PB-FHR) Power Plant

Total Page:16

File Type:pdf, Size:1020Kb

PB-FHR) Power Plant Mark-­‐1 PB-­‐FHR Technical Description Technical Description of the “Mark 1” Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant Charalampos “Harry” Andreades Anselmo T. Cisneros Jae Keun Choi Alexandre Y.K. Chong Massimiliano Fratoni Sea Hong Lakshana R. Huddar Kathryn D. Huff David L. Krumwiede Michael R. Laufer Madicken Munk Raluca O. Scarlat Nicolas Zweibaum Ehud Greenspan Per F. Peterson UCBTH-14-002 September 30, 2014 Department of Nuclear Engineering University of California, Berkeley This research is being performed using funding received from the U.S. Department of Energy Office of Nuclear Energy’s Nuclear Energy University Programs. Technical Description of the Mark-1 PB-FHR Power Plant 1 | 153 Executive Summary This report describes the results of work at the University of California, Berkeley (UCB) to develop an initial pre-conceptual design for a small, modular 236-MWth pebble-bed fluoride- salt-cooled, high-temperature reactor (PB-FHR). This design study contributes to a larger U.S. Department of Energy Integrated Research Project (IRP) collaboration with the Massachusetts Institute of Technology and the University of Wisconsin, Madison to establish the technical basis to design, license, and commercially deploy FHRs. The Mark-1 (Mk1) PB-FHR design described here differs from previous FHR designs developed and published by UCB and others. It uses a nuclear air-Brayton combined cycle (NACC) based upon a modified General Electric 7FB gas turbine, designed to produce 100 MWe of base-load electricity when operated with only nuclear heat, and to increase this power output to 242 MWe using gas co-firing for peak electricity generation. Due to the high thermal efficiency of the NACC system, the steam-bottoming condenser of the Mk1 PB-FHR requires only 40% of the cooling water supply that is required for a conventional light water rector (LWR), for each MWh of base-load generation. As with conventional natural-gas combined cycle (NGCC) plants, this makes the efficiency penalty of using dry cooling with air-cooled condensers much smaller, enabling economic operation in regions where water is scarce. The primary purpose of the Mk1 design, with its co-firing capability, is to provide a new value proposition for nuclear power. The new value proposition for NACC arises from additional revenues earned by providing flexible grid support services to handle the ever- increasing demand for dispatchable peak power, in addition to traditional base-load electrical power generation. Because under base-load operation NACC power conversion has lower fuel costs than NGCC, and under peaking operation has higher efficiency in converting natural gas to electricity than NGCC, NACC plants will always dispatch before conventional NGCC plants. The reference configuration for the Mk1 site uses 12 Mk1 units, as shown in Fig. ES-1, capable of producing 1200 MWe of base load electricity, and ramping to a peak power output of 2900 MWe. The Mk1 design uses the same steel-plate composite wall modular construction methods as the Westinghouse AP1000, and its modular components can be manufactured in the same factories. A Mk1 reactor uses 10 structural modules, so the total number of structural modules needed to build a 12-unit station is quite similar to the ~120 structural modules used to build an AP1000 reactor. Estimated quantities of steel and concrete needed to construct a Mk1 station compare favorably, per MWe, with requirements for LWRs. The major difference between construction of a Mk1 station and an AP1000 is the highly repetitive construction tasks for the Mk1 station, arising from the construction of 12 identical units. PB-FHR fuel pebbles are 3.0 cm in diameter, smaller than golf balls (4.3 cm). Four Mk1 pebbles can provide electricity for a full year for an average U.S. household, which in 2011 consumed 11.3 MWe-hr. These four small pebbles are far less than the 8.1 tons of anthracite coal, or 17 tons of lignite coal, needed to produce the same amount of electricity using a coal power plant. Each Mk1 pebble contains 1.5 g of uranium encapsulated inside 4730 coated particles. This is only slightly more than the 0.9 g of uranium in 4150 particles in cylindrical, 1.25-cm diameter, 2.54-cm long Advanced Gas Reactor fuel compacts that have provided outstanding performance Technical Description of the Mark-1 PB-FHR Power Plant 2 | 153 in recent irradiation tests in the Idaho National Laboratory Advanced Test Reactor. Due to the high power density of the Mk1 core compared to modular helium-cooled reactors (MHRs), Mk1 pebbles reach full depletion in 1.4 years, compared to 2.5 years in a MHR and over 3 years for LWR fuel, so fuel testing and qualification can be performed more rapidly than for conventional LWR and MHR fuels. This fact has important programmatic implications, because it means that fuel testing and qualification, which would normally be time consuming, is unlikely to occupy the critical path for development of FHRs that use pebble fuel. 1) Mk1 reactor unit (typ. 12)! 