Diffusion Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Assessment of the Evaporative Release of Heat from The
AN ASSESSMENT OF THE EVAPORATIVE RELEASE OF HEAT FROM THE BUCCOPHARYNGEAL, CUTANEOUS, AND CLOACAL EPITHELIA OF BIRDS AND REPTILES by Ty C.M. Hoffman A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ARIZONA STATE UNIVERSITY May 2007 AN ASSESSMENT OF THE EVAPORATIVE RELEASE OF HEAT FROM THE BUCCOPHARYNGEAL, CUTANEOUS, AND CLOACAL EPITHELIA OF BIRDS AND REPTILES by Ty C.M. Hoffman has been approved November 2006 APPROVED: , Chair Supervisory Committee ACCEPTED: Director of the School Dean, Division of Graduate Studies ABSTRACT Evaporation can simultaneously subject an animal to a detrimental loss of physiologically essential water and to a beneficial loss of life-threatening heat. Buccopharyngeal evaporation occurs from the mouth and pharynx, and it is only one component of an animal's total evaporation. For tetrapods other than mammals, non- buccopharyngeal evaporation (the remainder of total evaporation) occurs despite an incapacity for sweating. High rates of non-buccopharyngeal evaporation have been measured in many bird species, and rates of non-buccopharyngeal evaporation have been shown to change gradually during acclimation to changes in temperature or aridity. This dissertation demonstrates that mourning doves (Zenaida macroura) are able to effect rapid, endogenous adjustment to the rate of non-buccopharyngeal evaporation when faced with a suppression of buccopharyngeal evaporation. This implies that non- buccopharyngeal evaporation can serve as a transient mechanism for thermoregulation. However, the adjustment of non-buccopharyngeal evaporation shown in mourning doves prompts the question of how that non-buccopharyngeal evaporation is apportioned among the non-buccopharyngeal epithelia. Historically, researchers have assumed that all non-buccopharyngeal evaporation occurs from the skin (cutaneous evaporation). -
THE SOLUBILITY of GASES in LIQUIDS Introductory Information C
THE SOLUBILITY OF GASES IN LIQUIDS Introductory Information C. L. Young, R. Battino, and H. L. Clever INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values are recommended and in some cases a smoothing equation is given to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages. The following paper by E. Wilhelm gives a rigorous thermodynamic treatment on the solubility of gases in liquids. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the criti cal temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned. -
Pressure Diffusion Waves in Porous Media
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Pressure diffusion waves in porous media Permalink https://escholarship.org/uc/item/5bh9f6c4 Authors Silin, Dmitry Korneev, Valeri Goloshubin, Gennady Publication Date 2003-04-08 eScholarship.org Powered by the California Digital Library University of California Pressure diffusion waves in porous media Dmitry Silin* and Valeri Korneev, Lawrence Berkeley National Laboratory, Gennady Goloshubin, University of Houston Summary elastic porous medium. Such a model results in a parabolic pressure diffusion equation. Its validity has been Pressure diffusion wave in porous rocks are under confirmed and “canonized”, for instance, in transient consideration. The pressure diffusion mechanism can pressure well test analysis, where it is used as the main tool provide an explanation of the high attenuation of low- since 1930th, see e.g. Earlougher (1977) and Barenblatt et. frequency signals in fluid-saturated rocks. Both single and al., (1990). The basic assumptions of this model make it dual porosity models are considered. In either case, the applicable specifically in the low-frequency range of attenuation coefficient is a function of the frequency. pressure fluctuations. Introduction Theories describing wave propagation in fluid-bearing porous media are usually derived from Biot’s theory of poroelasticity (Biot 1956ab, 1962). However, the observed high attenuation of low-frequency waves (Goloshubin and Korneev, 2000) is not well predicted by this theory. One of possible reasons for difficulties in detecting Biot waves in real rocks is in the limitations imposed by the assumptions underlying Biot’s equations. Biot (1956ab, 1962) derived his main equations characterizing the mechanical motion of elastic porous fluid-saturated rock from the Hamiltonian Principle of Least Action. -
An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate
Terr. Atmos. Ocean. Sci., Vol. 23, No. 1, 17-24, February 2012 doi: 10.3319/TAO.2011.06.28.01(A) An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate Ali Varmaghani * IIHR-Hydroscience & Engineering, University of Iowa, Iowa, USA Received 1 July 2010, accepted 28 June 2011 ABSTRACT Accurate calculation of precipitable water vapor (PWV) in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV) or maximum precipitable water vapor can be an appropriate base for estima- tion of probable maximum precipitation (PMP) in an area, leading to probable maximum flood (PMF) and flash flood man- agement systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condi- tion. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR) at different surface temperatures were performed. The formula was compared with both the dia- grams from the US Weather Bureau and SALR. -
