Allopatry and Overlap in a Clade of Snails from Mangroves and Mud flats in the Indo-West Pacific and Mediterranean (Gastropoda: Potamididae: Cerithideopsilla)

Total Page:16

File Type:pdf, Size:1020Kb

Allopatry and Overlap in a Clade of Snails from Mangroves and Mud flats in the Indo-West Pacific and Mediterranean (Gastropoda: Potamididae: Cerithideopsilla) bs_bs_banner Biological Journal of the Linnean Society, 2015, 114, 212–228. With 3 figures Allopatry and overlap in a clade of snails from mangroves and mud flats in the Indo-West Pacific and Mediterranean (Gastropoda: Potamididae: Cerithideopsilla) TOMOWO OZAWA1†, WEI YIN2†, CUIZHANG FU2, MARTINE CLAREMONT3, LISA SMITH3 and DAVID G. REID3* 1Department of World Heritage, Cyber University, Nagoya Office, Ikegami-cho 2-7-1, Ikegami Jyutaku R203, Chikusa-ku, Nagoya 464-0029, Japan 2Institute of Biodiversity Science, Fudan University, Handan Road 220, Shanghai 200433, China 3Department of Life Sciences, Natural History Museum, London SW7 5BD, UK Received 2 July 2014; revised 21 August 2014; accepted for publication 21 August 2014 Cerithideopsilla is a genus of potamidid snails found in high abundance on sedimentary intertidal flats and beneath mangrove trees on continental shores in the tropical and subtropical Indo-West Pacific region and Mediterranean Sea. Taxonomic revisions have recognized four species, but recent molecular studies have hinted at a higher diversity. Here, we analyse 377 individuals sampled from across the known range and use a combination of molecular phylogenetic (mitochondrial COI and 16S rRNA, and nuclear 28S rRNA genes), statistical (generalized mixed Yule-coalescent GMYC method) and morphological (shell form) criteria to delimit 16 species. These form four species groups, corresponding with the traditionally recognized species C. alata, C. ‘djadjariensis’ (for which the valid name is C. incisa), C. cingulata and C. conica. Distribution maps were compiled using museum specimens identified by diagnostic shell characters. In combination with the molecular phylogenetic trees, these suggest an allopatric speciation mode, with diversification centred on the East Asian coastline and northern Australia, and a pronounced gap in the ‘eastern Indonesian corridor’, an area of low oceanic productivity. There is, however, frequently geographical overlap between sister species and we suggest from several sources of evidence (e.g. presence of C. conica in isolated saline lakes 900 km from the sea) that post-speciation transport by migratory birds has occurred. Nine of the 16 species occur between the Gulf of Tonkin and Hong Kong, so southern China is significant for both the evolution and conservation of Cerithideopsilla species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114, 212–228. ADDITIONAL KEYWORDS: allopatric speciation – GMYC – marine biogeography – southern China. INTRODUCTION (see recent reviews by Bellwood, Renema & Rosen, 2012; Bowen et al., 2013; Briggs & Bowen, 2013; Biodiversity in the shallow marine tropics shows a Cowman & Bellwood, 2013). In contrast, the evolution global maximum in the central Indo-West Pacific and biogeography of the biota of another characteris- (IWP) (Hoeksema, 2007). Documentation of this tic but far less diverse tropical biotope, the mangrove pattern, and studies of the processes that have pro- forest, have been relatively neglected (Ellison, duced and maintain it, have concentrated above all on Farnsworth & Merkt, 1999; Plaziat et al., 2001; the exceptionally species-rich biotope of the coral reef Ellison, 2002; Ricklefs, Schwarzbach & Renner, 2006). The mangrove plants, of which there are only about 70 species worldwide, typically have wide distribu- *Corresponding author. E-mail: [email protected] tions that overlap to generate the highest diversity †Joint first authors. within the Indo-Australian Archipelago (IAA) at the 212 © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114, 212–228 DIVERSIFICATION OF MUD-FLAT SNAILS 213 centre of the IWP (Spalding, Blasco & Field, 1997; ten to 15 species (Reid et al., 2013; Reid, 2014), and of Groombridge & Jenkins, 2002; Daru et al., 2013). The IWP Cerithideopsis from one to three species (Reid & observed global diversity gradient of mangrove- Claremont, 2014), although study of Cerithideopsis in associated animals is believed to be broadly similar, Central America has suggested a reduction in its with a peak in the central IWP, but information on diversity (Miura et al., 2010, 2012). their