2) Steam turbine bldg (typ. 3)! 3) Switchyard! 4) Natural gas master isolation! 5) Module assembly area" 5! 6) Concrete batch plant" 3! 7) Cooling towers (typ. 3)! 2! 4! 18! 1! 17! 6! 8! 9! 16! 10! 11! 12! 14! 13! 19! 7! 15! 20! 8) Dry cask storage! 9) Rad. waste bldg! 15) Main admin bldg! 10) Control room bldg! 16) Warehouse" 11) Fuel handling bldg! 17) Training" 12) Backup generation bldg" 18) Outage support bldg! 13) Hot/cold machine shops" 19) Vehicle inspection station! 14) Protected area entrance! 20) Visitor parking! Figure ES-1 Reference site arrangement for a 12-unit PB-FHR plant, capable of producing 1200 MWe base load and 2900 MWe peak. FHRs produce significantly more tritium than current LWRs, but less than current heavy water reactors. Analysis of the Mk1 design, with its well-defined core and heat exchanger surface areas, shows that graphite surfaces will be the most important sink to recover and remove this tritium. This conclusion generalizes to all FHRs, which will have much larger graphite surface areas than molten-salt-fueled reactors. The key goal for FHR tritium control is to limit tritium losses to heat exchangers. In the Mk1 design, tritium diffusion through heat exchangers is controlled by the use of an aluminized metal coating on the outside of heat exchanger tubes, which forms a impermeable aluminum oxide layer that self-heals via oxidation with the high- temperature air contacting the outside of the tubes. The Mk1 design implements several other innovative features. The Mk1 PB-FHR does not use an intermediate coolant loop and instead directly heats the power conversion fluid. It eliminates the conventional reactor guard vessel used in sodium fast reactors and instead uses a refractory reactor cavity liner system. All components for the Mk1 design are rail-transportable. As with previous FHR conceptual designs, the new Mk1 PB-FHR design presented here provides a basis to develop safety models, perform fuel cycle analyses, and assess the potential economics of FHRs compared to other reactor technologies. Technical Description of the Mark-1 PB-FHR Power Plant 3 | 153 Contents 1 Mark-1 PB-FHR Design Overview ...................................................................................... 12 1.1 Mk1 Reactor Design Overview .................................................................................................. 15 1.2 Mk1 Reactor Building Arrangement ......................................................................................... 16 1.3 Mk1 Reference 12-Unit Site Arrangement ................................................................................ 20 1.4 Mk1 Modular Design and Construction ................................................................................... 23 1.5 Mk1 Materials Quantities ........................................................................................................... 26 1.6 Mk1 Structural Materials Selection .......................................................................................... 29 1.6.1 Mk1 structural design approach ............................................................................................. 30 1.6.2 Mk1 structural material selection criteria .............................................................................. 31 1.7 Mk1 Fuel Development and Qualification ................................................................................ 32 1.8 Comparison with Other Reactors .............................................................................................. 33 1.9 Organization of Report ............................................................................................................... 35 2 Mark -1 Nuclear Heat Supply ............................................................................................... 36 2.1 Reactor Internals System ............................................................................................................ 36 2.1.1 Fuel and reflector pebbles ...................................................................................................... 36 2.1.2 Core design ............................................................................................................................ 39 2.1.3 Pebble injection subsystem .................................................................................................... 41 2.1.4 Graphite structures ................................................................................................................
