Note to Users

Total Page:16

File Type:pdf, Size:1020Kb

Note to Users NOTE TO USERS The original manuscript received by UMI contains pages with slanted print. Pages were microfilmed as received. This reproduction is the best copy available UMI Systematics and Biostratigraphy of Lower Cambrian Trilobites of Western Laurentia by Lisa Lynn Bohach B.Sc. University of Alberta, 1991 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the School of Earth and Ocean Sciences We accept this dissertation as conforming to the required standard Dr. R. Ludvigsen, Supervisor (School of Earth and Ocean Sciences) Dr. C.Rv BarnesTDepartmental Member (School of Earth and Ocean Sciences) Dr. E. Van der Flier-Keller, Departmental Member (School of Earth and Ocean Sciences) Dr. VifJu'nnicliffe, O u 6 d e Member j^Depa rtmen t of Biology) Dr. A.R. Palmer, External Éxaminer (Institute for Cambrian Studies) © Lisa Lynn Bohach, 1997 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. Supervisor Dr. Rolf Ludvigsen Abstract Medial Lower Cambrian strata from continental shelf deposits of western Laurentia yield abundant, low diversity trilobite faunas. New faunas from the Cranbrook and Eager formations (southeastern British Columbia) and the upper Campito, Poleta, Harkless and Saline Valley formations (southwestern Great Basin, California and Nevada) have yielded: 33 species of Olenellina (20 new); 2 new species of Edelsteinaspidae (Redlichiina); 13 species of Corynexochida (5 new); 4 species of Ptychopariina (1 new); 1 new species of Eodiscina; 1 species of Oryctocephalidae; 1 new species of Protypidae; and 1 possible species of Cheiruroideidae. One new genus, Wannerelliis, is established and tentatively assigned to the Wanneriidae. Systematic studies emphasize the importance of early ontogenetic features and ventral morphology in determining supraspecific relationships. Major changes are made to the suprageneric classification of the Olenelloidea: the Wanneriidae is recognized as a family separate from the Olenellidae; the Laudoniinae and Cabriellinae are abandoned and their type genera assigned to the Wanneriidae; the Mesonacinae is characterized as a peramorphic subfamily of the Olenellidae; and the Bristoliinae is synonymized with the Biceratopsinae (Olenellidae). The Corynexochidae is also changed in membership to include the Dorypyginae (=Ogygopsidae). Heterochrony is a major pattern of evolutionary change in Lower Cambrian trilobites. Biostratigraphic division of the medial lower Cambrian comprises 10 new subzones of 4 zones and is the first species-based trilobite zonation for Laurentia. It replaces previous genus-based zonations that are imprecise and questionable in recognition. In ascending order, the zonation includes: the Nevadia weeksi and Nevadia palmeri subzones of the Nevadia Zone; the Nevadella parvoconica and Nevadella eiicharis subzones of the Nevadella Zone; the Elliptocephala stewarti, Gabriellus poletensis and Wannerellus alcatrazensis subzones of the Elliptocephala Zone; and the Wanneria logani, Wanneria dunnae and Proliostracus buelnaensis subzones of the Olenelliis transitans Zone. These zones and subzones can be correlated with other successions in western and eastern Laurentia. Biofacies differentiation of restricted shelf deposits is poorly developed in the Nevadella though Elliptocephala Zones. For this interval, the Nevadella and Wanneriid biofacies are successive Ill biofacies of restricted shelf deposits and the Labradoria and Ekwipagetia biofacies are successive biofacies of open shelf deposits. Biofacies differentiation is well developed in the Olenelliis transitans Zone, with an Olenelliis Biofacies in elastics; a Wanneriid Biofacies in silty and oolitic carbonates; a Bonnia Biofacies in pure carbonates; and an Ogygopsis Biofacies in open shelf deposits. Examiners: Dr. R. Ludvigsen, Supervisor (School of Earth and Ocean Sciences) Dr. C.R.^BapaÊSrDëpartmental Member (School of Earth and Ocean Sciences) Dr. E. Van der Flier-Keller, Departmental Member (School of Earth and Ocean Sciences) Dr. V.J. Tunnidiffe, Outsid|é^î^mber (Department of Biology) DiTATR. Palmer, Extemæ Examiner (Institute for Cambrian Studies) IV Table of Contents Abstract..................................................................................................................................................................... ii Table of Contents ...................................................................................................................................................iv List o f T a b le s.......................................................................................................................................................... xi List o f T ext-figu res ............................................................................................................................................... xiii Acknowledgments ............................................................................................................................................... xvii D edication.................................................................................................................................................................xviii Chapter 1. Introduction ....................................................................................................................................1 Chapter 2. Cet)logy ............................................................................................................................................. 