distributions remains limited (Ellison et al., After Cerithidea and Cerithideopsis, the third 1999; Ellison, 2002). Some members of the mangrove largest potamidid genus is Cerithideopsilla. A classi- fauna have been included in molecular phylogenetic cal study of shell morphology recognized just four analyses, either within wider systematic studies (e.g. species in the central IWP (Van Regteren Altena, Schubart et al., 2006) or in taxonomic groups that 1940), but molecular study has added another from range across adjacent habitats such as intertidal the western Indian Ocean and Mediterranean rocky (Frey & Vermeij, 2008; Frey, 2010) and sedi- (Reid et al., 2008). Furthermore, the diversity of mentary shores (Shih & Suzuki, 2008; Ozawa et al., mitochondrial lineages within several of the nominal 2009; Shih et al., 2009; Yin et al., 2009; Golding, 2012; species strongly suggests that diversity has been Chen et al., 2014; Polgar et al., 2014). However, underestimated (Kojima et al., 2006; Reid et al., 2008; studies of strictly mangrove-associated clades, from Kamimura et al., 2010). A systematic revision based which to draw inferences about phylogeography and on thorough sampling throughout the range is clearly diversification within the mangrove biotope itself, are required. The association with the mangrove environ- rare. The few studied examples include decapod crabs ment is less strict than in some other potamidid (Fratini et al., 2005; Ragionieri et al., 2009) and mol- genera. All of the nominal species of Cerithideopsilla luscs (Reid et al., 2008, 2013; Miura, Torchin & occur on intertidal mud and sandy mud substrates, Bermingham, 2010; Reid, Dyal & Williams, 2010; and several are most frequently found in the shade Miura et al., 2012; Reid & Claremont, 2014). and shelter of mangrove trees (Wells, 1985; Maki, Gastropods are a major component of the macro- Ohtaki & Tomiyama, 2002; Lozouet & Plaziat, 2008). fauna of mangrove habitats, although the number of However, the distributions of some Cerithideopsilla species is relatively low; for example only about 44 species extend beyond the northern limit of man- and 65 species of mangrove-associated molluscs (of groves in Japan and Korea (Hasegawa, 2000; Maki which most are gastropods) have been recorded in the et al., 2002; Hong, Choi & Tsutsumi, 2010) and, in the diversity focus of the central IWP, in Borneo (Ashton, Mediterranean (where no mangroves are found), Macintosh & Hogarth, 2003) and the Philippines C. conica occupies intertidal flats, shallow lagoons (Lozouet & Plaziat, 2008) respectively. Only one and even isolated saline lakes (Lozouet, 1986; Plaziat, family-level taxon shows a close association with 1993; Kowalke, 2001). In the IWP, C. cingulata occurs mangroves and warm-temperate salt marshes – the abundantly on open mud and sand flats (at densities Potamididae (review by Reid et al., 2008). This group of up to 4800 m−2), often adjacent to mangroves, but includes the large, ground-dwelling mudwhelks not necessarily sheltered by them (Vohra, 1970; Terebralia and Telescopium, which shelter beneath Balaparameswara Rao & Sukumar, 1982; Wells, mangrove trees and consume detritus, algae and (in 1985; Maki et al., 2002; Ando & Tomiyama, 2005; Terebralia palustris alone) fallen leaves. It also Willan, 2013). Densities in fish ponds may be even includes the genus Cerithidea of smaller, thin-shelled higher (up to 7000 m−2; Lantin-Olaguer & Bagarinao, species that climb on mangrove vegetation to avoid 2001). Information on mode of larval development is intense crushing predation and, perhaps, for tempera- fragmentary. Both C. cingulata and C. djadjariensis ture control. Until recently, the worldwide diversity of are reported to be planktotrophic with a length the family was estimated at 29 species, based on of larval life of about 11–20 days (Habe, 1955; taxonomic assessment of shell morphology. A molecu- Lantin-Olaguer & Bagarinao, 2001; Kimura et al., lar phylogenetic framework is now available (Reid 2002; Kojima et al., 2006), but C. conica has non- et al., 2008), defining six monophyletic genera: planktotrophic development with no planktonic stage Terebralia, Telescopium and Cerithidea in the IWP (Kowalke, 2001). only; Tympanotonos in West Africa; Cerithideopsis in The modern diversity of potamidid genera and the Americas and IWP; and Cerithideopsilla in the species is highest in the central IWP. This, combined IWP and Mediterranean. Both the fossil record and with their strict dependence on