Development of High-Value Engineered Wood Products Manufactured by Mixing Suboptimal-Quality Forest Resources

Total Page:16

File Type:pdf, Size:1020Kb

Development of High-Value Engineered Wood Products Manufactured by Mixing Suboptimal-Quality Forest Resources Development of High-Value Engineered Wood Products Manufactured by Mixing Suboptimal-Quality Forest Resources Author Nguyen, Hoan Hai Published 2019-12-20 Thesis Type Thesis (PhD Doctorate) School School of Eng & Built Env DOI https://doi.org/10.25904/1912/2400 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/390032 Griffith Research Online https://research-repository.griffith.edu.au Development of High-Value Engineered Wood Products Manufactured by Mixing Suboptimal-Quality Forest Resources HOAN HAI NGUYEN B.Eng., M.Sc. School of Engineering and Built Environment Griffith University Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy July 2019 1 Abstract In Australia, a significant amount of suboptimal-quality native forest resources (e.g., short length or small diameter logs of low value) have resulted from the sustainable management of native Australian forests and the processing sector. These resources, despite possessing high mechanical properties and often high durability, are not converted into value-added products due to size, technical and economic constraints. Additionally, a large amount of processed plantation- grown softwood is sold for low profit because it does not meet target product requirements despite being processed with an efficient system. To maximise Australia’s available forest resources and capitalise on their positive attributes, it is necessary to investigate the potential to blend these resources into an innovative, high-value engineered wood product. A potential commercialisation opportunity for the small volume of rotary veneers sourced from native forest logs is blending them with available plantation-grown softwood veneers to produce veneer-based products. This study aims to investigate the technical feasibility of blending veneers recovered from suboptimal-quality native forest logs of different species, with veneers from commercial softwood plantation logs to manufacture high- performance engineered wood products suitable for structural applications, namely beams. In the first stage, to understand the mechanical properties of veneer that can be recovered from select species, two native forest species (spotted gum [Corymbia] [SPG] and white cypress pine [Callitris glaucophylla] [CYP]) and one plantation-grown species (hoop pine [Araucaria cunninghamii] [HP]) were 2 investigated. In total, 60 SPG logs, 60 CYP logs and eight HP logs were rotary peeled, providing the veneer feedstock for the sample manufacture. The native wood veneers were visually graded according to Australian and New Zealand standards. The dynamic modulus of elasticity (MOE) and density of each veneer were determined and plotted for all species according to the best fit Weibull distributions. In the second stage, a total of 18 panels of 15-ply laminated veneer lumber (LVL) were manufactured using six construction strategies influenced by best industry practice and knowledge to develop the concept of mixed-species veneer-based products. This process ascertained that LVL products can be manufactured from the three species examined and that blending species within a construction strategy can provide opportunities to maximise use of various forest resources. The mixed-species LVL demonstrated generally superior mechanical properties (bending, tension, bearing and longitudinal-tangential shear strength) to the reference single-species HP. In the third stage, a methodology was developed based on the genetic algorithm (GA) to optimise the manufacturing strategy for structural cross-banded laminated veneer lumbers (LVL-C) manufactured by mixing species. It aimed to minimise the cost of a family of LVL and LVL-C products by maximising the use of low-grade native wood veneers while targeting different stiffness and embedment strengths. The methodology was first developed using SPG and southern pine [SP] species. Accuracy of the approach was then verified using SPG and HP species. The developed algorithm consistently