo Rodrigues, A.L., Melos-Santos, G., and Ramos-Santos, published version I. (2019). Interactions between children, teenagers and botos (Inia araguaiaensis and Inia geoffrensis) in markets and fairs of Eastern Amazon. Ocean and Coastal Management, 172: pp137- 145. Link to published https://doi.org/j.ocecoaman.2019.02.005 version Full metadata for this item is available in St Andrews Research Repository at: https://research-repository.st-andrews.ac.uk/ 1 Abstract In this study we present the first record of interactions (ludic behavior, swimming and induced feeding) involving river dolphins known as botos (Inia sp.) and children/adolescents (from eight to 17 years old) at markets and fairs at the river front of two localities of Pará State, Brazil. We registered the reports of the participants using semi-structured interviews while they were working at the markets or when they were in the water to interact with river dolphins. We registered dolphins and human behavior using the ad libitum method. Most of the children interacting with botos were boys - we observed only two girls swimming with the dolphins. -
Living Between Rapids: Genetic Structure and Hybridization in Botos (Cetacea: Iniidae: Inia Spp.) of the Madeira River, Brazil
bs_bs_banner Biological Journal of the Linnean Society, 2015, 114, 764–777. With 5 figures Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil WALESKA GRAVENA1,2*, VERA M. F. DA SILVA2, MARIA N. F. DA SILVA3, IZENI P. FARIAS1 and TOMAS HRBEK1 1Laboratório de Evolução e Genética Animal (LEGAL), Departamento de Genética, Universidade Federal do Amazonas, Av. General Rodrigo Otávio Jordão, 3000, 69077-000, Manaus, Amazonas, Brazil 2Laboratório de Mamíferos Aquáticos, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, 69011-970, Manaus, Amazonas, Brazil 3Coleção de Mamíferos, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, 69011-970, Manaus, Amazonas, Brazil Received 2 September 2014; revised 14 November 2014; accepted for publication 15 November 2014 Until the recent construction of hydroelectric dams, a series of 18 rapids divided the upper and lower Madeira River, and these rapids were thought to separate two species of Amazonian freshwater dolphins (boto): Inia boliviensis (above) and I. geoffrensis (below). Some reports and articles, however, mention the occurrence of botos within the rapids region and that they occasionally cross the rapids, but without mentioning the species concerned. Based on our previous studies, it is likely that I. boliviensis occurs in the region of the rapids. To test this supposition, we sampled 18 individuals from this region, and collected mitochondrial (control region, cytochrome b and cytochrome oxidase I) and nuclear (10 microsatellite loci) DNA data, in order to test if there is connectivity between the dolphins that were found within the rapids region and dolphins collected upstream and downstream of the rapids, and investigate population structuring between these localities. -
Eubalaena Glacialis (North Atlantic Right Whale)
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Eubalaena glacialis (North Atlantic Right Whale) Priority 1 Species of Greatest Conservation Need (SGCN) Class: Mammalia (Mammals) Order: Cetacea (Whales) Family: Balaenidae (Right Whales) General comments: none No Species Conservation Range Maps Available for North Atlantic Right Whale SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: Maine Status: Endangered Federal Status: Endangered IUCN Red List Status: Endangered State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: NatureServe: Global Rank: G1 High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to North Atlantic Right Whale: Formation Name Subtidal Macrogroup Name Subtidal Pelagic (Water Column) Habitat System Name: Offshore **Primary Habitat** Notes: adult, juvenile, calf Habitat System Name: Upwelling Zones **Primary Habitat** Notes: adult, juvenile, calf, assumed feeding area Stressors Assigned to North Atlantic Right Whale: Moderate Severity High Severity Highly Actionable Medium-High High Stressor Priority Level based on Moderately Actionable Medium Medium-High Severity and Actionability Actionable with Difficulty Low Low IUCN Level 1 Threat Biological Resource Use IUCNStressor Level Priority: 2 Threat: High Fishing and Harvesting of Aquatic Resources Severity: Severe Actionability: Highly actionable Notes: Large whales, namely the right and humpback whale, are being taken in too large of numbers as bycatch in fixed gear fisheries as a result of entanglements in rope. This issue is at the center of an evolving Atlantic Large Whale Take Reduction Plan to mitigate the risk, but large data gaps exist and entanglement rates are not decreasing. -