mangroves, makes the phylogenetic reconstruction of ancestral habitats them a key group for the study of diversification in suggest that the living potamidids are an adaptive this biotope. The classic explanations for the diversity radiation that has been associated with mangroves focus in the IAA have been based on various models since its origin in the Middle Eocene (Reid et al., of allopatric speciation (Bellwood et al., 2012) and, 2008). Detailed molecular and morphological analysis although there is a growing recognition of the role of of Cerithidea has increased its known diversity from parapatric ecological speciation (Bowen et al., 2013), © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114, 212–228 214 T. OZAWA ET AL. it is acknowledged that a degree of spatial separation Ma. It has been suggested
Recommended publications
  • Ecological Status of Pirenella Cingulata (Gmelin, 1791) (Gastropod
    Cibtech Journal of Zoology ISSN: 2319–3883 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/cjz.htm 2017 Vol. 6 (2) May-August, pp.10-16/Solanki et al. Research Article ECOLOGICAL STATUS OF PIRENELLA CINGULATA (GMELIN, 1791) (GASTROPOD: POTAMIDIDAE) IN MANGROVE HABITAT OF GHOGHA COAST, GULF OF KHAMBHAT, INDIA Devendra Solanki, Jignesh Kanejiya and *Bharatsinh Gohil Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364 002 * Author for Correspondence ABSTRACT Studies on mangrove associated organisms were one of the old trends to studying mangrove ecosystems and their productivities. Seasonal status and movement of Pirenella cingulata according to habitat change studied from mangroves of Ghogha coast from December 2014 to November 2015. The maximum density (4.4/m2 area) of Pirenella cingulata reported during winter and lowest during monsoon (0.20/ m2 area). This mud snail was observed dependent on the mangrove during adverse climatic conditions during summer and monsoon seasons. Temperature and dissolved oxygen levels influence the density of P. cingulata. Keywords: Pirenella cingulata, Mangroves, Seasonal Conditions, Ghogha Coast INTRODUCTION Indo-West Pacific oceans are popular for the molluscan diversity, but despite more than two centuries of malacology, the basic knowledge about mangrove associated biota is still inadequate (Kiat, 2009). The mangroves are not only trees but itself an ecosystem comprises associated fauna, the biotope surrounded by the trees extensions like soil, stem, substrate, shade, tidal range etc., and are influential to the distribution of malacofauna (Lozouet and Plaziat, 2008). Indian coastline comprises three gulfs, namely Gulf of Kachchh and Gulf of Khambhat in west site while Gulf of Mannar in southeast side.
    [Show full text]
  • Effect of Saltmarsh Cordgrass, Spartina Alterniflora, Invasion Stage
    Pakistan J. Zool., vol. 47(1), pp. 141-146, 2015. Effect of Saltmarsh Cordgrass, Spartina alterniflora, Invasion Stage on Cerithidea cingulata (Caenogastropoda: Potamididae) Distribution: A Case Study from a Tidal Flat of Western Pacific Ocean, China Bao-Ming Ge,1, 2* Dai-Zhen Zhang,1 Yi-Xin Bao,2 Jun Cui,1 Bo-Ping Tang,1 and Zhi-Yuan Hu2 1Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Kaifang Avenue 50, Yancheng, Jiangsu 224051, P. R. China 2Institute of Ecology, Zhejiang Normal University, Yingbin Avenue 688, Jinhua, Zhejiang 321004, P. R. China Abstract.- The effect of saltmarsh cordgrass, Spartina alterniflora (Poales: Poaceae) invasion stage on Cerithidea cingulata (Caenogastropoda: Potamididae) distribution was studied in 2007 at the eastern tidal flat of Lingkun Island, Wenzhou Bay, China. The distribution pattern of C. cingulata was aggregated during each season, as shown in experiments utilizing Taylor's power regression and Iowa's patchiness regression methods (P < 0.001). Two- way ANOVA indicated that densities were significantly affected by S. alterniflora invasion stage (P < 0.001), however, no significant season effect was found (P = 0.090) and on the interaction between the seasons (P = 0.939). The density distribution during the invasion stage was significantly different in each season as shown in one-way ANOVA. Pearson’s correlation coefficient analysis of density data indicated that the highest densities occurred in habitats at the initial invasion stage during summer. The peak in C. cingulata density during spring, autumn and winter occurred in habitats where invasion was classified as initial, whereas the lowest densities occurred in the stage of invasion completed during each season.
