Extracting Certificates from Live Traffic: a Near Real-Time SSL Notary Service
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fast Elliptic Curve Cryptography in Openssl
Fast Elliptic Curve Cryptography in OpenSSL Emilia K¨asper1;2 1 Google 2 Katholieke Universiteit Leuven, ESAT/COSIC [email protected] Abstract. We present a 64-bit optimized implementation of the NIST and SECG-standardized elliptic curve P-224. Our implementation is fully integrated into OpenSSL 1.0.1: full TLS handshakes using a 1024-bit RSA certificate and ephemeral Elliptic Curve Diffie-Hellman key ex- change over P-224 now run at twice the speed of standard OpenSSL, while atomic elliptic curve operations are up to 4 times faster. In ad- dition, our implementation is immune to timing attacks|most notably, we show how to do small table look-ups in a cache-timing resistant way, allowing us to use precomputation. To put our results in context, we also discuss the various security-performance trade-offs available to TLS applications. Keywords: elliptic curve cryptography, OpenSSL, side-channel attacks, fast implementations 1 Introduction 1.1 Introduction to TLS Transport Layer Security (TLS), the successor to Secure Socket Layer (SSL), is a protocol for securing network communications. In its most common use, it is the \S" (standing for \Secure") in HTTPS. Two of the most popular open- source cryptographic libraries implementing SSL and TLS are OpenSSL [19] and Mozilla Network Security Services (NSS) [17]: OpenSSL is found in, e.g., the Apache-SSL secure web server, while NSS is used by Mozilla Firefox and Chrome web browsers, amongst others. TLS provides authentication between connecting parties, as well as encryp- tion of all transmitted content. Thus, before any application data is transmit- ted, peers perform authentication and key exchange in a TLS handshake. -
Dynamic Public Key Certificates with Forward Secrecy
electronics Article Dynamic Public Key Certificates with Forward Secrecy Hung-Yu Chien Department of Information Management, National Chi Nan University, Nantou 54561, Taiwan; [email protected] Abstract: Conventionally, public key certificates bind one subject with one static public key so that the subject can facilitate the services of the public key infrastructure (PKI). In PKI, certificates need to be renewed (or revoked) for several practical reasons, including certificate expiration, private key breaches, condition changes, and possible risk reduction. The certificate renewal process is very costly, especially for those environments where online authorities are not available or the connection is not reliable. A dynamic public key certificate (DPKC) facilitates the dynamic changeover of the current public–private key pairs without renewing the certificate authority (CA). This paper extends the previous study in several aspects: (1) we formally define the DPKC; (2) we formally define the security properties; (3) we propose another implementation of the Krawczyk–Rabin chameleon-hash- based DPKC; (4) we propose two variants of DPKC, using the Ateniese–Medeiros key-exposure-free chameleon hash; (5) we detail two application scenarios. Keywords: dynamic public key certificate; chameleon signature; certificate renewal; wireless sensor networks; perfect forward secrecy 1. Introduction Citation: Chien, H.-Y. Dynamic Certificates act as the critical tokens in conventional PKI systems. With the trust Public Key Certificates with Forward of the CA, a -
Ten Strategies of a World-Class Cybersecurity Operations Center Conveys MITRE’S Expertise on Accumulated Expertise on Enterprise-Grade Computer Network Defense
Bleed rule--remove from file Bleed rule--remove from file MITRE’s accumulated Ten Strategies of a World-Class Cybersecurity Operations Center conveys MITRE’s expertise on accumulated expertise on enterprise-grade computer network defense. It covers ten key qualities enterprise- grade of leading Cybersecurity Operations Centers (CSOCs), ranging from their structure and organization, computer MITRE network to processes that best enable effective and efficient operations, to approaches that extract maximum defense Ten Strategies of a World-Class value from CSOC technology investments. This book offers perspective and context for key decision Cybersecurity Operations Center points in structuring a CSOC and shows how to: • Find the right size and structure for the CSOC team Cybersecurity Operations Center a World-Class of Strategies Ten The MITRE Corporation is • Achieve effective placement within a larger organization that a not-for-profit organization enables CSOC operations that operates federally funded • Attract, retain, and grow the right staff and skills research and development • Prepare the CSOC team, technologies, and processes for agile, centers (FFRDCs). FFRDCs threat-based response are unique organizations that • Architect for large-scale data collection and analysis with a assist the U.S. government with limited budget scientific research and analysis, • Prioritize sensor placement and data feed choices across development and acquisition, enteprise systems, enclaves, networks, and perimeters and systems engineering and integration. We’re proud to have If you manage, work in, or are standing up a CSOC, this book is for you. served the public interest for It is also available on MITRE’s website, www.mitre.org. more than 50 years. -