Recommended publications
  • KERNFORSCHUNGSANLA JULICH Gmbh
    KERNFORSCHUNGSANLA JULICH GmbH Proceedings of the Workshop on Structural Design Criteria for HTR Jiilich, 31. January - 1. February 1989 Editors: G. Breitbach F. Schubert H. Nickel Jiil-Conf-71 April 1989 ISSN 0344-5798 Als Manuskript gedruckt Berichte der Kernforschungsanlage Jülich - Jül-Conf-71 Zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich GmbH Postfach 1913 • D-5170 Jülich (Bundesrepublik Deutschland) Telefon: 02461/610 • Telex: 833556-0 kf d Proceedings of the Workshop on Structural Design Criteria for HTR Jiilich, 31. January - 1. February 1989 Editors: G. Breitbach F. Schubert H. Nickel Workshop on Structural Design Criteria for HTR Introductural remarks Most of the presentations given in this workshop are based on the German research and development project "HTR Design Criteria" carried out under the sponsorship of the Federal Ministry of Research and Technology. The main emphasis of this work was to acquire the fundamental principles and basic data for the establishment of German KTA-rules (KTA: Nuclear Safety Standards Commission) for the design of HTR-structural components. The project began in 1984 and the research work divided among several working groups and task forces, with participation from several institutions and companies. The role of coordination has been carried out by the Institute for Reactor Materials, Nuclear Research Centre Julien, headed by Prof. Dr. H. Nickel. The work has been organized into four working groups: a) Technical safety boundary conditions; b) Metallic structural components; c) Prestressed concrete pressure vessel; d) Graphitic structural components. The required work in each group was divided between a number of task forces. The membership of each group and task force is given in the appendix.
    [Show full text]
  • Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste
    Hitachi Review Vol. 63 (2014), No. 9 602 Featured Articles Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste Tetsushi Hino, Dr. Sci. OVERVIEW: One of the problems with nuclear power generation is the Masaya Ohtsuka, Dr. Eng. accumulation in radioactive waste of the long-lived TRUs generated as Kumiaki Moriya byproducts of the fission of uranium fuel. Hitachi is developing a nuclear reactor that can burn TRU fuel and is based on a BWR design that is Masayoshi Matsuura already in use in commercial reactors. Achieving the efficient fission of TRUs requires that the spectrum of neutron energies in the nuclear reactor be modified to promote nuclear reactions by these elements. By taking advantage of one of the features of BWRs, namely that their neutron energy spectrum is more easily controlled than that of other reactor types, the new reactor combines effective use of resources with a reduction in the load on the environment by using TRUs as fuel that can be repeatedly recycled to burn these elements up. This article describes the concept behind the INTRODUCTION RBWR along with the progress of its development, NUCLEAR power generation has an important role to as well as its specifications and features. play in both energy security and reducing emissions of carbon dioxide. One of its problems, however, is the accumulation in radioactive waste from the long- RBWR CONCEPT lived transuranium elements (TRUs) generated as Plutonium Breeding Reactor byproducts of the fission of uranium fuel. The TRUs The original concept on which the RBWR is based include many different isotopes with half-lives ranging was the plutonium generation boiling water reactor from hundreds to tens of thousands of years or more.
    [Show full text]
  • Nuclear and Energy Independence
    Meetings ANS WINTER MEETING Nuclear and energy independence HILE ORGANIZATIONS HAVE canceled or altered conferences in W the wake of the events of Sep- Major themes of the plenary: tember 11, the American Nuclear Society at- tracted more than 1100 attendants to its Win- N ter Meeting in November in Reno, Nev. “In H2 power can be an application light of recent events, that is a remarkable ac- complishment,” ANS President Gail Marcus of nuclear commented during the opening plenary. The large gathering was due perhaps to the upbeat mood of the industry in general, thanks N 50 years since first electricity with EBR-I in part to the Bush administration’s support of the continued use and further deployment of N nuclear power, and because any hope for re- A proposal for a continental supergrid ducing greenhouse gas emissions likely would include nuclear power in a national energy policy. oring the EBR-I and the nuclear pioneers who was associate project director of the EBR-I During the plenary Marcus paraphrased developed it. The proclamation recognized the and project manager for another reactor, the Charles Dickens by saying, “It is the best of environmental benefits of nuclear power and EBR-II. He later became director of the Re- times, it is the worst of times,” in reference feted those who worked to provide the world actor Engineering Division at Argonne Na- to the terrorist attacks on the United States with “clean, sustainable energy for the bene- tional Laboratory before moving on to Illinois and the opportunity for nuclear power to fit of humankind for centuries by making use Power Company.