    [Show full text]
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Revised Stratigraphy of Neogene Strata in the Cocinetas Basin, La Guajira, Colombia
    Swiss J Palaeontol (2015) 134:5–43 DOI 10.1007/s13358-015-0071-4 Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia F. Moreno • A. J. W. Hendy • L. Quiroz • N. Hoyos • D. S. Jones • V. Zapata • S. Zapata • G. A. Ballen • E. Cadena • A. L. Ca´rdenas • J. D. Carrillo-Bricen˜o • J. D. Carrillo • D. Delgado-Sierra • J. Escobar • J. I. Martı´nez • C. Martı´nez • C. Montes • J. Moreno • N. Pe´rez • R. Sa´nchez • C. Sua´rez • M. C. Vallejo-Pareja • C. Jaramillo Received: 25 September 2014 / Accepted: 2 February 2015 / Published online: 4 April 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Cocinetas Basin of Colombia provides a made exhaustive paleontological collections, and per- valuable window into the geological and paleontological formed 87Sr/86Sr geochronology to document the transition history of northern South America during the Neogene. from the fully marine environment of the Jimol Formation Two major findings provide new insights into the Neogene (ca. 17.9–16.7 Ma) to the fluvio-deltaic environment of the history of this Cocinetas Basin: (1) a formal re-description Castilletes (ca. 16.7–14.2 Ma) and Ware (ca. 3.5–2.8 Ma) of the Jimol and Castilletes formations, including a revised formations. We also describe evidence for short-term pe- contact; and (2) the description of a new lithostratigraphic riodic changes in depositional environments in the Jimol unit, the Ware Formation (Late Pliocene). We conducted and Castilletes formations. The marine invertebrate fauna extensive fieldwork to develop a basin-scale stratigraphy, of the Jimol and Castilletes formations are among the richest yet recorded from Colombia during the Neogene.
    [Show full text]
  • Migratory Behaviour of the Mangrove Gastropod Cerithidea Decollata Under Unfamiliar Conditions
    Journal of Experimental Marine Biology and Ecology 457 (2014) 236–240 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Migratory behaviour of the mangrove gastropod Cerithidea decollata under unfamiliar conditions Anna Marta Lazzeri a, Nadia Bazihizina b, Pili K. Kingunge c, Alessia Lotti d, Veronica Pazzi d, Pier Lorenzo Tasselli e, Marco Vannini a,⁎, Sara Fratini a a Department of Biology, University of Florence, via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy b Department of Agrifood Production and Environmental Sciences, University of Florence, Piazzale delle Cascine, 18, 50144 Firenze, Italy c Kenyan Marine Fisheries Research Institute (KMFRI), P.O. Box 81651, Mombasa, Kenya d Department of Earth Sciences, University of Florence, via La Pira, 2, Firenze, Italy e Department of Physics, University of Florence, via Sansone 1, I-50019 Sesto Fiorentino, Italy article info abstract Article history: The mangrove gastropod Cerithidea decollata feeds on the ground at low tide and climbs trunks 2–3 h before the Received 1 April 2014 arrival of water, settling about 40 cm above the level that the incoming tide will reach at High Water (between 0, Received in revised form 26 April 2014 at Neap Tide, and 80 cm, at Spring Tide). Biological clocks can explain how snails can foresee the time of the in- Accepted 28 April 2014 coming tide, but local environmental signals that are able to inform the snails how high the incoming tide will be are likely to exist. To identify the nature of these possible signals, snails were translocated to three sites within the Keywords: – Gastropod behaviour Mida Creek (Kenya), 0.3 3 km away from the site of snail collection.