converged to similar solutions for all investigated cases, demonstrating its robustness. Finally, the 3 obtained optimum construction strategies were validated against experimental results. In the final stage, a total of 12 panels manufactured from two different construction strategies for both the reference 12-ply LVL and optimised 12-ply LVL-C were examined. SPG and HP veneer were used to manufacture these panels. Minor correlation was identified between visual grading and dynamic MOE-based grading, suggesting that visual grading may not be the most appropriate method for manufacturing veneer-based products with targeted MOEs from native forest SPG veneers. Mixed-species LVL-C manufactured from native forest SPG and plantation HP veneers demonstrated mechanical properties higher than those readily commercially available LVL-C. This utilisation approach could represent a market opportunity for the veneers produced from under-utilised and under-valued native forest resources. 4 Statement of Originality This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Signed: __________________ Date:10/7/2019 Hoan Hai Nguyen Griffith University 5 Acknowledgement of published Papers Section 9.1 of the Griffith University Code for the Responsible Conduct of Research (“Criteria for Authorship”), in accordance with Section 5 of the Australian Code for the Responsible Conduct of Research, states: To be named as an author, a researcher must have made a substantial scholarly contribution to the creative or scholarly work that constitutes the research output, and be able to take public responsibility for at least that part of the work they contributed. Attribution of authorship depends to some extent on the discipline and publisher policies, but in all cases, authorship must be based on substantial contributions in a combination of one or more of: • conception and design of the research project • analysis and interpretation of research data • drafting or making significant parts of the creative or scholarly work or critically revising it so as to contribute significantly to the final output. Section 9.3 of the Griffith University Code (“Responsibilities of Researchers”), in accordance with Section 5 of the Australian Code, states: Researchers are expected to: • Offer authorship to all people, including research trainees, who meet the criteria for authorship listed above, but only those people. • accept or decline offers of authorship promptly in writing. • Include in the list of authors only those who have accepted authorship • Appoint one author to be the executive author to record authorship and manage correspondence about the work with the publisher and other interested parties. • Acknowledge all those who have contributed to the research, facilities or materials but who do not qualify as authors, such as research assistants, technical staff, and advisors on cultural or community knowledge. Obtain written consent to name individuals. 6 Included in this thesis are papers in Chapters 3, 4, 5 and 6 which are co-authored with other researchers. My contribution to each co-authored paper is outlined at the front of the relevant chapter. The bibliographic details and status for these papers are: Chapter 3: McGavin R, Nguyen H.H, Gilbert BP, Tony Dakin, Adam Faircloth. (2019). A comparative study on mechanical properties of laminated veneer lumber (LVL) produced from blending various wood veneer, Bioresources, 14(4), 9064-9081. Chapter 4: Nguyen H.H, Gilbert BP, McGavin R, Bailleres H (2018). Optimisation of cross-banded Laminated Veneer Lumber manufactured from spotted gum and southern pine veneers, European Journal of wood and wood products, DOI: 10.1007/s00107-019-01434-7. Chapter 5: Nguyen H.H, Gilbert BP, McGavin R, Bailleres H (2019). Key mechanical properties of cross-banded laminated veneer lumber (LVL-C) produced from blending spotted gum and hoop pine, Bioresources, 14(4), 9117-9131. Chapter 6: Nguyen H.H, Gilbert BP, McGavin R, Bailleres H, Karampour H (2019). Embedment strength of mixed-species laminated veneer lumbers and cross-banded laminated veneer lumbers, European Journal of wood and wood products, (Submitted May 2019, under review). Appropriate acknowledgements