„ 2U11/15U1U5 A2 O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine -
Un Novedoso Enfoque Para El Diseño De Fármacos Antimicrobianos Asistido Por Computadora
TOMOCOMD-CARDD: Un Novedoso Enfoque para el Diseño de Fármacos Antimicrobianos Asistido por Computadora Autora: Yasnay Valdés Rodríguez. Tutores: Prof. Dr. Yovani Marrero Ponce. Prof. MSc. Ricardo Medina Marrero. 2005-2006 La ignorancia afirma o niega rotundamente; la ciencia duda… Voltaire (1694-1778) Quiero dedicar este trabajo a todas aquellas personas que me aprecian y desean lo mejor para mi, especialmente a mis padres. A mi padre Dedico este trabajo con mucho amor, por hacerme comprender que siempre se puede llegar mas lejos, y que no hay nada imposible, solamente hay que luchar... A mi madre Por su infinita bondad, por su sacrificio inigualable. A mis familiares Por todo su apoyo y ayuda que me han mostrado incondicionalmente. A mi hermano Por ser mi fuente de inspiración. A la humanidad “...porque si supiera que el mundo se acaba mañana, yo, hoy todavía, plantaría un árbol” Quiero agradecer a todas aquellas personas que me han ayudado a realizar este sueño: A mis padres por todo el sacrificio realizado, y aún parecerles poco, los amo mucho. A mi madre por estar siempre a mi lado en los buenos y malos momentos ayudándome a levantarme en cualquier recaída. A mi padre por guiarme en la vida y brindarme sus consejos siempre útiles, por darme fuerza y vitalidad. A mi mayor tesoro, mi hermano, que me alumbra de esperanza día a día. A mis tías y primos que me ayudaron mucho, aún estando lejos. A mi novio que me apoyo en todas mis decisiones y con paciencia supo ayudarme. A mis tutores y cotutores que siempre me dieron la mano; especialmente a Yovani por su paciencia, a quien debo gran parte de mi formación como profesional por sus exigencias. -
Identification of a Series of Hair-Cell MET Channel Blockers That Protect Against Aminoglycoside-Induced Ototoxicity
Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity Emma J. Kenyon, … , Corné J. Kros, Guy P. Richardson JCI Insight. 2021;6(7):e145704. https://doi.org/10.1172/jci.insight.145704. Research Article Neuroscience Therapeutics Graphical abstract Find the latest version: https://jci.me/145704/pdf RESEARCH ARTICLE Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity Emma J. Kenyon,1 Nerissa K. Kirkwood,1 Siân R. Kitcher,1 Richard J. Goodyear,1 Marco Derudas,2 Daire M. Cantillon,3 Sarah Baxendale,4 Antonio de la Vega de León,5 Virginia N. Mahieu,1 Richard T. Osgood,1 Charlotte Donald Wilson,1 James C. Bull,6 Simon J. Waddell,3 Tanya T. Whitfield,4 Simon E. Ward,7 Corné J. Kros,1 and Guy P. Richardson1 1Sussex Neuroscience and 2Sussex Drug Discovery Centre, School of Life Sciences, and 3Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom. 4Bateson Centre and Department of Biomedical Science, and 5Information School, University of Sheffield, Sheffield, United Kingdom. 6Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom. 7Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom. To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. -
Systematic Evidence Review from the Blood Pressure Expert Panel, 2013
Managing Blood Pressure in Adults Systematic Evidence Review From the Blood Pressure Expert Panel, 2013 Contents Foreword ............................................................................................................................................ vi Blood Pressure Expert Panel ..............................................................................................................vii Section 1: Background and Description of the NHLBI Cardiovascular Risk Reduction Project ............ 1 A. Background .............................................................................................................................. 1 Section 2: Process and Methods Overview ......................................................................................... 3 A. Evidence-Based Approach ....................................................................................................... 3 i. Overview of the Evidence-Based Methodology ................................................................. 3 ii. System for Grading the Body of Evidence ......................................................................... 4 iii. Peer-Review Process ....................................................................................................... 5 B. Critical Question–Based Approach ........................................................................................... 5 i. How the Questions Were Selected ................................................................................... 5 ii. Rationale for the Questions -
Identification of a Novel Series of Hair-Cell MET Channel Blockers That Protect Against Aminoglycoside-Induced Ototoxicity