    [Show full text]
  • HTGR Dust Safety Issues and Needs for Research and Development
    INL/EXT-11-21097 HTGR Dust Safety Issues and Needs for Research and Development P. W. Humrickhouse June 2011 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-11-21097 HTGR Dust Safety Issues and Needs for Research and Development P. W. Humrickhouse June 2011 Idaho National Laboratory Next Generation Nuclear Plant Project Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ABSTRACT This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety.
    [Show full text]
  • Reactor Technology Safety and Siting
    XA0101477-5/I5* IAEA-TC-389.26 LIMITED DISTRIBUTION REACTOR TECHNOLOGY SAFETY AND SITING REPORT OF A TECHNICAL COMMITTEE MEETING ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY AND HELD IN DIMITROVGRAD, USSR, 21-23 JUNE 1989 Reproduced by the IAEA Vienna, Austria, 1990 NOTE The material in this document has been supplied by the authors and has not been edited by the IAEA. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the govern- ments) of the designating Member State(s). In particular, neither the IAEA nor any other organization or body sponsoring this meeting can be held responsible for any material reproduced in this document. FOREWORD On the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The meetings complemented each other. Due to the large worldwide interest, the conference attracted approximately 60 participants from 18 countries and 130 Soviet delegates. About 50 foreign participants and 100 Soviet delegates stayed over for the Technical Committee Meeting. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGR's to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: - The diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors.
    [Show full text]
  • Possibility of Deuteron Disintegration in Condensed Matter, a Review
    POSSIBILITY OF DEUTERON DISINTEGRATION IN CONDENSED MATTER, A REVIEW © M. Ragheb 1/16/2021 “Discovery consists of seeing what everyone has seen, and thinking what no one has thought.” Albert Szent-Gyorgi, 1937 Nobel Laureate in Physio;ogy/ Medicine “If we all worked on the assumption that what is accepted as true is really true, There would be little hope of advance.” Orville Wright "I may disagree with what you say but will defend to the death your right to say it." Voltaire, French writer, philosopher and historian “La vérité est en marche, et rien ne l’arrêtera.” Emile Zola “Rien ne peut arrêter une idée don’t l’heure est venue.” Victor Hugo “We wish to pursue the truth, no matter where it leads. But to find the truth, we need imagination and skepticism, both. We will not be afraid to speculate, but we will be careful to distinguish speculation from fact.” “Absence of evidence is not evidence of absence.” Carl Sagan, Astronomer, ‘Cosmos’ “The miracle is not how well the bear waltzes, but that it can waltz at all.” PT Barnum “There is only one way to avoid criticism: do nothing, say nothing, and be nothing.” Aristotle. Greek philosopher “I've missed more than 9,000 shots in my career. I've lost almost 300 games. Twenty six times, I've been trusted to take the game winning shot and missed. I've failed over and over and over again in my life. And that is why I succeed.” Michael Jordan, USA Basketball Champion “It ain't what you don't know that gets you into trouble.
    [Show full text]
  • Doe Nuclear Physics Reactor Theory Handbook
    DOE-HDBK-1019/2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK NUCLEAR PHYSICS AND REACTOR THEORY Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012223 DOE-HDBK-1019/1-93 NUCLEAR PHYSICS AND REACTOR THEORY ABSTRACT The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance. Key Words: Training Material, Atomic Physics, The Chart of the Nuclides, Radioactivity, Radioactive Decay, Neutron Interaction, Fission, Reactor Theory, Neutron Characteristics, Neutron Life Cycle, Reactor Kinetics Rev. 0 NP DOE-HDBK-1019/1-93 NUCLEAR PHYSICS AND REACTOR THEORY FOREWORD The Department of Energy (DOE) Fundamentals Handbooks consist of ten academic subjects, which include Mathematics; Classical Physics; Thermodynamics, Heat Transfer, and Fluid Flow; Instrumentation and Control; Electrical Science; Material Science; Mechanical Science; Chemistry; Engineering Symbology, Prints, and Drawings; and Nuclear Physics and Reactor Theory.