of those who contributed to the research but did not qualify as authors are included in each paper. (Signed) _________________________________ (Date)____10/7/2019 PhD Candidate: Hoan Hai Nguyen (Countersigned) ___________________________ (Date)____10/7/2019 Principle supervisor: Associate Professor Benoit P. Gilbert (Countersigned) ___________________________ (Date)_____10/7/2019 External supervisor: Dr. Robbie R. McGavin 7 List of Publications Journal papers: Nguyen H.H, Gilbert BP, McGavin R, Bailleres H (2018). Optimisation of cross-banded Laminated Veneer Lumber manufactured from spotted gum and southern pine veneers, European Journal of wood and wood products, 77(5), 783 – 797. McGavin R, Nguyen H.H, Gilbert BP, Tony Dakin, Adam Faircloth. (2019). A comparative study on mechanical properties of laminated veneer lumber (LVL) produced from blending various wood veneer, Bioresources, 14(4), 9064-9081. Nguyen H.H, Gilbert BP, McGavin R, Bailleres H (2019). Key mechanical properties of optinum cross-banded laminated veneer lumber (LVL-C) produced
Recommended publications
  • Buying & Storing Firewood & Pellets
    Wood Energy Series Fact Sheet FS-937 Buying & Storing Firewood & Pellets 2012 Whether you buy or cut your own firewood, chances are Firewood that you still have plenty left to learn. Even people who have been heating with wood for decades often say “I Firewood dealers come in all shapes and sizes, and wish I knew that years ago!” after reading tips like the although they may appear to be established or ones contained here. questionable, that does not necessarily mean you will be dealt a good or bad hand. Every year, hundreds of thousands of Americans are sold substandard cord wood. This sheet will help you avoid Before You Buy getting a raw deal next time you buy firewood. Find a dealer with a good reputation. Check with friends, the Better Business Bureau, or an online rating site such And if you heat with pellets, there are new developments as www.checkbook.org. Ask for references. you should know that will impact the fuel you buy. Ask the dealer what the moisture content of the wood is Heating Fuel Cost Comparison and how long it has been since it’s been split, not since Prices vary, but you can get an idea of what it will cost it’s been felled. When the tree was cut is not nearly as you to use different fuels by looking at the table below. important as when it was split, since seasoning really The fuel cost per heating season was calculated for a begins after splitting. 2,000 square foot home in Maryland using this heating Ask what size truck the dealer delivers in and if it’s truly calculator: www.eia.gov/neic/experts/heatcalc.xls.
    [Show full text]
  • Quercus Phellos.Indd
    Quercus phellos (Willow Oak) Beech Family (Fagaceae) Introduction: Willow oak is a member of the red oak group with willow-shaped leaves. The fi ne foliage of the willow oak is one of its best ornamental features. The willow oak has excellent texture, rounded form, attrac- tive bark, and beautiful winter features (fi ne-texture, persistent leaves and twiggy form). Culture: The willow oak is an excellent choice as a shade tree. It thrives in moist, well-drained, acidic soil and full sun. The willow oak will tolerate pollution and drought and is considered a trouble-free tree as long as soil pH is acidic. Willow oak has a fi brous root system and is therefore easy to transplant. It has no serious disease or Botanical Characteristics: insect problems. As little as 1 inch of fi ll soil can kill an oak. Native habitat: Southeastern USA in alluvial soils, swamps. Additional comments: Willow oak is an excellent large shade tree. Its Growth habit: Unique among the oaks, the wil- low oak has a rounded habit. fi ne texture contrasts with the coarseness of most other red oaks. It is one of the best oaks for avenue plantings Tree size: Growing fast for an oak, it can reach or large residences. Willow oak is a fast-growing oak 70’ in height and equal width. that transplants easily and is tolerant of a wide range of growing conditions. Flower and fruit: Female fl owers are incon- Willow oak is a member of the red oak group spicuous; however the pendulous male catkins without lobed leaves.