5 The Cambrian System .........................................................................................................................5 Base of the Cambrian........................................................................................................... 7 The Lower - Middle Cambrian Boundary ....................................................................8 Regional Tectonic and Depositional Setting ................................................................................ 9 Proterozoic Prelude ..............................................................................................................9 Lower Cambrian Deposition and Tectonic Setting ..................................................... U) Geology and Historical Paleontolog) of the Study Areas ....................................................... 11 Southeastern British Columbia......................................................................................... 11 Cranbrook Formation ..........................................................................................11 Eager Formation ....................................................................................................15 Southwestern Great Basin..................................................................................................17 Wyman through Campito formations .............................................................19 Poleta Formation ...................................................................................................21 Harkless Formation.............................................................................................. 22 Saline Valley Formation ......................................................................................22 Post-Saline Valley Formations ...........................................................................23 Chapter 3. Lower Cambrian Biostratigraphy ...........................................................................................25 Historical CK'erview..............................................................................................................................26 Biofacies Analysis .................................................................................................................................. 35 V Zonal Biostratigraphy .........................................................................................................................44 Chapter 4. Trilobite Terminology ................................................................................................................. 55 General Features...................................................................................................................................55 C ephalon................................................................................................................................................ 55 Thorax ......................................................................................................................................................59 Pygidium ................................................................................................................................................ 61 Ventral M orphology ........................................................................................................................... 61 O ntogeny ................................................................................................................................................ 63 Chapter 5. Systematic Philosophy ............................................................................................................... 65 Ventral M orphology ........................................................................................................................... 67 O ntogeny ...............................................................................................................................................
Recommended publications
  • Upper Neogene Stratigraphy and Tectonics of Death Valley — a Review
    Earth-Science Reviews 73 (2005) 245–270 www.elsevier.com/locate/earscirev Upper Neogene stratigraphy and tectonics of Death Valley — a review J.R. Knott a,*, A.M. Sarna-Wojcicki b, M.N. Machette c, R.E. Klinger d aDepartment of Geological Sciences, California State University Fullerton, Fullerton, CA 92834, United States bU. S. Geological Survey, MS 975, 345 Middlefield Road, Menlo Park, CA 94025, United States cU. S. Geological Survey, MS 966, Box 25046, Denver, CO 80225-0046, United States dTechnical Service Center, U. S. Bureau of Reclamation, P. O. Box 25007, D-8530, Denver, CO 80225-0007, United States Abstract New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from N3.58 Ma to b1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ~3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Draft DRECP and EIR/EIS CHAPTER II.4
