Non-Destructive Testing Techniques: Leak Testing at Level 2

Total Page:16

File Type:pdf, Size:1020Kb

Non-Destructive Testing Techniques: Leak Testing at Level 2 52 Training G Training uidelines in N on-destructive Testing Techniques: Leak Testing at Level 2 Level at Testing Leak Techniques: Testing on-destructive Training Guidelines in Non-destructive Testing Techniques: Leak Testing at Level 2 TRAINING COURSE TRAINING S ERIES ISSN 1018–5518 VIENNA, 2012 TRAINING COURSE S ERIES 52 Training Guidelines in Non-destructive Testing Techniques: Leak Testing at Level 2 The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NIGERIA ALBANIA GREECE NORWAY ALGERIA GUATEMALA OMAN ANGOLA HAITI PAKISTAN ARGENTINA HOLY SEE PALAU ARMENIA HONDURAS PANAMA AUSTRALIA HUNGARY PARAGUAY ICELAND AUSTRIA PERU AZERBAIJAN INDIA PHILIPPINES BAHRAIN INDONESIA POLAND BANGLADESH IRAN, ISLAMIC REPUBLIC OF PORTUGAL BELARUS IRAQ QATAR BELGIUM IRELAND REPUBLIC OF MOLDOVA BELIZE ISRAEL BENIN ITALY ROMANIA BOLIVIA JAMAICA RUSSIAN FEDERATION BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BULGARIA KENYA SEYCHELLES BURKINA FASO KOREA, REPUBLIC OF SIERRA LEONE BURUNDI KUWAIT SINGAPORE CAMBODIA KYRGYZSTAN SLOVAKIA CAMEROON LAO PEOPLES DEMOCRATIC SLOVENIA REPUBLIC CANADA SOUTH AFRICA LATVIA CENTRAL AFRICAN SPAIN REPUBLIC LEBANON SRI LANKA CHAD LESOTHO SUDAN CHILE LIBERIA SWEDEN CHINA LIBYA SWITZERLAND COLOMBIA LIECHTENSTEIN SYRIAN ARAB REPUBLIC CONGO LITHUANIA COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE DIVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV REPUBLIC OF MACEDONIA CUBA MALAYSIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA OF THE CONGO MAURITANIA UKRAINE DENMARK MAURITIUS UNITED ARAB EMIRATES DOMINICA MEXICO UNITED KINGDOM OF DOMINICAN REPUBLIC MONACO GREAT BRITAIN AND ECUADOR MONGOLIA NORTHERN IRELAND EGYPT MONTENEGRO UNITED REPUBLIC OF TANZANIA EL SALVADOR MOROCCO ERITREA MOZAMBIQUE UNITED STATES OF AMERICA ESTONIA MYANMAR URUGUAY ETHIOPIA NAMIBIA UZBEKISTAN FINLAND NEPAL VENEZUELA FRANCE NETHERLANDS VIETNAM GABON NEW ZEALAND YEMEN GEORGIA NICARAGUA ZAMBIA GERMANY NIGER ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA TRAINING COURSE SERIES NO. 52 TRAINING GUIDELINES IN NON-DESTRUCTIVE TESTING TECHNIQUES: LEAK TESTING AT LEVEL 2 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2012 COPYRIGHT NOTICE All IAEA scientifi c and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). Th e copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publications Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books For further information on this publication, please contact: Industrial Applications and Chemistry Section International Atomic Energy Agency Vienna International Centre 1400 Wien Austria TRAINING GUIDELINES IN NON-DESTRUCTIVE TESTING TECHNIQUES: LEAK TESTING AT LEVEL 2 IAEA, VIENNA, 2012 IAEA/TCS/52 ISSN 1018–5518 © IAEA, 2012 Printed by the IAEA in Austria March 2012 FOREWORD The International Atomic Energy Agency (IAEA) has been active in the promotion of non- destructive testing (NDT) technology for many decades. The prime reason for this interest has been the need for stringent standards for quality assurance for safe operation of nuclear and other industrial installations. The IAEA successfully executed a number of programmes, including technical cooperation projects (national and regional) and coordinated research projects (CRPs), in which NDT was an important part. Through these programmes, a large number of personnel have been trained in Member States, leading to the establishment of national certifying bodies responsible for the training and certification of NDT personnel. Consequently, a state of self-sufficiency in this area of technology has been achieved in many Member States. All along there has been a realization of the need to have well established training guidelines, in order to orient the IAEA experts who were involved in training and certification programmes, and to achieve some level of international uniformity and harmonization of training materials and certification processes, and consequent competence of NDT personnel. The syllabi for training courses were published in the form of IAEA TECDOC publications. The first was IAEA-TECDOC-407 (1987), which contained the syllabi for liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing methods. To accommodate progress in NDT technology, revised versions of this TECDOC were published in 1991, 2002 and 2008. The current version (i.e. IAEA-TECDOC- 