    [Show full text]
  • Evergreen Trees Agonis Flexuosa
    Evergreen Trees Agonis flexuosa – Peppermint Willow Graceful willow-like evergreen tree (but without the willows voracious root system) with reddish-brown, deeply furrowed bark to 25’-30’. New leaves and twigs have an attractive reddish cast; clustered small white flowers and brownish fruits are not particularly ornamental. Casaurina stricta – Beefwood Pendulous gray branches; resembles a pine somewhat; tolerates drought, heat, wind, fog. Growth to 20’- 30’. Cinnamomum camphora - Camphor Evergreen trees to 40 feet, with 20-foot spread.. In winter foliage is a shiny yellow green. In early spring new foliage may be pink, red or bronze, depending on tree. Unusually strong structure. Clusters of tiny, fragrant yellow flowers in profusion in May. Geijera parviflora- Australian Willow Evergreen trees with graceful, fine-textured leaves, to 30 feet, 20 feet wide. Main branches weep up and out; little branches hang down. Much of the grace of a willow, much of the toughness of eucalyptus, moderate growth and deep non-invasive roots. Laurus nobilis – Grecian Laurel Slow growth 12-40’. Natural habit is compact, broad-based, often multi-stemmed, gradually tapering cone. Leaves lethery, aromatic. Clusters of small yellow flowers followed by black or purple berries. Magnolia Grandiflora – ‘Little Gem’- Dwarf Southern Magnolia Small tree to 20’ in height. Showy white flowers in the summer. Green glossy leaves. Maytenous boaria - Mayten Evergreen tree with slow to moderate growth to an eventual 30-50 feet, with a 15-foot spread, with long and pendulous branchlets hanging down from branches, giving tree a graceful look. Habit and leaves somewhat like a small scale weeping willow.
    [Show full text]
  • Invasive Trees of Georgia Pub10-14
    Pub. No. 39 October 2016 Invasive Trees of Georgia by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Georgia has many species of trees. Some are native trees and some have been introduced from outside the state, nation, or continent. Most of Georgia’s trees are well- behaved and easily develop into sustainable shade and street trees. A few tree species have an extrodinary ability to upsurp resources and take over sites from other plants. These trees are called invasive because they effectively invade sites, many times eliminat- ing other species of plants. There are a few tree species native to Georgia which are considered invasive in other parts of the country. These native invasives, may be well-behaved in Georgia, but reproduce and take over sites elsewhere, and so have gained an invasive status from at least one other invasive species list. Table 1. There are hundreds of trees which have been introduced to Georgia landscapes. Some of these exotic / naturalized trees are considered invasive. The selected list of Georgia invasive trees listed here are notorious for growing rampantly and being difficult to eradicate. Table 2. Table 1: Native trees considered invasive in other parts of the country. scientific name common name scientific name common name Acacia farnesiana sweet acacia Myrica cerifera Southern bayberry Acer negundo boxelder Pinus taeda loblolly pine Acer rubrum red maple Populus deltoides Eastern cottonwood Fraxinus americana white ash Prunus serotina black cherry Fraxinus pennsylvanica green ash Robinia pseudoacacia black locust Gleditsia triacanthos honeylocust Toxicodendron vernix poison sumac Juniperus virginiana eastern redcedar The University of Georgia is committed to principles of equal opportunity and affirmative action.
    [Show full text]
  • FSA1091 Basics of Heating with Firewood
    DIVISION OF AGRICULTURE RESEARCH & EXTENSION Agriculture and Natural Resources University of Arkansas System FSA1091 Basics of Heating with Firewood Sammy Sadaka Introduction Many options of secure, wood combustion Ph.D., P.E. stoves, freplaces, furnaces and boilers Associate Professor Wood heating was the predominant are available in the market. EPA certifed freplaces, furnaces and wood stoves with Extension Engineer means for heating in homes and businesses for several decades until the advent of no visible smoke and 90 percent less iron radiators, forced air furnaces and pollution are among alternatives. Addi- John W. Magugu, Ph.D. improved stoves. More recently, a census tionally, wood fuel users should adhere Professional Assistant by Energy Information Administration, to sustainable wood management and EIA, has placed fuelwood users in the environmental sustainability frameworks. USA at 2.5 million as of 2012. Burning wood has been more common Despite the widespread use of cen- among rural families compared to families tral heating systems, many Arkansans within urban jurisdictions. Burning wood still have freplaces in their homes, with has been further incentivized by more many others actively using wood heating extended utility (power) outages caused systems. A considerable number of by wind, ice and snowstorms. Furthermore, Arkansans tend to depend on wood fuel liquefed petroleum gas, their alternative as a primary source of heating due to fuel, has seen price increases over recent high-energy costs, the existence of high- years. effciency heating apparatuses and Numerous consumers continue to have extended power outages in rural areas. questions related to the use of frewood. An Apart from the usual open freplaces, important question is what type of wood more effcient wood stoves, freplace can be burned for frewood? How to store inserts and furnaces have emerged.