    Draft DRECP and EIR/EIS CHAPTER II.4. ALTERNATIVE 1 II.4 ALTERNATIVE 1 Alternative 1 is one of five action alternatives considered and analyzed in the Desert Renewable Energy Conservation Plan (DRECP or Plan) and Environmental Impact Report/Environmental Impact Statement (EIR/EIS). The description of Alternative 1 is first provided at an interagency level (Section II.4.1), which describes all Plan elements of the alternative. After the interagency description, the individual elements of the alternative are described, including the Bureau of Land Management (BLM) Land Use Plan Amendment (LUPA) elements of the DRECP (Section II.4.2), the Natural Community Conservation Plan (NCCP) elements of the DRECP (Section II.4.3), and the General Conservation Plan (GCP) elements of the DRECP (Section II.4.4). II.4.1 Interagency Description of Alternative 1 The interagency description of Alternative 1 includes the following main sections: Overview of Alternative 1, Conservation Strategy, Monitoring and Adaptive Management Program, Description of the Covered Activities, and Plan Implementation. The description of Alternative 1 for the DRECP and EIR/EIS encompasses the overall conservation strategy and description of Covered Activities on federal and nonfederal lands (i.e., state, county, city, and privately owned lands) within the Plan Area. II.4.1.1 Overview of Alternative 1 The following provides a Plan-wide overview of Alternative 1. Alternative 1 integrates the renewable energy and resource conservation with other existing uses in the Plan Area and includes BLM LUPA elements, NCCP elements, and GCP elements. Under Alternative 1 for the DRECP, an interagency conservation strategy for the Plan Area would be established that includes a streamlined process for the permitting of renewable energy and transmission development on both federal and nonfederal lands and a BLM LUPA providing Conservation and Management Actions (CMAs) for resources throughout the Plan Area on BLM-administered lands.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Hydrologic Basin Death Valley California
    Hydrologic Basin Death Valley California GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B Hydrologic Basin Death Valley California By CHARLES B. HUNT, T. W. ROBINSON, WALTER A. BOWLES, and A. L. WASHBURN GENERAL GEOLOGY OF DEATH VALLEY, CALIFORNIA GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B A! description of the hydrology, geochemistry, and patternedground of the saltpan UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract BI Hydrology-Continued Hydrology, by Charles B. Hunt and T. W. Robinson_ - 3 Descriptions and discharges of springs and of Introduction- 3 marshes-Continued Fieldwork- 3 Discharge of springs in the Furnace Creek fault Climate- 5 zone B35 Rainfall 5 Evapotranspiration discharge from the valley floor Evaporation 7 above the saltpan 37 Temperature- 8 Divisions of the valley according to sources of Humidity- 10 ground water 37 Wind- 11 Possible sources of water at Cottonball Marsh- 37 Rock types in the Death Valley hydrologic basin --- 11 Possible source of water at springs along Fur- Hard-rock formations 12 nace Creek fault zone 38 Unconsolidated Quaternary deposits 13 Geochemistry of the saltpan by Charles B. Hunt 40 Gravel deposits 13 General features 40 Fine-grained alluvial and playa deposits - 15 Fieldwork and acknowledgments 41 Salt deposits and saliferous playa deposits- 15 Geologic
    [Show full text]
  • Phylogenetic Analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian) Bruce S
    2 j&o I J. Paleont., 75(1), 2001, pp. 96-115 Copyright © 2001, The Paleontological Society 0022-3360/01 /0075-96$03.00 PHYLOGENETIC ANALYSIS OF THE OLENELLINA WALCOTT, 1890 (TRILOBITA, CAMBRIAN) BRUCE S. LIEBERMAN Departments of Geology and Ecology and Evolutionary Biology, University of Kansas, Lindley Hall, Lawrence 66045, <[email protected]> ABSTRACT—Phylogenetic analysis was used to evaluate evolutionary relationships within the Cambrian suborder Olenellina Walcott, 1890; special emphasis was placed on those taxa outside of the Olenelloidea. Fifty-seven exoskeletal characters were coded for 24 taxa within the Olenellina and two outgroups referable to the "fallotaspidoid" grade. The Olenelloidea, along with the genus Gabriellus Fritz, 1992, are the sister group of the Judomioidea Repina, 1979. The "Nevadioidea" Hupe, 1953 are a paraphyletic grade group. Four new genera are recognized, Plesionevadia, Cambroinyoella, Callavalonia, and Sdzuyomia, and three new species are described, Nevadia fritzi, Cirquella nelsoni, and Cambroinyoella wallacei. Phylogenetic parsimony analysis is also used to make predictions about the ancestral morphology of the Olenellina. This morphology most resembles the morphology found in Plesionevadia and Pseudoju- domia Egorova in Goryanskii and Egorova, 1964. INTRODUCTION group including the "fallotaspidoids" plus the Redlichiina, and HE ANALYSIS of evolutionary patterns during the Early Cam- potentially all other trilobites. Where the Agnostida fit within this T brian has relevance to paleontologists and evolutionary bi- evolutionary topology depends on whether or not one accepts the ologists for several reasons. Chief among these are expanding our arguments of either Fortey and Whittington (1989), Fortey (1990), knowledge of evolutionary mechanisms and topologies. Regard- and Fortey and Theron (1994) or Ramskold and Edgecombe ing evolutionary mechanisms, because the Cambrian radiation (1991).