SSL Checklist for Pentesters
SSL Checklist for Pentesters Jerome Smith BSides MCR, 27th June 2014 # whoami whoami jerome • Pentester • Author/trainer – Hands-on technical – Web application, infrastructure, wireless security • Security projects – Log correlation – Dirty data – Incident response exercises • Sysadmin • MSc Computing Science (Dist) • www.exploresecurity.com | @exploresecurity Introduction • Broad review of SSL/TLS checks – Viewpoint of pentester – Pitfalls – Manually replicating what tools do (unless you told the client that SSL Labs would be testing them ) – Issues to consider reporting (but views are my own) • While SSL issues are generally low in priority, it’s nice to get them right! • I’m not a cryptographer: this is all best efforts SSLv2 • Flawed, e.g. no handshake protection → MITM downgrade • Modern browsers do not support SSLv2 anyway – Except for IE but it’s disabled by default from IE7 – That mitigates the risk these days – http://en.wikipedia.org/wiki/Transport_Layer_Security#W eb_browsers • OpenSSL 1.0.0+ doesn’t support it – Which means SSLscan won’t find it – General point: tools that dynamically link to an underlying SSL library in the OS can be limited by what that library supports SSLv2 • Same scan on different OpenSSL versions: SSLv2 • testssl.sh warns you – It can work with any installed OpenSSL version • OpenSSL <1.0.0 s_client -ssl2 switch – More on this later • Recompile OpenSSL – http://blog.opensecurityresearch.com/2013/05/fixing-sslv2-support- in-kali-linux.html • SSLyze 0.7+ is statically linked – Watch out for bug https://github.com/iSECPartners/sslyze/issues/73 -
Sicherheit in Kommunikationsnetzen (Network Security)
Sicherheit in Kommunikationsnetzen (Network Security) Transport Layer Security Dr.-Ing. Matthäus Wander Universität Duisburg-Essen Transport Layer Security (TLS) PrivateTLS data Web browser Web server ∙ Cryptographic protocol ∘ Provides security on top of reliable transport (TCP) ∘ Used to secure HTTP, SMTP, IMAP, XMPP and others ∙ Security goals ∘ Authentication of server and optionally client ∘ Data integrity (no manipulation of data) ∘ Confidentiality (encryption) Universität Duisburg-Essen Matthäus Wander 2 Verteilte Systeme History ∙ Predecessor: Secure Sockets Layer (SSL) ∘ Developed by Netscape for HTTPS (= HTTP + SSL) ∙ 1994: SSL 2.0 ∘ Insecure, major security weaknesses ∙ 1995: SSL 3.0 ∘ Insecure, deprecated since 2015 (RFC 7568) ∙ 1999: TLS 1.0, minor improvements to SSL 3.0 ∘ Standardization and further development by IETF Universität Duisburg-Essen Matthäus Wander 3 Verteilte Systeme History ∙ 2003: TLS Extensions ∘ New features or security mechanisms (e.g. Encrypt-then-MAC, RFC 7366) ∙ 2006: TLS 1.1 ∘ Security improvements ∙ 2008: TLS 1.2 Presented in this lecture ∘ Added new or replaced old cryptographic algorithms ∙ TLS 1.3 is work in progress as of 2017 ∘ Outlook: new handshake and other major changes Universität Duisburg-Essen Matthäus Wander 4 Verteilte Systeme Protocol Overview Application Layer (e.g. HTTP) Handshake Change Cipher Application Alert Protocol Protocol Spec Protocol Data Protocol Record Protocol Transport Layer (e.g. TCP) ∙ TLS consists of two layers: ∘ Handshake Protocol and other protocols ∘ Record Protocol -
A Systematic Study of Cache Side Channels Across AES Implementations
A Systematic Study of Cache Side Channels across AES Implementations Heiko Mantel1, Alexandra Weber1, and Boris K¨opf 2 1 Computer Science Department, TU Darmstadt, Darmstadt, Germany [email protected], [email protected] 2 IMDEA Software Institute, Madrid, Spain [email protected] Abstract While the AES algorithm is regarded as secure, many imple- mentations of AES are prone to cache side-channel attacks. The lookup tables traditionally used in AES implementations for storing precom- puted results provide speedup for encryption and decryption. How such lookup tables are used is known to affect the vulnerability to side chan- nels, but the concrete effects in actual AES implementations are not yet sufficiently well understood. In this article, we analyze and compare multiple off-the-shelf AES implementations wrt. their vulnerability to cache side-channel attacks. By applying quantitative program analysis techniques in a systematic fashion, we shed light on the influence of im- plementation techniques for AES on cache-side-channel leakage bounds. 1 Introduction The Advanced Encryption Standard (AES) is a widely used symmetric cipher that is approved by the U.S. National Security Agency for security-critical ap- plications [8]. While traditional attacks against AES are considered infeasible as of today, software implementations of AES are known to be highly suscepti- ble to cache side-channel attacks [5, 15, 18, 19, 32]. While such side channels can be avoided by bitsliced implementations [6,23], lookup-table-based implementa- tions, which aim at better performance, are often vulnerable and wide spread. To understand the vulnerability to cache side-channel attacks, recall that the 128bit version of AES relies on 10 rounds of transformations. -