    [Show full text]
  • Duke of York Gardens Tree Walk Guide (PDF, 890KB)
    Set on the banks of the River Freshney, work on the Duke of York Prior to this, the area was mainly farmland with the River Freshney The park is separated by a foot path that links York Street with Haven Gardens began in 1877 but it wasn’t opened until September meandering through it, and in1787 the only street present was Avenue. The eastern side of the park consists of areas to sit and take in 1894. The Mayor of Grimsby, George Doughty, performed the Haycroft Street which led to the south bank of the River Freshney. the wildlife whilst the western side of the park provides a more active opening ceremony accompanied by his wife and family. offering including play equipment, parkour, football and basketball. 1 Silver Birch Betula pendula 4 Holm Oak Quercus ilex 7 Holly Ilex aquifolium Holm oaks are different to other oaks in Distinguished by its white bark, the silver birch They can live for 300 years and can be seen flowering that they keep their leaves all year, they improves the soil by taking on otherwise here in October and November, and holly is dioecious are evergreen. They still produce acorns, inaccessible nutrients deep in the ground with its meaning that male and female flowers are found on which are smaller than our native oak very deep roots. These nutrients become part of different trees. The male flowers are scented and the acorns. the tree which are recycled when the leaves fall. female flowers, once pollinated by insects, produce bright red berries throughout winter.
    [Show full text]
  • Plants Used in Basketry by the California Indians
    PLANTS USED IN BASKETRY BY THE CALIFORNIA INDIANS BY RUTH EARL MERRILL PLANTS USED IN BASKETRY BY THE CALIFORNIA INDIANS RUTH EARL MERRILL INTRODUCTION In undertaking, as a study in economic botany, a tabulation of all the plants used by the California Indians, I found it advisable to limit myself, for the time being, to a particular form of use of plants. Basketry was chosen on account of the availability of material in the University's Anthropological Museum. Appreciation is due the mem- bers of the departments of Botany and Anthropology for criticism and suggestions, especially to Drs. H. M. Hall and A. L. Kroeber, under whose direction the study was carried out; to Miss Harriet A. Walker of the University Herbarium, and Mr. E. W. Gifford, Asso- ciate Curator of the Museum of Anthropology, without whose interest and cooperation the identification of baskets and basketry materials would have been impossible; and to Dr. H. I. Priestley, of the Ban- croft Library, whose translation of Pedro Fages' Voyages greatly facilitated literary research. Purpose of the sttudy.-There is perhaps no phase of American Indian culture which is better known, at least outside strictly anthro- pological circles, than basketry. Indian baskets are not only concrete, durable, and easily handled, but also beautiful, and may serve a variety of purposes beyond mere ornament in the civilized household. Hence they are to be found in. our homes as well as our museums, and much has been written about the art from both the scientific and the popular standpoints. To these statements, California, where American basketry.