    [Show full text]
  • The Evolution of Trilobite Body Patterning
    ANRV309-EA35-14 ARI 20 March 2007 15:54 The Evolution of Trilobite Body Patterning Nigel C. Hughes Department of Earth Sciences, University of California, Riverside, California 92521; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:401–34 Key Words First published online as a Review in Advance on Trilobita, trilobitomorph, segmentation, Cambrian, Ordovician, January 29, 2007 diversification, body plan The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The good fossil record of trilobite exoskeletal anatomy and on- 10.1146/annurev.earth.35.031306.140258 togeny, coupled with information on their nonbiomineralized tis- Copyright c 2007 by Annual Reviews. sues, permits analysis of how the trilobite body was organized and All rights reserved developed, and the various evolutionary modifications of such pat- 0084-6597/07/0530-0401$20.00 terning within the group. In several respects trilobite development and form appears comparable with that which may have charac- terized the ancestor of most or all euarthropods, giving studies of trilobite body organization special relevance in the light of recent advances in the understanding of arthropod evolution and devel- opment. The Cambrian diversification of trilobites displayed mod- Annu. Rev. Earth Planet. Sci. 2007.35:401-434. Downloaded from arjournals.annualreviews.org ifications in the patterning of the trunk region comparable with by UNIVERSITY OF CALIFORNIA - RIVERSIDE LIBRARY on 05/02/07. For personal use only. those seen among the closest relatives of Trilobita. In contrast, the Ordovician diversification of trilobites, although contributing greatly to the overall diversity within the clade, did so within a nar- rower range of trunk conditions.
    [Show full text]
  • The Extent of the Sirius Passet Lagerstätte (Early Cambrian) of North Greenland
    The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland JOHN S. PEEL & JON R. INESON Ancillary localities for the Sirius Passet biota (early Cambrian; Cambrian Series 2, Stage 3) are described from the im- mediate vicinity of the main locality on the southern side of Sirius Passet, north-western Peary Land, central North Greenland, where slope mudstones of the Transitional Buen Formation abut against the margin of the Portfjeld Forma- tion carbonate platform. Whilst this geological relationship may extend over more than 500 km east–west across North Greenland, known exposures of the sediments yielding the lagerstätte are restricted to a 1 km long window at the south-western end of Sirius Passet. • Keywords: Early Cambrian, Greenland, lagerstätte. PEEL, J.S. & INESON, J.R. The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bulletin of Geosciences 86(3), 535–543 (4 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received March 24, 2011; accepted in revised form July 8, 2011; published online July 28, 2011; issued September 30, 2011. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Jon R. Ineson, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; [email protected] Almost all of the fossils described from the early Cambrian The first fragmentary fossils from the Sirius Passet Sirius Passet Lagerstätte of northern Peary Land, North Lagerstätte (GGU collection 313035) were collected by Greenland, were collected from a single, west-facing talus A.K.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 53, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.-0LENELLUS AND OTHER GENERA OF THE MESONACID/E With Twenty-Two Plates CHARLES D. WALCOTT (Publication 1934) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 12, 1910 Zl^i £orb (gaitimovt (pnee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.—OLENELLUS AND OTHER GENERA OF THE MESONACID^ By CHARLES D. WALCOTT (With Twenty-Two Plates) CONTENTS PAGE Introduction 233 Future work 234 Acknowledgments 234 Order Opisthoparia Beecher 235 Family Mesonacidas Walcott 236 Observations—Development 236 Cephalon 236 Eye 239 Facial sutures 242 Anterior glabellar lobe 242 Hypostoma 243 Thorax 244 Nevadia stage 244 Mesonacis stage 244 Elliptocephala stage 244 Holmia stage 244 Piedeumias stage 245 Olenellus stage 245 Peachella 245 Olenelloides ; 245 Pygidium 245 Delimitation of genera 246 Nevadia 246 Mesonacis 246 Elliptocephala 247 Callavia 247 Holmia 247 Wanneria 248 P.'edeumias 248 Olenellus 248 Peachella 248 Olenelloides 248 Development of Mesonacidas 249 Mesonacidas and Paradoxinas 250 Stratigraphic position of the genera and species 250 Abrupt appearance of the Mesonacidse 252 Geographic distribution 252 Transition from the Mesonacidse to the Paradoxinse 253 Smithsonian Miscellaneous Collections, Vol. 53, No. 6 232 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 53 Description of genera and species 256 Nevadia, new genus 256 weeksi, new species 257 Mcsonacis Walcott 261 niickwitzi (Schmidt) 262 torelli (Moberg) 264 vermontana
    [Show full text]
  • 1158 Peel.Vp
    A new arthropod from the lower Cambrian Sirius Passet Fossil-Lagerstätte of North Greenland JOHN S. PEEL & MARTIN STEIN Aaveqaspis inesoni gen. et sp. nov., is described from the lower Cambrian Sirius Passet Fossil-Lagerstätte of Peary Land, North Greenland. It has a semicircular head shield and a thorax with 5 tergites. The tail shield carries 2 pairs of spines, the most anterior of which is enormous and dominates the trunk. A. inesoni lacks any preserved trace of eyes, as is also the case with several other Sirius Passet arthropods, suggesting that the fossils accumulated in deeper water than the contemporaneous Chengjiang Fossil-Lagerstätte of China or the middle Cambrian Burgess Shale assemblages of British Columbia. • Key words: Cambrian, arthropod, Sirius Passet, Lagerstätte, Greenland. PEEL,J.S.&STEIN, M. 2009. A new arthropod from the lower Cambrian Sirius Passet Fossil-Lagerstätte of North Greenland. Bulletin of Geosciences 84(4), 625–630 (3 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received July 30, 2009; accepted in revised form September 22, 2009; published online October 9, 2009; is- sued December 31, 2009. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Martin Stein, Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden; [email protected] Black laminated mudstones and siltstones juxtaposed with biomineralized hard parts is the trilobite Buenellus against the prominent buried escarpment of an eroded Blaker, 1988 which, although restricted to this locality carbonate platform in Peary Land, North Greenland (Blaker & Peel 1997), indicates the Nevadella Zone of the (Fig.