Identification of a novel series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity Emma J. Kenyon, … , Corné J. Kros, Guy P. Richardson. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.145704. Research In-Press Preview Neuroscience Therapeutics Graphical abstract Find the latest version: https://jci.me/145704/pdf Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity Emma J Kenyon1*, Nerissa K Kirkwood1*, Siân R Kitcher1*, Richard J Goodyear1, Marco Derudas2, Daire M Cantillon3, Sarah Baxendale4, Antonio de la Vega de León5 , Virginia N Mahieu1, Richard T Osgood1, Charlotte Donald Wilson1, James C Bull6, Simon J Waddell3, Tanya T Whitfield4, Simon E Ward7, Corné J Kros1 and Guy P Richardson1. 1Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK 2Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK 3Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK 4Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK 5Information School, University of Sheffield, Regent Court, 211 Portobello, Sheffield. S1 4DP, UK 6Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK 7Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK *These authors contributed equally to the work and are listed in alphabetical order. Corresponding authors Prof. Guy P Richardson, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. Phone 0044 1273 678717. Email: [email protected] Prof. Corné J Kros, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. -
ORC-13661 Protects Sensory Hair Cells from Aminoglycoside and Cisplatin Ototoxicity
ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity Siân R. Kitcher, … , Guy P. Richardson, Corné J. Kros JCI Insight. 2019;4(15):e126764. https://doi.org/10.1172/jci.insight.126764. Research Article Neuroscience Therapeutics Aminoglycoside (AG) antibiotics are widely used to prevent life-threatening infections, and cisplatin is used in the treatment of various cancers, but both are ototoxic and result in loss of sensory hair cells from the inner ear. ORC-13661 is a new drug that was derived from PROTO-1, a compound first identified as protective in a large-scale screen utilizing hair cells in the lateral line organs of zebrafish larvae. Here, we demonstrate, in zebrafish larvae and in mouse cochlear cultures, that ORC-13661 provides robust protection of hair cells against both ototoxins, the AGs and cisplatin. ORC- 13661 also prevents both hearing loss in a dose-dependent manner in rats treated with amikacin and the loading of neomycin-Texas Red into lateral line hair cells. In addition, patch-clamp recordings in mouse cochlear cultures reveal that ORC-13661 is a high-affinity permeant blocker of the mechanoelectrical transducer (MET) channel in outer hair cells, suggesting that it may reduce the toxicity of AGs by directly competing for entry at the level of the MET channel and of cisplatin by a MET-dependent mechanism. ORC-13661 is therefore a promising and versatile protectant that reversibly blocks the hair cell MET channel and operates across multiple species and toxins. Find the latest version: https://jci.me/126764/pdf RESEARCH ARTICLE ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity Siân R. -
Synergistic and Antagonistic Drug Interactions in the Treatment
RESEARCH ARTICLE Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections Morgan A Wambaugh, Steven T Denham, Magali Ayala, Brianna Brammer, Miekan A Stonhill, Jessica CS Brown* Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States Abstract Invasive fungal infections cause 1.6 million deaths annually, primarily in immunocompromised individuals. Mortality rates are as high as 90% due to limited treatments. The azole class antifungal, fluconazole, is widely available and has multi-species activity but only inhibits growth instead of killing fungal cells, necessitating long treatments. To improve treatment, we used our novel high-throughput method, the overlap2 method (O2M) to identify drugs that interact with fluconazole, either increasing or decreasing efficacy. We identified 40 molecules that act synergistically (amplify activity) and 19 molecules that act antagonistically (decrease efficacy) when combined with fluconazole. We found that critical frontline beta-lactam antibiotics antagonize fluconazole activity. A promising fluconazole-synergizing anticholinergic drug, dicyclomine, increases fungal cell permeability and inhibits nutrient intake when combined with fluconazole. In vivo, this combination doubled the time-to-endpoint of mice with Cryptococcus neoformans meningitis. Thus, our ability to rapidly identify synergistic and antagonistic drug interactions can potentially alter the patient outcomes. *For correspondence: Introduction [email protected] Invasive fungal infections are an increasing problem worldwide, contributing to 1.6 million deaths annually (Almeida et al., 2019; Bongomin et al., 2017; Brown et al., 2012). These problematic Competing interests: The infections are difficult to treat for many reasons. Delayed diagnoses, the paucity and toxicity of anti- authors declare that no fungal drugs, and the already immunocompromised state of many patients result in mortality rates competing interests exist. -
Potential Therapeutic Approaches for Modulating Expression and Accumulation of Defective Lamin a in Laminopathies and Age-Related Diseases
J Mol Med (2012) 90:1361–1389 DOI 10.1007/s00109-012-0962-4 REVIEW Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases Alex Zhavoronkov & Zeljka Smit-McBride & Kieran J. Guinan & Maria Litovchenko & Alexey Moskalev Received: 6 May 2012 /Revised: 8 September 2012 /Accepted: 25 September 2012 /Published online: 23 October 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Scientific understanding of the genetic compo- rise to lethal, early-onset diseases known as laminopathies. nents of aging has increased in recent years, with several Here, we analyze the literature and conduct computational genes being identified as playing roles in the aging process analyses of lamin A signaling and intracellular interactions and, potentially, longevity. In particular, genes encoding in order to examine potential mechanisms for altering or components of the nuclear lamina in eukaryotes have been slowing down aberrant Lamin A expression and/or for re- increasingly well characterized, owing in part to their clin- storing the ratio of normal to aberrant lamin A. The ultimate ical significance in age-related diseases. This review focuses goal of such studies is to ameliorate or combat laminopa- on one such gene, which encodes lamin A, a key component thies and related diseases of aging, and we provide a dis- of the nuclear lamina. Genetic variation in this gene can give cussion of current approaches in this review. A. Zhavoronkov (*) : M. Litovchenko Keywords Lamin A Progeria Laminopathies Bioinformatics and Medical Information Technology Laboratory, Age-related diseases . -