    [Show full text]
  • Homogenous Genetic Structure in Populations of Taxus Baccata with Varied Proportions of Male and Female Individuals
    Silva Fennica vol. 49 no. 4 article id 1236 Category: research article SILVA FENNICA www.silvafennica.fi ISSN-L 0037-5330 | ISSN 2242-4075 (Online) The Finnish Society of Forest Science Natural Resources Institute Finland Monika Litkowiec 1, Beata P. Plitta-Michalak 1, Andrzej Lewandowski 1 and Grze- gorz Iszkuło 1,2 Homogenous genetic structure in populations of Taxus baccata with varied proportions of male and female individuals Litkowiec M., Plitta-Michalak B.P., Lewandowski A., Iszkuło G. (2015). Homogenous genetic structure in populations of Taxus baccata with varied proportions of male and female individuals. Silva Fennica vol. 49 no. 4 article id 1236. 14 p. Highlights • Polish populations of Taxus baccata showed a high level of genetic diversity within popula- tions and moderate genetic differentiation between them after nSSR marker testing. • No significant differences in the genetic variation between T. baccata male and female indi- viduals were observed, and microsatellite loci neutrality was verified. • Determining the sex ratio in T. baccata populations is not essential to develop a clear under- standing of genetic differentiation and diversity within and between populations of this species. Abstract English yew (Taxus baccata L.) is a strictly outcrossing and dioecious species whose popula- tions are small and isolated. It is known that sex ratios may vary in natural populations due to local environmental conditions or stochastic events. However, unbalanced sex ratios may have negative impacts on genetic diversity through enhanced genetic drift and inbreeding. The present study represents one of the first attempts to compare the genetic variation at microsatellite loci within and between populations with different gender proportions.
    [Show full text]
  • Wood from Midwestern Trees Purdue EXTENSION
    PURDUE EXTENSION FNR-270 Daniel L. Cassens Professor, Wood Products Eva Haviarova Assistant Professor, Wood Science Sally Weeks Dendrology Laboratory Manager Department of Forestry and Natural Resources Purdue University Indiana and the Midwestern land, but the remaining areas soon states are home to a diverse array reforested themselves with young of tree species. In total there are stands of trees, many of which have approximately 100 native tree been harvested and replaced by yet species and 150 shrub species. another generation of trees. This Indiana is a long state, and because continuous process testifies to the of that, species composition changes renewability of the wood resource significantly from north to south. and the ecosystem associated with it. A number of species such as bald Today, the wood manufacturing cypress (Taxodium distichum), cherry sector ranks first among all bark, and overcup oak (Quercus agricultural commodities in terms pagoda and Q. lyrata) respectively are of economic impact. Indiana forests native only to the Ohio Valley region provide jobs to nearly 50,000 and areas further south; whereas, individuals and add about $2.75 northern Indiana has several species billion dollars to the state’s economy. such as tamarack (Larix laricina), There are not as many lumber quaking aspen (Populus tremuloides), categories as there are species of and jack pine (Pinus banksiana) that trees. Once trees from the same are more commonly associated with genus, or taxon, such as ash, white the upper Great Lake states. oak, or red oak are processed into In urban environments, native lumber, there is no way to separate species provide shade and diversity the woods of individual species.
    [Show full text]
  • Georgia Native Trees Considered Invasive in Other Parts of the Country. Scientific Name Common Name Scientific Name Common Name
    Invasive Trees of Georgia Dr. Kim D. Coder, Professor of Tree Biology & Health Care, Warnell School, UGA Georgia has many species of trees. Some are native trees and some have been introduced from outside the state, nation, or continent. Most of Georgia’s trees are well-behaved and easily develop into sustainable shade and street trees. A few tree species have an extrodinary ability to upsurp resources and take over sites from other plants. These trees are called invasive because they effectively invade sites, many times eliminating other species of plants. There are a few tree species native to Georgia which are considered invasive in other parts of the country. These native invasives, may be well-behaved in Georgia, but reproduce and take over sites elsewhere, and so have gained an invasive status from at least one other invasive species list. Table 1. There are hundreds of trees which have been introduced to Georgia landscapes. Some of these exotic / naturalized trees are considered invasive. The selected list of Georgia invasive trees listed here are notorious for growing rampantly and being diffi- cult to eradicate. Table 2. They should not be planted. Table 1: Georgia native trees considered invasive in other parts of the country. scientific name common name scientific name common name Acacia farnesiana sweet acacia Myrica cerifera Southern bayberry Acer negundo boxelder Pinus taeda loblolly pine Acer rubrum red maple Populus deltoides Eastern Fraxinus americana white ash cottonwood Fraxinus pennsylvanica green ash Prunus serotina black cherry Gleditsia triacanthos honeylocust Robinia pseudoacacia black locust Juniperus virginiana eastern Toxicodendron vernix poison sumac redcedar Table 2: Introduced (exotic) tree / shrub species found in Georgia listed at a regional / national level as being ecologically invasive.