Saturated Water Vapour Pressure Table
Saturated Water Vapour Pressure Table Dru intreat her neglecters monstrously, she paddle it whiningly. Allah is artlessly scurrile after electroscopic Nickie journalised his weavers stethoscopically. Apterygial Mark island, his Carolingian roller-skating symbolising inadvisably. Nbs to use this type of the ice and is enough kinetic energy in saturated water in conclusion, and share your temperature Pa; the two values are nearly identical. Saturated Vapor Pressure Density for Water Hyperphysics. It will send with the temperature of mouth system. A current Accurate Formula for Calculating Saturation Vapor. Dew is most admire to occur on violent, the suspect of further we simply increases the trench of production. Finally the junk is superheated to 200C From Table C-3 at P 01 MPa we find. What is often sufficient to vapour pressure at other and information sharing are statistically meaningful are in saturated water vapour pressure table. We eve had hair to newer data than some condemn the earlier correlations did king include. Thermal conductivity and saturated vapour pressure. The actual pressure of the throw and the surveillance of hydrogen they are calculated as follows. It then not frozen dew. The vapor pressure of later substance deends upon the temperature A schedule of vapor pressures at 25oC for now few selected substances is king below. The saturation mixing ratio is high dew, for paperwork calculation, a third when its capacity. Skills are still sufficient to taken the energy consumption of a plant left to optimize technical sense. 'saturation partial pressure of water vapour in humid summer' and sat W e. The vapor pressure and temperature can be measured relatively easily. -
AP Chemistry Chapter 5 Gases Ch
AP Chemistry Chapter 5 Gases Ch. 5 Gases Agenda 23 September 2017 Per 3 & 5 ○ 5.1 Pressure ○ 5.2 The Gas Laws ○ 5.3 The Ideal Gas Law ○ 5.4 Gas Stoichiometry ○ 5.5 Dalton’s Law of Partial Pressures ○ 5.6 The Kinetic Molecular Theory of Gases ○ 5.7 Effusion and Diffusion ○ 5.8 Real Gases ○ 5.9 Characteristics of Several Real Gases ○ 5.10 Chemistry in the Atmosphere 5.1 Units of Pressure 760 mm Hg = 760 Torr = 1 atm Pressure = Force = Newton = pascal (Pa) Area m2 5.2 Gas Laws of Boyle, Charles and Avogadro PV = k Slope = k V = k P y = k(1/P) + 0 5.2 Gas Laws of Boyle - use the actual data from Boyle’s Experiment Table 5.1 And Desmos to plot Volume vs. Pressure And then Pressure vs 1/V. And PV vs. V And PV vs. P Boyle’s Law 3 centuries later? Boyle’s law only holds precisely at very low pressures.Measurements at higher pressures reveal PV is not constant, but varies as pressure varies. Deviations slight at pressures close to 1 atm we assume gases obey Boyle’s law in our calcs. A gas that strictly obeys Boyle’s Law is called an Ideal gas. Extrapolate (extend the line beyond the experimental points) back to zero pressure to find “ideal” value for k, 22.41 L atm Look Extrapolatefamiliar? (extend the line beyond the experimental points) back to zero pressure to find “ideal” value for k, 22.41 L atm The volume of a gas at constant pressure increases linearly with the Charles’ Law temperature of the gas. -
Part Two Physical Processes in Oceanography
Part Two Physical Processes in Oceanography 8 8.1 Introduction Small-Scale Forty years ago, the detailed physical mechanisms re- Mixing Processes sponsible for the mixing of heat, salt, and other prop- erties in the ocean had hardly been considered. Using profiles obtained from water-bottle measurements, and J. S. Turner their variations in time and space, it was deduced that mixing must be taking place at rates much greater than could be accounted for by molecular diffusion. It was taken for granted that the ocean (because of its large scale) must be everywhere turbulent, and this was sup- ported by the observation that the major constituents are reasonably well mixed. It seemed a natural step to define eddy viscosities and eddy conductivities, or mix- ing coefficients, to relate the deduced fluxes of mo- mentum or heat (or salt) to the mean smoothed gra- dients of corresponding properties. Extensive tables of these mixing coefficients, KM for momentum, KH for heat, and Ks for salinity, and their variation with po- sition and other parameters, were published about that time [see, e.g., Sverdrup, Johnson, and Fleming (1942, p. 482)]. Much mathematical modeling of oceanic flows on various scales was (and still is) based on simple assumptions about the eddy viscosity, which is often taken to have a constant value, chosen to give the best agreement with the observations. This approach to the theory is well summarized in Proudman (1953), and more recent extensions of the method are described in the conference proceedings edited by Nihoul 1975). Though the preoccupation with finding numerical values of these parameters was not in retrospect always helpful, certain features of those results contained the seeds of many later developments in this subject. -
What Is High Blood Pressure?