    [Show full text]
  • Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates
    PNNL-25978 Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates November 2016 SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) DISCLAIMER NOTICE This report was prepared under contract with the U.S. Department of Energy (DOE), as an account of work sponsored by Alberta Innovates (“AI”). Neither AI, Pacific Northwest National Laboratory (PNNL), DOE, the U.S. Government, nor any person acting on their behalf makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by AI, PNNL, DOE, or the U.S. Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of AI, PNNL, DOE or the U.S. Government. Deployability of Small Modular Nuclear Reactors for Alberta Applications SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) November 2016 Prepared for Alberta Innovates (AI) Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At present, the steam requirements of Alberta’s heavy oil industry and the Province’s electricity requirements are predominantly met by natural gas and coal, respectively. On November 22, 2015 the Government of Alberta announced its Climate Change Leadership Plan to 1) phase out all pollution created by burning coal and transition to more renewable energy and natural gas generation by 2030 and 2) limit greenhouse gas (GHG) emissions from oil sands operations.
    [Show full text]
  • Exelon Generation Introduction to the Pebble Bed Modular Reactor
    Exekn.m Exelon Generation Telephone 610.765.5661 Generati on 200 Exelon Way Fax 610.765.5545 KSA3-N www.exeloncorp.com Kennett Square, PA 19348 Project No.: 713 August 30, 2001 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D.C. 20555 Subject: "Introduction to the Pebble Bed Modular Reactor" Dear Sir/Madam, a general Transmitted here with is a copy of the subject document, which provides presents an description of the Pebble Bed Modular Reactor (PBMR). This document safety analysis, and overview of the PBMR; the concept, the basic principles of design, operation. It is not intended to be used (or maintained) as a design document. Sincerely, Manager, Licensing PBMR Introduction to the Pebble Bed Modular Reactor (PBMR) Doc. No. 009949-185 PBMR Introduction to the Pebble Bed Modular Reactor (PBMR) Doc. No. 009949-1 85 INTRODUCTION TO THE PEBBLE BED MODULAR REACTOR (PBMR) DOCUMENT No.: 009949-185 Revision: 1 Document Status: Approved 1 Page 1 0179 ©@ Copyright 20012001 by PBMR 22/08/200122108/2001 Revision 1 Page 1 of 79 PBMVR Introduction to the Pebble Bed Modular Reactor (PBMR) Doc. No. 009949-185 CHANGE HISTORY Configuration Control Project: PBMR Title: Introduction to the Pebble Bed Modular Reactor (PBMR) Doc. Reference: 009949-185 Created By: A P George Creation Date: August 2001 Classification: Confidential Document History Revision History Revision Date Changes A August 2001 New document 1 August 2001 Document updated after review I Page 2of79 Q© Copyright 2001 byby PB3MRPBMR 22/08/200122108/2001 Revision I Page 2 of 79 PBMVR Introduction to the Pebble Bed Modular Reactor (PBMVR) Doc.
    [Show full text]
  • Responds to NRC 840504 Ltr Re Violations Noted in IE
    - , . , . Georgia Institute of Technology SCHOOL OF NUCLEAR ENGINEERING AND HEALTH PHYSICS R ATLANTA. GEORGIA 30332 ' & " ' NEELY NUCLEAR RESEAACH e (404)094-3800 CENTER May 25, 1984 Mr. David M. Verrelli, Chief Reactor Projects Branch U.S. Nuclear Regulatory Commission, Region II 101 Marietta Street, N.W. Atlanta, Georgia 30303 Subject: Inspection Report No. 50-276/84-02 | Dear Mr. Verrelli: | This letter is my response to the referenced inspection of the Georgia Tech AGN-201 reactor on April 11-12, 1984. 1 Enclosed is a copy of the Dismantling and Disposal Plan for I the AGN-201 which I sent to Mr. Cecil 0. Thomas of NRC for ! approval. This plan was reviewed and approved by the I.uclear Safeguards Committee of Georgia Tech (see appended letter). Immediately following approval of this plan by NRC, Georgia Tech will proceed to dismantle and dispose of the AGN-201. Item: The proposed emergency plan has not been appro- priately revised to reflect changes in the onsite emergency response organization for the AGN-201. The revised emergency procedures for the AGN-201 are appended. The telephone numbers of the emetgency director and all support organizations ..ce now available in the Nuclear Engineering Program Office. Item: No radiological exercise has been conducted since September 9, 1980 when Grady Meuorial llospital participated with the licensee in a drill involving a simulated personnel contamination problem. An emergency drill involving personnel contamination problem 1lospital.is being planned for the summer of 1984 in conjunction with Grady Item: Update agreement with Grady llospital and provide l'n emergency plan for biennial review and periodic update.