    [Show full text]
  • Harvesting Firewood from Your Woods
    Harvesting Firewood from Your Woods TOPICS: n Tree and Forest Biology (page 2) Basic concepts about how trees grow and the characteristics that make trees good or bad for firewood n Planning a Harvest (page 8) Which trees to cut for firewood and how to cut them safely n Processing Trees into Firewood ( p age 14) Techniques for splitting, drying and stacking wood Tree & Forest Biology Cutting trees for firewood requires careful management. The management decisions you make can either improve or harm the long-term health and productivity of your woodlands. Understanding how and where trees grow can aid your deci- sions about which trees to cut, and will lead to improvements in the overall health of your woodlands. Trees have several basic requirements for long-term survival: nutrients, space, water and sunlight. The competition for these resources will determine how well a tree grows and how long it will survive. Tree roots are responsible for the uptake of water and nutrients. The quality and quantity of these nutrients vary depending on the soil. Different trees are adapted to the dif- ferent soil types, from sand to clay. Clay and loam soils hold water and nutrients better than sandy soils. That means trees growing on sandy soils need to be able to grow in low nutrient and low moisture conditions. Each soil type can only support a limited number of trees, based on their size. Trees become stressed when there is too much competition for water and nutrients. To keep your forest healthy, some trees should be removed to make room for others to grow.
    [Show full text]
  • Log Holder This Sturdy Log Holder Makes Stacking Easier and Keeps Your Firewood Organized and Off the Ground
    STACK LOGS NEAT AND CLEAN TM Log Holder This sturdy log holder makes stacking easier and keeps your firewood organized and off the ground. Use 2x4 preservative-treated lumber with Simpson Strong-Tie® Rigid Tie® RTC2Z connectors to build this log holder any size you need in less than an hour. Check out our installation and building tip videos at diydoneright.com. TOOLS YOU NEED • Saw • Screw gun • ¼" hex head socket • Tape measure • Clamps 2x4 LUMBER • Framing square Length can vary as needed Connectors are easy to install and strong enough to support even the heaviest loads. RIGID TIE® RTC2Z CONNECTOR INSTALLATION INSTRUCTIONS 1. CUT LUMBER TO SIZE. Since all of your cuts are straight cuts, Simpson Strong-Tie® connectors simplify building with wood. 2. INSTALL CONNECTOR ON VERTICAL POST. Mark height, clamp connector to post and attach with #9x1½" Strong-Drive® SD Connector screws. 3. CONNECT HORIZONTAL RAIL 2x4 LUMBER ON EACH SIDE. Width and height can Use a clamp to vary as needed help hold the wood in the ® seat of the con- Attach Rigid Tie RTC2Z nector during connectors with #9x1½" SD Connector screws installation. For more inspiration, visit diydoneright.com © 2017 Simpson Strong-Tie Company Inc. DIY-CSLGHLDR17 MATERIALS AND CUTTING DIAGRAM TM Log Holder FRONT VIEW SIDE VIEW 30" 47" 8" 50" 15" FOR THIS PROJECT YOU WILL NEED: LUMBER SIMPSON STRONG-TIE® CONNECTORS* FASTENERS (3) – pieces of 2x4 8 ft. lumber (4) – Rigid Tie® RTC2Z connectors (1) – BOX Simpson Strong-Tie® #9x1½" Strong-Drive® SD Connector screws CUT FROM 2x4 x 8' LUMBER (2) – 47" RAILS 47" 47" (1x) (3) – 30" CORNER POSTS 30" 30" 30" (1x) (2) – 8" ENDRAILS & (1) 30" CORNER POST 30" 8" 8" (1x) Use 2x4 8 ft.
    [Show full text]