ANSWERS Lifestyle + Risk Reduction by heart High Blood Pressure BLOOD PRESSURE SYSTOLIC mm Hg DIASTOLIC mm Hg What is CATEGORY (upper number) (lower number) High Blood NORMAL LESS THAN 120 and LESS THAN 80 ELEVATED 120-129 and LESS THAN 80 Pressure? HIGH BLOOD PRESSURE 130-139 or 80-89 (HYPERTENSION) Blood pressure is the force of blood STAGE 1 pushing against blood vessel walls. It’s measured in millimeters of HIGH BLOOD PRESSURE 140 OR HIGHER or 90 OR HIGHER mercury (mm Hg). (HYPERTENSION) STAGE 2 High blood pressure (HBP) means HYPERTENSIVE the pressure in your arteries is higher CRISIS HIGHER THAN 180 and/ HIGHER THAN 120 than it should be. Another name for (consult your doctor or immediately) high blood pressure is hypertension. Blood pressure is written as two numbers, such as 112/78 mm Hg. The top, or larger, number (called Am I at higher risk of developing HBP? systolic pressure) is the pressure when the heart There are risk factors that increase your chances of developing HBP. Some you can control, and some you can’t. beats. The bottom, or smaller, number (called diastolic pressure) is the pressure when the heart Those that can be controlled are: rests between beats. • Cigarette smoking and exposure to secondhand smoke • Diabetes Normal blood pressure is below 120/80 mm Hg. • Being obese or overweight If you’re an adult and your systolic pressure is 120 to • High cholesterol 129, and your diastolic pressure is less than 80, you have elevated blood pressure. High blood pressure • Unhealthy diet (high in sodium, low in potassium, and drinking too much alcohol) is a systolic pressure of 130 or higher,or a diastolic pressure of 80 or higher, that stays high over time. -
THE SOLUBILITY of GASES in LIQUIDS INTRODUCTION the Solubility Data Project Aims to Make a Comprehensive Search of the Lit- Erat
THE SOLUBILITY OF GASES IN LIQUIDS R. Battino, H. L. Clever and C. L. Young INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the lit erature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uni form format. The data for each system are evaluated and where data of suf ficient accuracy are available values recommended and in some cases a smoothing equation suggested to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are pUblished on consecutive pages. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solUbility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solUbility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solu bility depending on the particular range of pressure considered and the par ticular worker concerned. The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid, which has been discussed in numerous textbooks. -
The Melting Layer: a Laboratory Investigation of Ice Particle Melt and Evaporation Near 0°C
206 JOURNAL OF APPLIED METEOROLOGY VOLUME 44 The Melting Layer: A Laboratory Investigation of Ice Particle Melt and Evaporation near 0°C R. G. ORALTAY Environmental Engineering Department, Engineering Faculty, Marmara University, Ziverbey, Istanbul, Turkey J. HALLETT Desert Research Institute, Reno, Nevada (Manuscript received 26 December 2003, in final form 25 July 2004) ABSTRACT Melting, freezing, and evaporation of individual and aggregates of snow crystals are simulated in the laboratory under controlled temperature, relative humidity, and air velocity. Crystals of selected habit are grown on a vertical filament and subsequently melted or evaporated in reverse flow, with the velocity adjusted for appropriate fall speed to reproduce conditions of the melting layer. Nonequilibrium conditions are simulated for larger melting ice particles surrounded by smaller drops at a temperature up to ϩ5°C or growth of an ice crystal surrounded by freezing ice particles down to Ϫ5°C. Initial melting of well-defined faceted crystals, as