    [Show full text]
  • Tingkat Pemanfaatan Siput Hisap (Cerithidea Obtusa) Di Muara Sei Jang Kota Tanjungpinang Kepulauan Riau
    Tingkat Pemanfaatan Siput Hisap (Cerithidea obtusa) di muara Sei Jang Kota Tanjungpinang Kepulauan Riau. Jokei Mahasiswa Manajeman Sumberdaya Perairan, FIKP UMRAH, Diana Azizah Dosen Manajeman Sumberdaya Perairan, FIKP UMRAH, Susiana Dosen Manajeman Sumberdaya Perairan, FIKP UMRAH, ABSTRAK JOKEI, 2017. Tingkat Pemanfaatan Siput Hisap (Cerithidea obtusa) di muara Sei Jang Kota Tanjungpinang Kepulauan Riau. Jurusan Manajeman Sumberdaya Perairan, Fakultas Ilmu Kelautan dan Perikanan, Universitas Maritim Raja Ali Haji. Pembimbing oleh Diana Azizah S.Pi., M.Si dan Susiana S.Pi., M.Si. Tujuan dari penelitian ini adalah untuk mengetahui tingkat pemanfaatan siput hisap (Cerithidea obtusa) di perairan muara Sei Jang kelurahan Sei Jang kota Tanjungpinang. Penelitian ini dilakukan pada bulan Januari sampai bulan juli 2017. Pengambilan sampel siput hisap dengan menggunakan transek 2 x 2 m. Data Ekosistem mangrove di Sei Jang menggunakan data sekunder (dari penelitian sebelumnya). Mangrove yang ditemukan di Kelurahan Sei Jang merupakan vegetasi mangrove alami, dimana dibedakan atas 3 bagian yaitu Pohon, Anakan dan Semai. Potensi siput hisap (Cerithidea obtusa) pada lokasi penelitian di hutan mangrove Sei Jang Kelurahan Sei Jang dari nilai potensi yang di dapat adalah 10,5390 kg, nilai ini menunjukan bahwa potensi yang rendah. Rendahnya nilai kepadatan dan potensi siput hisap (Cerithidea obtusa) di hutan mangrove muara Sei Jang dari hasil penelitian diduga karena kandungan bahan organik substrat pada setiap titik stasiun penelitian masih rendah. Dan
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Squires Catalogue
    Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Tasmanian Museum and Art Gallery Don Squires Hobart, Tasmania Honorary Curator of Palaeontology May, 2012 Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Don Squires Honorary Curator of Palaeontology cover image: Trigonotreta stokesi Koenig 1825, the !rst described Australian fossil taxon occurs abundantly in its type locality in the Tamar Valley, Tasmania as external and internal moulds. The holotype, a wax cast, is housed at the British Museum (Natural History). (Clarke, 1979) Hobart, Tasmania May, 2012 Contents INTRODUCTION ..........................................1 VERTEBRATE PALAEONTOLOGY ...........122 PISCES .................................................. 122 INVERTEBRATE PALAEONTOLOGY ............9 AMPHIBIA .............................................. 123 NEOGENE ....................................................... 9 REPTILIA [SP?] ....................................... 126 MONOTREMATA .................................... 127 PLEISTOCENE ........................................... 9 MARSUPIALIA ........................................ 127 Gastropoda .......................................... 9 INCERTAE SEDIS ................................... 128 Ostracoda ........................................... 10 DESCRIBED AS A VERTEBRATE, MIOCENE ................................................. 14 PROBABLY A PLANT ............................. 129 bivalvia ...............................................
    [Show full text]
  • Moluscos Bivalvos Y Gastrópodos Asociados a Los Manglares Del Pacífico Centroamericano
    Moluscos bivalvos y gastrópodos asociados a los manglares del Pacífico Centroamericano Jorge Arturo Jiménez§ Universidad Nacional, Costa Rica Los moluscos representan una alta diversidad en ambientes de manglar. La información relacionada con este grupo ha sido incorporada en una publicación adicional (Cruz y Jiménez, 1994). La distribución de las especies de moluscos dentro del manglar, muestra patrones espaciales claramente diferenciables que permiten dividir los manglares en tres zonas típicas: a) La zona estuarina Está compuesta por los canales mareales, por los playones que quedan al descubierto en las mareas bajas y por la laguna estuarina adyacente. En esta zona, los organismos viven inmersos en el agua constantemente y se exponen al aire por cortos períodos de tiempo. Las almejas Chione subrugosa y Protothaca asperrima se encuentran en los playones mareales de la zona estuarina. Gastrópodos carnívoros, tales como Melongena patula y Natica cheminitzii se constituyen en los moluscos predadores más importantes en estos playones. Por otra parte, la definición que describe al molusco como una especie típica de ambientes de manglar, se complica especialmente al analizar los elementos que se encuentran en la zona estuarina. Debido a sus características ecológicas, esta zona presenta una variedad de ambientes y, consecuentemente, gran cantidad de especies que también se encuentran en áreas alejadas del manglar 1 tales como bivalvos y gastrópodos, los cuales habitan bajo el lodo, las barras arenosas y las zonas rocosas de las desembocaduras de los estuarios o de las deltas que poseen manglares asociados. b) La zona externa del bosque Está influenciada por inundaciones mareales diarias. El componente arbóreo dominante se conforma de especies de los géneros Rhizophora y Reluciera.