628/Rev.2 (2008)) includes additional and more advanced NDT methods. That TECDOC, as well as most of the international standards on the subject of training and certification of NDT personnel, including ISO 9712 (2005), defines three levels of competence. Among these, Level 1 is the lowest and Level 3 is the highest. The intermediate Level 2 is considered to be the most appropriate for personnel who, besides other duties, are expected to: independently undertake practical testing in the relevant method of NDT; develop NDT procedures to address various problems; prepare written instructions; make accept/reject decisions in accordance with relevant standards and specifications; organize and report NDT results; and train and supervise Level 1 personnel. The next logical step after finalizing the syllabi was to compile textbooks and training manuals in accordance with the syllabi. Manuals on liquid penetrant testing, magnetic particle testing, radiographic testing, ultrasonic testing and eddy current testing have already been published in the IAEA’s Training Course Series. These play a vital role for training and certification of NDT personnel throughout the world. Compilation of the present book is a continuation of that effort. The first draft was developed with the help of experts from the Canadian Institute for Non-Destructive Evaluation (CINDE). The introduction to basic NDT methods, materials, manufacturing processes and defects, and quality assurance common to all the NDT methods, has been adapted from previous publications in the Training Course Series. The IAEA wishes to express its appreciation to all those who contributed to the production of this publication. The IAEA officers responsible for this publication were Joon-Ha Jin, A.A. Khan and B.P.C. Rao of the Division of Physical and Chemical Sciences. EDITORIAL NOTE The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS 1. INTRODUCTION ............................................................................................................ 1 1.1. Basic principles of non-destructive testing (NDT) ............................................. 1 1.1.1. Definition and importance of NDT ......................................................... 1 1.1.2. Types of NDT methods ........................................................................... 1 1.1.3. Comparison of different NDT methods ................................................ 12 1.1.4. New developments in NDT .................................................................. 13 1.1.5. Inspection methodology ........................................................................ 18 1.1.6. Responsibilities of levels of certification .............................................. 19 1.2. Materials and defects - Physical and mechanical properties of materials ........ 20 1.2.1. Metallic materials ................................................................................. 20 1.2.2. Non-metallic materials .......................................................................... 24 1.2.3. Structures of metals and alloys ............................................................. 25 1.2.4. Indications, discontinuities and defects in materials ............................ 31 1.3. Processing and defects ...................................................................................... 32 1.3.1. Casting .................................................................................................. 32 1.3.2. Powder metallurgy processes ...............................................................
Recommended publications
  • Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies
    Graduate Theses, Dissertations, and Problem Reports 2016 Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Savage, Kara A., "Nondestructive Methods to Characterize Rock Mechanical Properties at Low- Temperature: Applications for Asteroid Capture Technologies" (2016). Graduate Theses, Dissertations, and Problem Reports. 6573. https://researchrepository.wvu.edu/etd/6573 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Thesis Submitted to the Statler College of Engineering at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering Aaron Noble, Ph.D., Chair Brijes Mishra, Ph.D. Thomas Evans, Ph.D. Department of Mining Engineering Morgantown, West Virginia 2016 Keywords: Nondestructive Tests, Low-Temperature Rock Mechanics, Schmidt Rebound Hammer, Ultrasonic Pulse Velocity, Asteroid Capture Copyright 2016 Kara A.