Supplemental Data Inter-Individual Variability in Gene Expression
DMD #42028 Supplemental data Inter-individual variability in gene expression profiles in human hepatocytes and comparison with HepaRG cells Alexandra ROGUE, Carine LAMBERT, Catherine SPIRE, Nancy CLAUDE and André GUILLOUZO Drug and metabolism disposition Supplemental Table 3: Genes expressed only in HepaRG cells located on the chromosome 7 Gene symbol Gene description SEPT13 septin 13 SEPT14 hCG_18833 ACHE acetylcholinesterase (Yt blood group) AMPH amphiphysin ANKIB1 ankyrin repeat and IBR domain containing 1 ANKMY2 ankyrin repeat and MYND domain containing 2 ANLN anillin, actin binding protein AP1S1 adaptor-related protein complex 1, sigma 1 subunit ATXN7L1 ataxin 7-like 1 C1GALT1 core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase, 1 C7orf31 hCG_39028 C7orf38 chromosome 7 open reading frame 38 C7orf41 chromosome 7 open reading frame 41 C7orf53 chromosome 7 open reading frame 53 CADPS2 Ca++-dependent secretion activator 2 CALCR calcitonin receptor CALN1 calneuron 1 CASD1 CAS1 domain containing 1 CBLL1 Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1 CCDC132 coiled-coil domain containing 132 CD36 CD36 molecule (thrombospondin receptor) CDC14C CDC14 cell division cycle 14 homolog C (S. cerevisiae) CHN2 chimerin (chimaerin) 2 CHRM2 cholinergic receptor, muscarinic 2 CLDN15 claudin 15 CLIP2 CAP-GLY domain containing linker protein 2 CNPY4 canopy 4 homolog (zebrafish) COX19 COX19 cytochrome c oxidase assembly homolog (S. cerevisiae) CROT carnitine O-octanoyltransferase DBF4 DBF4 homolog (S. cerevisiae) -
Novel Modulation of Adenylyl Cyclase Type 2 Jason Michael Conley Purdue University
Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2013 Novel Modulation of Adenylyl Cyclase Type 2 Jason Michael Conley Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Medicinal-Pharmaceutical Chemistry Commons Recommended Citation Conley, Jason Michael, "Novel Modulation of Adenylyl Cyclase Type 2" (2013). Open Access Dissertations. 211. https://docs.lib.purdue.edu/open_access_dissertations/211 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Jason Michael Conley Entitled NOVEL MODULATION OF ADENYLYL CYCLASE TYPE 2 Doctor of Philosophy For the degree of Is approved by the final examining committee: Val Watts Chair Gregory Hockerman Ryan Drenan Donald Ready To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________Val Watts ____________________________________ Approved by: Jean-Christophe Rochet 08/16/2013 Head of the Graduate Program Date i NOVEL MODULATION OF ADENYLYL CYCLASE TYPE 2 A Dissertation Submitted to the Faculty of Purdue University by Jason Michael Conley In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 Purdue University West Lafayette, Indiana ii For my parents iii ACKNOWLEDGEMENTS I am very grateful for the mentorship of Dr. -
Synergistic and Antagonistic Drug Interactions in the Treatment of Systemic Fungal Infections
bioRxiv preprint doi: https://doi.org/10.1101/843540; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Synergistic and Antagonistic Drug Interactions in the Treatment of Systemic Fungal Infections Morgan A. Wambaugh, Steven T. Denham, Brianna Brammer, Miekan Stonhill, and Jessica C. S. Brown Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA [email protected]; [email protected] Keywords Cryptococcus neoformans, overlap2 method (O2M), synergy, antagonism, drug interactions, fluconazole, dicyclomine hydrochloride, berbamine hydrochloride, nafcillin sodium, Candida species Summary Invasive fungal infections cause 1.6 million deaths annually, primarily in immunocompromised individuals. Mortality rates are as high as 90% due to limited number of efficacious drugs and poor drug availability. The azole class antifungal, fluconazole, is widely available and has multi-species activity but only inhibits fungal cell growth instead of killing fungal cells, necessitating long treatments. To improve fluconazole treatments, we used our novel high-throughput method, the overlap2 method (O2M), to identify drugs that interact with fluconazole, either increasing or decreasing efficacy. Although serendipitous identification of these interactions is rare, O2M allows us to screen molecules five times faster than testing combinations individually and greatly enriches for interactors. We identified 40 molecules that act synergistically (amplify activity) and 19 molecules that act antagonistically (decrease efficacy) when combined with fluconazole. We found that critical frontline beta-lactam antibiotics antagonize fluconazole activity. A promising fluconazole-synergizing anticholinergic drug, dicyclomine, increases fungal cell permeability and inhibits nutrient intake when combined with fluconazole.