    [Show full text]
  • New Information on Olenelline Trilobites from the Early Cambrian Sekwi Formation, Northwestern Canada
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. New information on olenelline trilobites from the Early Cambrian Sekwi Formation, Northwestern Canada by Bruce S. Lieberman 2010 This is the author’s accepted manuscript version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Lieberman, Bruce S. 2010. “New information on olenelline trilobites from the Early Cambrian Sekwi Formation, northwestern Canada.” Canadian Journal of Earth Sciences (47):1445-1449. Published version: http://www.nrcresearchpress.com/doi/ abs/10.1139/E10-073#.U21JO4FdXUL Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. For Review Purposes Only/Aux fins d'examen seulement 1 1 New information on olenelline trilobites from the Early Cambrian Sekwi Formation, 2 Northwestern Canada 3 4 Francine R. Abe 5 Department of Ecology and Evolutionary Biology, University of Kansas, 1345 Jayhawk 6 Boulevard, Lawrence, Kansas 66045, USA, Tel: +1 (785) 864-3369, Fax: +1 (785) 864-5335 7 <[email protected]> 8 Bruce S. Lieberman 9 Department of Geology and Natural History Museum and Biodiversity Research Center, 10 University of Kansas, 1475 Jayhawk Boulevard, 120 Lindley Hall, Lawrence, Kansas 66045, 11 USA, <[email protected]> 12 Michael C. Pope 13 Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843, 14 USA, <[email protected]> 15 Kelly Dilliard 16 Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, 17 Wayne, Nebraska 68787, USA, <[email protected]> 18 For Review Purposes Only/Aux fins d'examen seulement 2 19 Abstract 20 A new species of olenelline trilobite, Nevadella keelensis, is described from the lower Cambrian Sekwi 21 Formation, Mackenzie Mountains, Canada.
    [Show full text]
  • The Morphology and Evolutionary Significance of the Anomalocaridids
    !"#$ %&'%( )*+'*'&&'(,', -.---'/( ! " #$%%&&&'&& $ ($ $)*$ + , $) -.)%&&)*$ $ $ ) - ) /0)0& ) )1234/56467706//%868) - && 7&& 9 $ :. , ; $9 $! + )*$ $$21$ . +$ 6 < ) # . $ $ $ +$$ +$ 6 $ $ $ $ $< $ + )= $ $ $$$ $ )*$ $ !+$ $ +$ $ ! $ )= + + $21$ $ + $ $ $ $ + $ $$) 3+ $$ 21$ ! + +$ 6 $ $$ $ $ $+$ ) $ $ $ +$ + $ < )*+ + $ $ $ $ ) - $ $ $ $$ >+6 $$ $+$ $ $ 6 $ )*$$ $$ $ $. $ +! +$ ) $ + $ $$ +! +$$ 6!)*$ $ $2 1$ $ + ! + ) $ $ $.$ 9 .$ < $21$)* $1( 3 $? ) ! + +$$ $ $$ 6 $ $ )*$$ + $$ . +$$ $ $$ ) !" # . 21$ $% & %' %($)*% %&+,-./* %" @- .)%&& 11376%0 1234/56467706//%868 ' ''' 60&%A$ 'BB )!)B C D ' ''' 60&%E To my family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Daley, A.C., Budd, G.E., Caron, J.-B., Edgecombe, G.D. & Collins, D. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323:1597-1600. II Daley, A.C. & Budd, G.E. New anomalocaridid appendages from the Burgess Shale, Canada. In press. Palaeontology. III Daley, A.C., Budd,
    [Show full text]