    [Show full text]
  • Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures
    NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Geraldine S. Cheok This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.7974 NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Materials and Structural Systems Division Engineering Laboratory Geraldine S. Cheok Intelligent Systems Division Engineering Laboratory December 2013 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director ii ABSTRACT Nondestructive test (NDT) methods and sensor technologies are evaluated in the context of providing input parameters to service life prediction models for reinforced concrete structures. Relevant NDT methods and sensors are identified that are based on diverse technologies including mechanical impact, ultrasonic waves, electromagnetic waves, nuclear, and chemical and electrical methods. The degradation scenarios of reinforcement corrosion, alkali-silica reaction, and cracking are used to identify gaps in available NDT methods for supporting condition assessment and service life prediction. Common gaps are identified, along with strategies for resolving those gaps. iii Disclaimer: Certain commercial products are identified in this paper to specify the materials used and
    [Show full text]
  • Paper: Role of Hydrostatic Testing in Pipeline Integrity Assessment
    ROLE OF HYDROSTATIC TESTING IN PIPELINE INTEGRITY ASSESSMENT by John F. Kiefner presented at Northeast Pipeline Integrity Workshop Albany, New York June 12, 2001 KIEFNER AND ASSOCIATES, INC. 893 High Street, Suite L P.O. Box 268 Worthington, Ohio 43085 www.kiefner.com 1 ROLE OF HYDROSTATIC TESTING IN PIPELINE INTEGRITY ASSESSMENT by John F. Kiefner INTRODUCTION Hydrostatic testing is universally known and accepted as a means of demonstrating the fitness of a pressurized component for service(1, 2). After a test, a pipeline or pressure vessel can be expected to safely contain its intended operating pressure. The confidence level that a pipeline or pressure vessel is fit for safe service increases as the ratio of test pressure to operating pressure increases. This highly beneficial aspect of hydrostatic testing applies not only to a new component to be placed in service for the first time. A similar benefit accrues to an in-service component if that component is taken out of service after a period of time and subjected to a hydrostatic test. A “revalidation” test of the latter type assures either that no significant time- dependent deterioration of the component has taken place or that any segment that has been significantly degraded will be revealed and eliminated. There are limitations to the use of hydrostatic testing to revalidate integrity. Some are economic, some are technical, and some are both economic and technical in nature. First, taking a segment of a pipeline out of service means loss of service for the period of the test. Some operators may have this option; others may not.
    [Show full text]
  • Use of Components Analysis to Identify Internal Heat in Breast Dynamic Thermal Images
    IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, NOVEMBER 2020 1 Use of components analysis to identify internal heat in breast dynamic thermal images Meir Gershenson Abstract — I suggest a method for biomedical imaging new ones. This process is called angiogenesis. The increase of with heat using principal and independent components blood flow at the cancerous site is associated with an increase analysis. This method produces novel results suggesting in the tissue’s ability to absorb heat. The bio heat transfer physiologic mechanisms. When using thermal imaging to equation describing thermal propagation is given by1 detect breast cancer, the dominant heat signature is of indirect heat transported by the blood away from the tumor i ͟ʚÈʛ ͎ʚr, ͨʛ Ǝ ̽ ∙ ͎ʚÈ, ͨʛ Ǝ͖͋ƍ͋͡ Ɣ 0 location into the skin. Interpretation is usually based on i/ vascular patterns and not by observing the direct ͖͋ Ɣ !͖̽ ʞ͎ʚr, ͨʛ Ǝ ͎ͤʚr, ͨʛʟ (1) cancerous heat. In this new method one uses a sequence of thermal images of the patient’s breast following external Typical values are taken from Azarnoosh J et al. 2 and are temperature change. Data are recorded and analyzed using independent component analysis (ICA) and principal given in Table 1. From the above table the increase in blood component analysis (PCA). ICA separates the image TABLE I sequence into new independent images having a common THRMOPHYSICAL PARAMETERS OF TYPICAL BREAST characteristic time behavior. Using the Brazilian visual lab Density Specific Thermal ωb Qm mastology data set, I observed three types of component heat C conductivity (s-1) *10 -3 (W/m3) images: Images corresponding to a minimum change as a (kg/m3) (J/kg K) ͟ (W/m) function of applied temperature or time, which suggests an Gland 1020 3060 0.322 0.34 – 1.7 700 association with the cancer generated heat, images in which a moderate temperature dependence is associated Tumor 1020 3060 0.564 6 - 16 7792 with veins affected by vasomodulation, and images of Blood 1060 3840 complex time behavior indicating heat absorption due to .