    [Show full text]
  • Gastropod Fauna of the Cameroonian Coasts
    Helgol Mar Res (1999) 53:129–140 © Springer-Verlag and AWI 1999 ORIGINAL ARTICLE Klaus Bandel · Thorsten Kowalke Gastropod fauna of the Cameroonian coasts Received: 15 January 1999 / Accepted: 26 July 1999 Abstract Eighteen species of gastropods were encoun- flats become exposed. During high tide, most of the tered living near and within the large coastal swamps, mangrove is flooded up to the point where the influence mangrove forests, intertidal flats and the rocky shore of of salty water ends, and the flora is that of a freshwater the Cameroonian coast of the Atlantic Ocean. These re- regime. present members of the subclasses Neritimorpha, With the influence of brackish water, the number of Caenogastropoda, and Heterostropha. Within the Neriti- individuals of gastropod fauna increases as well as the morpha, representatives of the genera Nerita, Neritina, number of species, and changes in composition occur. and Neritilia could be distinguished by their radula Upstream of Douala harbour and on the flats that lead anatomy and ecology. Within the Caenogastropoda, rep- to the mangrove forest next to Douala airport the beach resentatives of the families Potamididae with Tympano- is covered with much driftwood and rubbish that lies on tonos and Planaxidae with Angiola are characterized by the landward side of the mangrove forest. Here, Me- their early ontogeny and ecology. The Pachymelaniidae lampus liberianus and Neritina rubricata are found as are recognized as an independent group and are intro- well as the Pachymelania fusca variety with granulated duced as a new family within the Cerithioidea. Littorini- sculpture that closely resembles Melanoides tubercu- morpha with Littorina, Assiminea and Potamopyrgus lata in shell shape.
    [Show full text]
  • Constructional Morphology of Cerithiform Gastropods
    Paleontological Research, vol. 10, no. 3, pp. 233–259, September 30, 2006 6 by the Palaeontological Society of Japan Constructional morphology of cerithiform gastropods JENNY SA¨ LGEBACK1 AND ENRICO SAVAZZI2 1Department of Earth Sciences, Uppsala University, Norbyva¨gen 22, 75236 Uppsala, Sweden 2Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden. Present address: The Kyoto University Museum, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan (email: [email protected]) Received December 19, 2005; Revised manuscript accepted May 26, 2006 Abstract. Cerithiform gastropods possess high-spired shells with small apertures, anterior canals or si- nuses, and usually one or more spiral rows of tubercles, spines or nodes. This shell morphology occurs mostly within the superfamily Cerithioidea. Several morphologic characters of cerithiform shells are adap- tive within five broad functional areas: (1) defence from shell-peeling predators (external sculpture, pre- adult internal barriers, preadult varices, adult aperture) (2) burrowing and infaunal life (burrowing sculp- tures, bent and elongated inhalant adult siphon, plough-like adult outer lip, flattened dorsal region of last whorl), (3) clamping of the aperture onto a solid substrate (broad tangential adult aperture), (4) stabilisa- tion of the shell when epifaunal (broad adult outer lip and at least three types of swellings located on the left ventrolateral side of the last whorl in the adult stage), and (5) righting after accidental overturning (pro- jecting dorsal tubercles or varix on the last or penultimate whorl, in one instance accompanied by hollow ventral tubercles that are removed by abrasion against the substrate in the adult stage). Most of these char- acters are made feasible by determinate growth and a countdown ontogenetic programme.
    [Show full text]