    [Show full text]
  • Granular Dynamics in Pebble Bed Reactor Cores
    Granular Dynamics in Pebble Bed Reactor Cores by Michael Robert Laufer A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Nuclear Engineering in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Per Peterson, Chair Professor Brian Wirth Professor Tarek Zohdi Dr. Robert Budnitz Spring 2013 Granular Dynamics in Pebble Bed Reactor Cores Copyright 2013 by Michael Robert Laufer Abstract Granular Dynamics in Pebble Bed Reactor Cores by Michael Robert Laufer Doctor of Philosophy in Engineering – Nuclear Engineering University of California, Berkeley Professor Per F. Peterson, Chair This study focused on developing a better understanding of granular dynamics in pebble bed reactor cores through experimental work and computer simulations. The work completed includes analysis of pebble motion data from three scaled experiments based on the annular core of the Pebble Bed Fluoride Salt-Cooled High- Temperature Reactor (PB-FHR). The experiments are accompanied by the development of a new discrete element simulation code, GRECO, which is designed to offer a simple user interface and simplified two-dimensional system that can be used for iterative purposes in the preliminary phases of core design. The results of this study are focused on the PB-FHR, but can easily be extended for gas-cooled reactor designs. Experimental results are presented for three Pebble Recirculation Experiments (PREX). PREX 2 and 3.0 are conventional gravity-dominated granular systems based on the annular PB-FHR core design for a 900 MWth commercial prototype plant and a 16 MWth test reactor, respectively. Detailed results are presented for the pebble velocity field, mixing at the radial zone interfaces, and pebble residence times.
    [Show full text]
  • Annual Report 2015 Forschungszentrum Jülich at a Glance Contents
    Annual Report 2015 Forschungszentrum Jülich at a glance Contents U 2 Facts and Figures 0 2 Highlights 0 4 Board of Directors 0 5 Preface 0 6 60 Years of Research R e s e a r c h at the Centre 22 Climate Research Climate goals. Climate Records. Climate Models. 1 4 Chronology 28 Nanoelectronics Insights into the Resistance Generation 32 Energy Research Breaking New Ground in the Hydrogen World 36 Materials Research The Slipperiness Formula 38 Structural Biochemistry New Light Switch for Nerve Cells 40 Electron Tomography Nanoworld in 3D 42 Brain Research Changes in the Brain Caused by Depression 44 Climate Research A Chance Discovery for Climate Research 46 Computer Simulation The Birth of Elements 48 Materials Research New Steel for Energiewende 5 0 Research in Brief 5 2 Publications Cooperation 5 4 The Computer Diplomat 5 8 International Cooperations (EU) 59 National Cooperations 6 0 Collaborations with Industry 6 1 JARA – Combined Expertise 6 4 Cooperations in Brief 6 8 Research for Practical Applications 7 0 Patents and Licenses P e o p l e 7 2 The Tinkerer and the Networker 7 4 Promoting Young Talent 8 2 Personnel 8 4 Accolades 8 6 Professorial Appointments Campus 8 8 Strategy Process of Forschungszentrum Jülich 98 Finances 9 0 Jülich’s Sustainable Campus 1 0 2 Bodies and Committees 9 1 Excellent Platforms 1 0 4 Organization Chart 9 4 Work at Other Locations 1 0 6 Contact Information/ Publication Details U3 Impressions from 60 Years of Research Forschungszentrum Jülich Annual Report 2015 1 Highlights 2015 Forschungszentrum Jülich is focused on use-inspired basic research.
    [Show full text]