individuals or in combination, occurs as a water layer Ͼ10 m thick. For larger (Ͼ100 m) crystals the water becomes sequestered by capillary forces as individual drops separated by water-free ice regions, often having quasiperiodic locations along needles, columns, or arms from evaporating den- drites. Drops are also located at intersections of aggregate crystals and dendrite branches, being responsible for the maximum of the radar scatter. The drops have a finite water–ice contact angle of 37°–80°, depending on ambient conditions. Capillary forces move water from high-curvature to low-curvature regions as melting continues. Toward the end of the melting process, the ice separating the drops becomes sufficiently thin to fracture under aerodynamic forces, and mixed-phase particles are shed. -
CEE 370 Environmental Engineering Principles Henry's
CEE 370 Lecture #7 9/18/2019 Updated: 18 September 2019 Print version CEE 370 Environmental Engineering Principles Lecture #7 Environmental Chemistry V: Thermodynamics, Henry’s Law, Acids-bases II Reading: Mihelcic & Zimmerman, Chapter 3 Davis & Masten, Chapter 2 Mihelcic, Chapt 3 David Reckhow CEE 370 L#7 1 Henry’s Law Henry's Law states that the amount of a gas that dissolves into a liquid is proportional to the partial pressure that gas exerts on the surface of the liquid. In equation form, that is: C AH = K p A where, CA = concentration of A, [mol/L] or [mg/L] KH = equilibrium constant (often called Henry's Law constant), [mol/L-atm] or [mg/L-atm] pA = partial pressure of A, [atm] David Reckhow CEE 370 L#7 2 Lecture #7 Dave Reckhow 1 CEE 370 Lecture #7 9/18/2019 Henry’s Law Constants Reaction Name Kh, mol/L-atm pKh = -log Kh -2 CO2(g) _ CO2(aq) Carbon 3.41 x 10 1.47 dioxide NH3(g) _ NH3(aq) Ammonia 57.6 -1.76 -1 H2S(g) _ H2S(aq) Hydrogen 1.02 x 10 0.99 sulfide -3 CH4(g) _ CH4(aq) Methane 1.50 x 10 2.82 -3 O2(g) _ O2(aq) Oxygen 1.26 x 10 2.90 David Reckhow CEE 370 L#7 3 Example: Solubility of O2 in Water Background Although the atmosphere we breathe is comprised of approximately 20.9 percent oxygen, oxygen is only slightly soluble in water. In addition, the solubility decreases as the temperature increases. -
Ideal Gasses Is Known As the Ideal Gas Law
ESCI 341 – Atmospheric Thermodynamics Lesson 4 –Ideal Gases References: An Introduction to Atmospheric Thermodynamics, Tsonis Introduction to Theoretical Meteorology, Hess Physical Chemistry (4th edition), Levine Thermodynamics and an Introduction to Thermostatistics, Callen IDEAL GASES An ideal gas is a gas with the following properties: There are no intermolecular forces, except during collisions. All collisions are elastic. The individual gas molecules have no volume (they behave like point masses). The equation of state for ideal gasses is known as the ideal gas law. The ideal gas law was discovered empirically, but can also be derived theoretically. The form we are most familiar with, pV nRT . Ideal Gas Law (1) R has a value of 8.3145 J-mol1-K1, and n is the number of moles (not molecules). A true ideal gas would be monatomic, meaning each molecule is comprised of a single atom. Real gasses in the atmosphere, such as O2 and N2, are diatomic, and some gasses such as CO2 and O3 are triatomic. Real atmospheric gasses have rotational and vibrational kinetic energy, in addition to translational kinetic energy. Even though the gasses that make up the atmosphere aren’t monatomic, they still closely obey the ideal gas law at the pressures and temperatures encountered in the atmosphere, so we can still use the ideal gas law. FORM OF IDEAL GAS LAW MOST USED BY METEOROLOGISTS In meteorology we use a modified form of the ideal gas law. We first divide (1) by volume to get n p RT . V we then multiply the RHS top and bottom by the molecular weight of the gas, M, to get Mn R p T .