Blue Whale (Balaenoptera Musculus) Sightings Off the Coast of Virginia Dan T
Engelhaupt et al. Marine Biodiversity Records (2020) 13:6 https://doi.org/10.1186/s41200-020-00189-y MARINE RECORD Open Access Blue whale (Balaenoptera musculus) sightings off the coast of Virginia Dan T. Engelhaupt1*, Todd Pusser2, Jessica M. Aschettino1, Amy G. Engelhaupt3, Mark P. Cotter1, Michael F. Richlen1 and Joel T. Bell4 Abstract We report on two sightings of individual blue whales (Balaenoptera musculus) off the coast of Virginia during marine mammal surveys. On 11 April 2018, during a vessel survey off the coast of Virginia, a single blue whale was observed approximately 100 km east-northeast of Virginia Beach. On 10 February 2019, another single blue whale was recorded during an aerial survey approximately 135 km east-southeast of Virginia Beach. These observations mark the first time this endangered species has been documented with photographs off the coast of Virginia, and represent the southernmost confirmed sightings in waters of the United States Atlantic Exclusive Economic Zone (EEZ). At the time of the vessel observation, numerous fin whales (Balaenoptera physalus), humpback whales (Megaptera novaeangliae), and North Atlantic right whales (Eubalaena glacialis), were observed within the same approximately 8 km2 area as the blue whale. For the aerial sighting, the blue whale was seen feeding among at least 15 fin whales in an area approximately 4 km2. These sightings contribute to the small body of information existing for the late winter/early spring distribution of blue whales in waters of the western North Atlantic. Keywords: Blue whale, Balaenoptera musculus, Virginia, Mid-Atlantic, Western North Atlantic, U.S. Navy, Cetacean Introduction Blue whales are considered to be occasional visitors to The blue whale (Balaenoptera musculus) is the largest United States (U.S.) Atlantic Exclusive Economic Zone baleen whale, and the largest creature ever to inhabit the (EEZ) waters; however, reports of the species from this earth (Jefferson et al. -
Balaenoptera Bonaerensis – Antarctic Minke Whale
Balaenoptera bonaerensis – Antarctic Minke Whale compared to B. bonaerensis. This smaller form, termed the “Dwarf” Minke Whale, may be genetically different from B. bonaerensis, and more closely related to the North Pacific Minke Whales, and thus has been classified B. acutorostrata (Wada et al. 1991; IWC 2001). This taxonomic position, although somewhat controversial, has been accepted by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), and the Convention on Migratory Species (CMS). Assessment Rationale The current IWC global estimate of abundance of Antarctic Dr. Meike Scheidat Minke Whales is about 500,000 individuals. The abundance estimates declined from about 700,000 for the second circumpolar set of abundance survey cruises Regional Red List status (2016) Least Concern* (1985/86 to 1990/91) to about 500,000 for the third National Red List status (2004) Least Concern (1991/92 to 2003/04). Although this decline was not statistically significant, the IWC Scientific Committee does Reasons for change No change consider these results to reflect a change. However, Global Red List status (2008) Data Deficient whether this change is genuine or attributed to greater proportions of pack ice limiting the survey extent, has not TOPS listing (NEMBA) (2007) None yet been determined. More detailed results from an CITES listing (1986) Appendix I assessment model are available for the mid-Indian to the mid-Pacific region, and suggest that the population Endemic No increased to a peak in 1970 and then declined, with it *Watch-list Data being unclear whether this decline has levelled off or is still continuing past 2000. -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
Description of a New Species of Beaked Whale (Berardius) Found in the North Pacific