The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint Work with K
The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint work with K. Bhargavan, C. Fournet, A. Pionti, P.-Y. Strub INTRODUCTION Introduction Cookie Cutter Virtual Host Confusion Crossing Origin Boundaries Shared Session Cache Shared Reverse Proxies SPDY Connection Pooling Triple Handshake Conclusion Why do we need TLS? 1. Authentication – Must be talking to the right guy 2. Integrity – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants 4. Privacy? – Can’t tell who we are and what we talk about Why do we need TLS? 1. Authentication – Must be talking to the right guy Active Attacks 2. Integrity (MitM) – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants Passive Attacks 4. Privacy? (Wiretapping) – Can’t tell who we are and what we talk about What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker – Captures (passive) and tampers (active) packets What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker Strictly stronger – Captures (passive) and tampers (active) packets What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. -
Searching for Trust
SEARCHing for Trust Scott Rea1, TBA GOV2, TBA EDU3 1DigiCert Inc, Lindon, UT U.S.A., [email protected] 2Gov Agency, TBA, Australia, [email protected] 3University or Corporation, TBA, Australia, [email protected] ABSTRACT The security of the X.509 “oligarchy” Public Key Infrastructure for browsers and SSL web servers is under scrutiny in response to Certification Authority (CA) compromises which resulted in the circulation of fraudulent certificates. These rogue certificates can and have been used to execute Man-in-the-Middle attacks and gain access to users’ sensitive information. In wake of these events, there has been a call for change to the extent of either securing the current system or altogether replacing it with an alternative design. This panel will review the results of the research paper to be published that will explore the following proposals which have been put forth to replace or improve the CA system with the goal of aiding in the prevention and detection of MITM attacks and improving the trust infrastructure: Convergence, Perspectives, Mutually Endorsed Certification Authority Infrastructure (MECAI), DNS-Based Authentication of Named Entities (DANE), DNS Certification Authority Authorization (CAA) Resource Records, Public Key Pinning, Sovereign Keys, and Certificate Transparency. In the paper, a new metric is described that ranks each proposal according to a set of well-identified criteria and gives readers an idea of the costs and benefits of implementing the proposed system and the potential strengths and weaknesses of the design. The results of the research and the corresponding impacts for eResearchers and Government collaborators will be discussed by the panel. -
Whither Deprecating TCP-MD5? a Light Dose of Reality Vs
Deprecating MD5 for LDP draft-nslag-mpls-deprecate-md5- 00.txt The IETF MPLS and PALS WG Chairs Our Problem • Control plane protocols are often carried over simple transport layers such as UDP or TCP. • Control planes are good targets for attack and their disruption or subversion can have serious operational consequences. • TCP RST attacks against BGP routers were the original motivation for RFC 2385, TCP-MD5. • LDP runs over TCP. • It currently uses TCP MD5 for authentication, which is no longer considered secure (see RFC 5925) • This is frequently pointed out to us when our documents go to the IESG for publication. Small Survey among operators and vendors - I • The survey was totally un-scientific, and just a small number of vendors and operators were asked. Questions could be better formulated. • Operators were asked. • If TCP-AO were available in products, would you use it? • Are you planning to deploy it? • Vendors were asked. • Do you have TCP-AO? • We will consider making a bigger and more scientific survey to send out to “everybody”. Small Survey among operators and vendors - II • Operators answered: • No plan to deploy TCP-AO as long as vendors support their MD-5 implementations. • Very few authenticated LDP sessions. • There is a cost to deploy TCP-AO. • Vendors answered: • No we don’t have TCP-AO in our products. • One vendor said that it will be available later this year. • We will not implement it until we hear from the operators that they need it. What we need • A security suit that: • Is more secure than MD5 when used over the long-lived sessions that support routing. -
Analysis of DTLS Implementations Using Protocol State Fuzzing