    [Show full text]
  • Guidelines for Pressure Vessel Safety Assessment
    11^^^^ United States Department of Commerce National Institute of Standards and Tectinology NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 DATE DUE Demco. Inc. 38-293 NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa Materials Reliability Division Materials Science and Engineering Laboratory National Institute of Standards and Technology Boulder, CO 80303 Sponsored by Occupational Safety and Health Administration U.S. Department of Labor Washington, DC 20210 Issued April 1990 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1990 of Documents Special Publication 780 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Spec. Publ. 780 75 pages (Apr. 1990) CODEN: NSPUE2 CONTENTS Page ABSTRACT vii 1. INTRODUCTION 1 2. SCOPE AND GENERAL INFORMATION 1 2 . 1 Scope 1 2.2 General Considerations 3 3. PRESSURE VESSEL DESIGN 4 3.1 ASME Code 4 3.1.1 Section VIII of ASME Code 5 3.1.2 Scope of Section VIII 5 3.1.3 Summary of Design Rules and Margins 6 3.1.4 Implementation of ASME Code 9 3.2 API Standard 620 10 3.2.1 Scope of API 620 12 3.2.2 Design Rules 12 3.2.3 Implementation of API 620 12 3.3. Remarks on Design Codes 14 4. DETERIORATION AND FAILURE MODES 14 4.1 Preexisting Causes 14 4.1.1 Design and Construction Related Deficiencies.
    [Show full text]
  • Quality Rental Tools and Equipment– Well Serviced, Priced Right
    RENTAL CATALOG QUALITY RENTAL TOOLS AND EQUIPMENT– WELL SERVICED, PRICED RIGHT. RENTAL INDEX CORE DRILLS SAFETY AIR COMPRESSORS Core Drills . 1 Confined Space Tripod . 13 Air Compressors - Tow Behind . 24 Accessories . 1 Davit System . 13 Air Compressors - Electric . 24 Bits . 2 Fall Protection Carts . 13 Retractable Lifelines . 13 BREAKERS ELECTRICAL Horizontal Lifelines . 13 Air (30lb, 60lb and 90lb) . 25 Cable Cutters . 3 Gas Monitors . 13 Electric . 25 Cable Crimpers . 3 Monitor Pumps . 13 Air Hose . 25 Cable Pullers . 3 Cable Sheaves . 3 BLOWERS BAKER SCAFFOLD Pull Monitor . 3 Blowers . 14 Baker Scaffold . 25 Cable Feeder . 5 Reel Stands . 5 MATERIAL LIFTS AIR TOOLS Reel Stand Spindles . 5 Material Lifts . 14 Rivet Buster . 26 Rod and Strut Cutters . 5 Roustabouts . 14 Rivet Buster Bits . .26 Conduit Benders . 5-6 A/C Lift and Mover . 14 Scalers . 26 Conduit Cart . 6 Gantry . .15 Chippers . 26 Knock Out Sets . 6 Bits for Air Chippers . 26 Cable Stripper . 6 HYDRAULIC CYLINDERS Impacts . 26 Hydraulic Cylinders/Bags . 15-16 Air Hose . 26 RADIOS Hydraulic Pumps and Hoses . 16 Saws . 28 Radios . 6 TORQUE TOOLS COMPACTION PIPING TOOLS Hand Torque Wrenches . 16 Plate Compactor . .28 Threaders . 7 Cordless Torque Wrenches . 18 Jumping Jack Tampers . 28 Threader Accessories . 7 Hydraulic Torque Wrenches . 18 Roll Groovers . 7 Punches . 18 GENERATORS AND PUMPS Groover Accessories . 9 Generators . 28 See Snake Camera . 9 CHAIN HOISTS Gas Pumps . 29 Locators . 9 Hand Chainfall Hoist . 18-19 Electric Pumps . 29 Pipe Freeze Kits . 9 Hand Lever Hoist (Come-A-Long) . 19 Pipe Thawers . 9 Electric Chainfalls . 20-21 WELDING T-Drills . 9 Air Hoist .