www.nature.com/scientificreports OPEN Description of a new species of beaked whale (Berardius) found in the North Pacifc Received: 30 November 2018 Tadasu K. Yamada1, Shino Kitamura2,3, Syuiti Abe3, Yuko Tajima1, Ayaka Matsuda3, Accepted: 4 July 2019 James G. Mead4 & Takashi F. Matsuishi3,5 Published: xx xx xxxx Two types of Berardius are recognised by local whalers in Hokkaido, Japan. The frst is the ordinary Baird’s beaked whale, B. bairdii, whereas the other is much smaller and entirely black. Previous molecular phylogenetic analyses revealed that the black type is one recognisable taxonomic unit within the Berardius clade but is distinct from the two known Berardius species. To determine the characteristics of the black type, we summarised external morphology and skull osteometric data obtained from four individuals, which included three individuals from Hokkaido and one additional individual from the United States National Museum of Natural History collection. The whales difered from all of their congeners by having the following unique characters: a substantially smaller body size of physically mature individuals, proportionately shorter beak, and darker body colour. Thus, we conclude that the whales are a third Berardius species. Beaked whales (Family Ziphiidae, Odontoceti, Cetacea) include the second largest number of species among toothed whale families. Teir preference for deep ocean waters, elusive habits, and long dive capacity1 make beaked whales hard to see and inadequately understood. A total of 22 species are currently recognized in six genera (Berardius, Hyperoodon, Indopacetus, Mesoplodon, Tasmacetus, and Ziphius)2. Te genus Berardius has two species, Baird’s beaked whale Berardius bairdii, found in the North Pacifc and adjacent waters, and Arnoux’s beaked whale B. -
Genetic Structure of the Beaked Whale Genus Berardius in the North Pacific
MARINE MAMMAL SCIENCE, 33(1): 96–111 (January 2017) Published 2016. This article is a U.S. Government work and is in the public domain in the USA DOI: 10.1111/mms.12345 Genetic structure of the beaked whale genus Berardius in the North Pacific, with genetic evidence for a new species PHILLIP A. MORIN1, Marine Mammal and Turtle Division, Southwest Fisheries Science Cen- ter, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Drive, La Jolla, California 92037, U.S.A. and Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92037, U.S.A.; C. SCOTT BAKER Marine Mammal Institute and Department of Fisheries and Wildlife, Oregon State University, 2030 SE Marine Science Drive, Newport, Oregon 07365, U.S.A.; REID S. BREWER Fisheries Technology, University of Alaska South- east, 1332 Seward Avenue, Sitka, Alaska 99835, U.S.A.; ALEXANDER M. BURDIN Kam- chatka Branch of the Pacific Geographical Institute, Partizanskaya Str. 6, Petropavlovsk- Kamchatsky, 683000 Russia; MEREL L. DALEBOUT School of Biological, Earth, and Environ- mental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; JAMES P. DINES Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.; IVAN D. FEDUTIN AND OLGA A. FILATOVA Faculty of Biology, Moscow State University, Moscow 119992, Russia; ERICH HOYT Whale and Dol- phin Conservation, Park House, Allington Park, Bridport, Dorset DT6 5DD, United King- dom; JEAN-LUC JUNG Laboratoire BioGEMME, Universite de Bretagne Occidentale, Brest, France; MORGANE LAUF Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Drive, La Jolla, California 92037, U.S.A.; CHARLES W. -
Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. -
Order CETACEA Suborder MYSTICETI BALAENIDAE Eubalaena Glacialis (Müller, 1776) EUG En - Northern Right Whale; Fr - Baleine De Biscaye; Sp - Ballena Franca
click for previous page Cetacea 2041 Order CETACEA Suborder MYSTICETI BALAENIDAE Eubalaena glacialis (Müller, 1776) EUG En - Northern right whale; Fr - Baleine de Biscaye; Sp - Ballena franca. Adults common to 17 m, maximum to 18 m long.Body rotund with head to 1/3 of total length;no pleats in throat; dorsal fin absent. Mostly black or dark brown, may have white splotches on chin and belly.Commonly travel in groups of less than 12 in shallow water regions. IUCN Status: Endangered. BALAENOPTERIDAE Balaenoptera acutorostrata Lacepède, 1804 MIW En - Minke whale; Fr - Petit rorqual; Sp - Rorcual enano. Adult males maximum to slightly over 9 m long, females to 10.7 m.Head extremely pointed with prominent me- dian ridge. Body dark grey to black dorsally and white ventrally with streaks and lobes of intermediate shades along sides.Commonly travel singly or in groups of 2 or 3 in coastal and shore areas;may be found in groups of several hundred on feeding grounds. IUCN Status: Lower risk, near threatened. Balaenoptera borealis Lesson, 1828 SIW En - Sei whale; Fr - Rorqual de Rudolphi; Sp - Rorcual del norte. Adults to 18 m long. Typical rorqual body shape; dorsal fin tall and strongly curved, rises at a steep angle from back.Colour of body is mostly dark grey or blue-grey with a whitish area on belly and ventral pleats.Commonly travel in groups of 2 to 5 in open ocean waters. IUCN Status: Endangered. 2042 Marine Mammals Balaenoptera edeni Anderson, 1878 BRW En - Bryde’s whale; Fr - Rorqual de Bryde; Sp - Rorcual tropical.