Analysis of DTLS Implementations Using Protocol State Fuzzing Paul Fiterau-Brostean and Bengt Jonsson, Uppsala University; Robert Merget, Ruhr-University Bochum; Joeri de Ruiter, SIDN Labs; Konstantinos Sagonas, Uppsala University; Juraj Somorovsky, Paderborn University https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean This paper is included in the Proceedings of the 29th USENIX Security Symposium. August 12–14, 2020 978-1-939133-17-5 Open access to the Proceedings of the 29th USENIX Security Symposium is sponsored by USENIX. Analysis of DTLS Implementations Using Protocol State Fuzzing Paul Fiterau-Bro¸stean˘ Bengt Jonsson Robert Merget Joeri de Ruiter Uppsala University Uppsala University Ruhr University Bochum SIDN Labs Konstantinos Sagonas Juraj Somorovsky Uppsala University Paderborn University Abstract reach 11.6 billion by 2021 [26]. This will constitute half of all devices connected to the Internet, with the percentage set to Recent years have witnessed an increasing number of proto- grow in subsequent years. Such trends also increase the need cols relying on UDP. Compared to TCP, UDP offers perfor- to ensure that software designed for these devices is properly mance advantages such as simplicity and lower latency. This scrutinized, particularly with regards to its security. has motivated its adoption in Voice over IP, tunneling techno- DTLS is also used as one of the two security protocols in logies, IoT, and novel Web protocols. To protect sensitive data WebRTC, a framework enabling real-time communication. exchange in these scenarios, the DTLS protocol has been de- WebRTC can be used, for example, to implement video con- veloped as a cryptographic variation of TLS. -
Prying Open Pandora's Box: KCI Attacks Against
Prying open Pandora’s box: KCI attacks against TLS Clemens Hlauschek, Markus Gruber, Florian Fankhauser, Christian Schanes RISE – Research Industrial Systems Engineering GmbH {clemens.hlauschek, markus.gruber, florian.fankhauser, christian.schanes}@rise-world.com Abstract and implementations of the protocol: their utility is ex- tremely limited, their raison d’ˆetre is practically nil, and Protection of Internet communication is becoming more the existence of these insecure key agreement options common in many products, as the demand for privacy only adds to the arsenal of attack vectors against cryp- in an age of state-level adversaries and crime syndi- tographically secured communication on the Internet. cates is steadily increasing. The industry standard for doing this is TLS. The TLS protocol supports a multi- 1 Introduction tude of key agreement and authentication options which provide various different security guarantees. Recent at- The TLS protocol [1, 2, 3] is probably the most tacks showed that this plethora of cryptographic options widely used cryptographic protocol on the Internet. in TLS (including long forgotten government backdoors, It is designed to secure the communication between which have been cunningly inserted via export restric- client/server applications against eavesdropping, tamper- tion laws) is a Pandora’s box, waiting to be pried open by ing, and message forgery, and it also provides additional, heinous computer whizzes. Novel attacks lay hidden in optional security properties such as client authentica- plainsight. Parts of TLS areso oldthat theirfoul smell of tion. TLS is an historically grown giant: its predecessor, rot cannot be easily distinguished from the flowery smell SSL [4,5], was developed more than 20 years ago. -
Journey to a RTE-Free X.509 Parser
Journey to a RTE-free X.509 parser Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila [email protected] ANSSI Abstract. The C programming language is a security nightmare. It is error-prone and unsafe, but, year after year, the conclusion remains the same: no credible alternative will replace C in a foreseeable future; especially in low-level developments or for constrained environments. Additionally, even though some C developers are keen to drop this lan- guage when possible for more robust ones like ADA or Rust, converting the existing code basis to safer alternatives seems unrealistic. One of the positive aspects with C is nevertheless that its inherent flaws became a long time ago a full-time research topic for many people. Various static analysis tools exist to try and verify security aspects of C code, from the absence of run-time errors (RTE) to the verification of functional aspects. At the time of writing, none of these tools is capable of verifying the full-fledged C source code from most well-known software projects, even the smallest ones. Those tools are nonetheless getting better, and they may be able to handle large software code bases in the near future. Doing some steps in the direction of static analysis tools is sometimes sufficient to achieve full verification of a complex piece of code. This article details this kind of meet-in-the-middle approach applied to the development in C99 of a X.509 parser, and then its later verification using Frama-C. Table of Contents Journey to a RTE-free X.509 parser ..........................