    [Show full text]
  • Formulating Guidance on Hydrotesting Deepwater Oil and Gas Pipelines Final Report
    Formulating Guidance on Hydrotesting Deepwater Oil and Gas Pipelines Final Report Prepared for: Bureau of Safety and Environmental Enforcement (BSEE) US Department of the Interior This report has been reviewed by the Bureau of Safety and Environ-mental Enforcement (BSEE) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Bureau nor does mention of the trade names or commercial products constitute endorsement or recommendation for use. Prepared by: Stress Engineering Services, Inc. Houston, Texas SES Project Number: 1451110 Date Issued: 31 January 2013 Formulating Guidance on Hydrotesting Deepwater Oil and Gas Pipelines Final Report PN 1451110 Coauthored by: Oil & Gas Industry Core Team: Frans Kopp (Shell) Gary Harrison (BP) Ross Frazer (ATP) Wanda Parker (for Anadarko) Mike Williams (FMC) Industry Workshop Participant Responses from: Hess, Marathon, Petrobras, Shell, Williams, Anadarko, Apache, BP, Eni, ExxonMobil, FMC, Chevron, and BSEE Project Manager and Workshop Facilitator: Ray R. Ayers, PhD, PE Key Contributing Staff from Stress Engineering Services: David Garrett, PhD Kenneth Young, PE Lane Alexander, PE Rhett Dotson, PE Stress Engineering Services, Inc. 13800 Westfair East Drive Houston, TX 77041 Texas Registered Engineering Firm F-195 31 January 2013 Study concept, oversight, and funding were provided by the U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement, Washington, DC under Purchase Order Number E12PX00069. Formulating
    [Show full text]
  • 308 Safety Equipment Inspections
    Document Number: HSE - 308 Current Rev: 11/15/2019 Revised By: S. Lansing Review Cycle: 3 years Manager Approval: MOC No.19-8 Revision No. 0 Revisions noted in italics Page 1 of 23 Health, Safety and Environmental Procedure 308 – Safety Equipment Inspections 1.0 PURPOSE To identify safety equipment and define the process and frequency for these inspections. To also identify and provide specific inspections and preventative maintenance instructions for said safety equipment. 2.0 SCOPE This safety equipment management & inspection system applies to all Westlake’s; safety showers, overhead cranes, SCBA;s, five minute escape packs, SKA-PAK, level “A” suits, bunker gear, emergency rescue gear, ladders, AED’s, first aid kits and fall protection. This safety equipment inspection procedure applies to all Westlake’s employees, visitors, vendors and contract employees. 3.0 DEFINITIONS 3.1 Competent Person – Designated person who is authorized to perform inspections. Competent Persons are trained in equipment inspection and operation. This person is knowledgeable in the requirements of safety equipment inspection and frequency for their area of responsibility. 3.2 Inspection List – List that establishes the minimum requirements for what is inspected and with what frequency and general responsibility for who performs the inspections (see Appendixes). Each unit/area may add to this list to incorporate inspections specific to their particular areas and equipment. 3.3 Department, Area or Unit Supervision – Supervision of the department, area, or unit
    [Show full text]
  • Fire Products Services &
    part of www.wisesafetyenv.com Fire Products Services & Boston • Denver • Houston • Jacksonville • Kansas City • Little Rock • Louisville • St. Louis • Salt Lake City Updated 1/2018 Testing & Repair Instrument Service • General Repair • Sensor Replacement • Calibration • Noise Instrument Calibration Testing Services • Respirator Inspection & Cleaning • Respirator Fit Testing • Level A Suit Pressure Testing (required annually or after each use) • SCBA Function Test and Repair Respiratory Mobile Service On-Site Respirator Fit Testing Companies with large inventory of SCBA’s and instruments are often reluctant to send equipment away for service. They fear having an emergency without enough equipment to respond. By bringing our truck or trailer to your location, your equipment is available should a need arise. Call for availability. (No charge for mileage within 30 miles.) Respiratory Cleaning Suit Pressure Testing Half Face (any Manufacturer) . $ 10.00 EA Full Face (any Manufacturer) . 15.00 EA Other Services PAPR-Full Face, Helmet or Visor. 25.00 EA Respirators are cleaned, disinfected, and deodorized with an OSHA, Hydrostatic Test–SCBA Cylinder . $ 30.00 EA ANSI and CSA approved formula and then packaged in individual Hydrostatic Test–Cascade Cylinder. 75.00 EA sterile bags. Price includes inspection for broken or damaged parts SCBA Functional Test . 40.00 EA prior to cleaning. Re place ment parts and labor are extra. Level A Suit Testing. 60.00 EA Cylinder Filling Air Quality Testing . 120.00 EA Any necessary parts or repairs extra 2216 PSI SCBA Cylinder . $ 10.00 EA 3000 PSI SCBA Cylinder . 10.00 EA Quantitative Fit Testing 4500 PSI SCBA Cylinder . 10.00 EA On-Site Quantitative Fit Test .
    [Show full text]
  • Hydrostatic Test Pumps
    data sheet GENERAL® HYDROSTATIC TEST PUMPS ELECTRIC POWERED ITEM # DESCRIPTION WEIGHT 30-99-160 Hydro Test Pump 6334 1/2 HP - 250 PSI - 3 GPM 60# 30-99-161 Hydro Test Pump 6334 3/4 HP - 350 PSI - 3 GPM 64# 30-99-162 Hydro Test Pump 6334 3/4 HP - 500 PSI - 2 GPM 65 •Reduce as much as 90% using the Hydro-Test Hydrostatic tester. •Cased in a 16 ga. steel box, this electric powered hydrostatic tester is portable, easy to use, rugged and money saving. •Designed to work best with water pressure feed but will operate with gravity feed where water pressure is not available. •Excellent for testing piping systems, boilers, automatic sprinkler systems, fire hose and extinguisher tanks. •The 6334 series testers are the standard of the industry for low pressure testing. •Used by contractors, fire departments, and fire equipment dealers thousands of times each working day. These units are equipped with an easily adjustable relief valve that can be set for any maximum pressure, glycerin filled pressure gage, high pressure check valve, 7' electrical cord, a 10' high pressure hose and are shipped complete, ready to operate. Power required 120 volts AC. GASOLINE POWERED ITEM # DESCRIPTION MAX PSI WEIGHT 30-99-163 GHT-3500 3.5 HP - 3 GPM 500 85# 30-99-164 GHT-31000 3.5 HP - 2 GPM 500 85# 30-99-165 GHT-3550 5.5 HP - 10 GPM 400 87# GHT-5550 Powered by a dependable Briggs & Stratton or Honda gas engine, the GHT series Hydro-Test units are ideal for all applications where electric power is not readily available.
    [Show full text]
  • Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT
    Dipl.-Psych. Marija Bertović Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT BAM-Dissertationsreihe • Band 145 Berlin 2016 Die vorliegende Arbeit entstand an der Bundesanstalt für Materialforschung und -prüfung (BAM). Impressum Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT 2016 Herausgeber: Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8104-72222 E-Mail: [email protected] Internet: www.bam.de Copyright© 2016 by Bundesanstalt für Materialforschung und -prüfung (BAM) Layout: BAM-Referat Z.8 ISSN 1613-4249 ISBN 978-3-9817502-7-0 Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT Vorgelegt von Dipl. -Psych. Marija Bertovic geb. in Ogulin, Kroatien von der Fakultät V – Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Philosophie -Dr. phil.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. phil. Manfred Thüring Gutachter: Prof. Dr. phil. Dietrich Manzey Gutachter: Dr. rer. nat. et Ing. habil. Gerd-Rüdiger Jaenisch Tag der wissenschaftlichen Aussprache: 1 September 2015 Berlin 2015 D83 Abstract Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safety- relevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments.
    [Show full text]
  • Essentials of Fire Fighting, 6Th Edition
    ESSENTIALS OF FIRE FIGHTING INTERNATIONAL FIRE SERVICE TRAINING ASSOCIATION Firefighter Personal Protective Equipment Chapter Contents Case History ......................................259 Donning from a Side or Rear Personal Protective Equipment ...............259 External Mount .......................................... 300 Donning from a Backup Mount...................... 300 Structural Fire Fighting Protective Clothing .. 261 Donning the Facepiece .................................. 301 Wildland Personal Protective Clothing .......... 270 Doffing Protective Breathing Apparatus ....... 302 Roadway Operations Clothing ....................... 273 Emergency Medical Protective Clothing ........274 Inspection and Maintenance of Protective Special Protective Clothing ............................274 Breathing Apparatus ......................303 Station/Work Uniforms ................................. 276 Protective Breathing Apparatus Inspections and Care ..................................................... 303 Care of Personal Protective Clothing ............ 277 Annual Inspection and Maintenance ............. 306 Safety Considerations for Personal Protective Equipment ............................... 280 SCBA Air Cylinder Hydrostatic Testing .......... 306 Respiratory Protection ..........................281 Refilling SCBA Cylinders ............................... 307 Respiratory Hazards ...................................... 281 Replacing SCBA Cylinders ..............................311 Types of Respiratory Using Respiratory Protection Equipment
    [Show full text]