Renewable Energy Resources

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy Resources Renewable Energy Resources Renewable Energy Resources is a numerate and quantitative text covering subjects of proven technical and economic importance worldwide. Energy supplies from renewables (such as solar, thermal, photovoltaic, wind, hydro, biofuels, wave, tidal, ocean and geothermal sources) are essential components of every nation’s energy strategy, not least because of concerns for the environment and for sustainability. In the years between the first and this second edition, renewable energy has come of age: it makes good sense, good government and good business. This second edition maintains the book’s basis on fundamentals, whilst includ- ing experience gained from the rapid growth of renewable energy technologies as secure national resources and for climate change mitigation, more extensively illus- trated with case studies and worked problems. The presentation has been improved throughout, along with a new chapter on economics and institutional factors. Each chapter begins with fundamental theory from a scientific perspective, then considers applied engineering examples and developments, and includes a set of problems and solutions and a bibliography of printed and web-based material for further study. Common symbols and cross referencing apply throughout, essential data are tabu- lated in appendices. Sections on social and environmental aspects have been added to each technology chapter. Renewable Energy Resources supports multi-disciplinary master degrees in sci- ence and engineering, and specialist modules in first degrees. Practising scientists and engineers who have not had a comprehensive training in renewable energy will find this book a useful introductory text and a reference book. John Twidell has considerable experience in renewable energy as an academic pro- fessor, a board member of wind and solar professional associations, a journal editor and contractor with the European Commission. As well as holding posts in the UK, he has worked in Sudan and Fiji. Tony Weir is a policy adviser to the Australian government, specialising in the interface between technology and policy, covering subjects such as energy supply and demand, climate change and innovation in business. He was formerly Senior Energy Officer at the South Pacific Forum Secretariat in Fiji, and has lectured and researched in physics and policy studies at universities of the UK, Australia and the Pacific. Also available from Taylor & Francis ∗∗Evaluation of the Built Environment for Sustainability∗∗ V. Bentivegna, P.S. Brandon and P. Lombardi Hb: 0-419-21990-0 Spon Press ∗∗Geothermal Energy for Developing Countries∗∗ D. Chandrasekharam and J. Bundschuh Hb: 9058095223 Spon Press ∗∗Building Energy Management Systems, 2nd ed∗∗ G. Levermore Hb: 0-419-26140-0 Pb: 0-419-22590-0 Spon Press ∗∗Cutting the Cost of Cold: Affordable Warmth for Healthier Homes∗∗ F. Nicol and J. Rudge Pb: 0-419-25050-6 Spon Press Information and ordering details For price availability and ordering visit our website www.sponpress.com Alternatively our books are available from all good bookshops. Renewable Energy Resources Second edition John Twidell and Tony Weir First published 1986 by E&FN Spon Ltd Second edition published 2006 by Taylor & Francis 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN Simultaneously published in the USA and Canada by Taylor & Francis 270 Madison Ave, New York, NY 10016, USA This edition published in the Taylor & Francis e-Library, 2006. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Taylor & Francis is an imprint of the Taylor & Francis Group © 1986, 2006 John W. Twidell and Anthony D. Weir All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data Twidell, John. Renewable energy resources / John Twidell and Anthony Weir. — 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0–419–25320–3 (hardback) — ISBN 0–419–25330–0 (pbk.) 1. Renewable energy sources. I. Weir, Anthony D. II. Title. TJ808.T95 2005 621.042—dc22 2005015300 ISBN10: 0–419–25320–3 ISBN13: 9–78–0–419–25320–4 Hardback ISBN10: 0–419–25330–0 ISBN13: 9–78–0–419–25330–3 Paperback Contents Preface xi List of symbols xvii 1 Principles of renewable energy 1 1.1 Introduction 1 1.2 Energy and sustainable development 2 1.3 Fundamentals 7 1.4 Scientific principles of renewable energy 12 1.5 Technical implications 16 1.6 Social implications 22 Problems 24 Bibliography 25 2 Essentials of fluid dynamics 29 2.1 Introduction 29 2.2 Conservation of energy: Bernoulli’s equation 30 2.3 Conservation of momentum 32 2.4 Viscosity 33 2.5 Turbulence 34 2.6 Friction in pipe flow 35 2.7 Lift and drag forces: fluid and turbine machinery 39 Problems 41 Bibliography 44 3 Heat transfer 45 3.1 Introduction 45 3.2 Heat circuit analysis and terminology 46 3.3 Conduction 49 vi Contents 3.4 Convection 51 3.5 Radiative heat transfer 61 3.6 Properties of ‘transparent’ materials 73 3.7 Heat transfer by mass transport 74 3.8 Multimode transfer and circuit analysis 77 Problems 80 Bibliography 82 4 Solar radiation 85 4.1 Introduction 85 4.2 Extraterrestrial solar radiation 86 4.3 Components of radiation 87 4.4 Geometry of the Earth and Sun 89 4.5 Geometry of collector and the solar beam 93 4.6 Effects of the Earth’s atmosphere 98 4.7 Measurements of solar radiation 104 4.8 Estimation of solar radiation 107 Problems 110 Bibliography 112 5 Solar water heating 115 5.1 Introduction 115 5.2 Calculation of heat balance: general remarks 118 5.3 Uncovered solar water heaters – progressive analysis 119 5.4 Improved solar water heaters 123 5.5 Systems with separate storage 129 5.6 Selective surfaces 134 5.7 Evacuated collectors 137 5.8 Social and environmental aspects 140 Problems 141 Bibliography 145 6 Buildings and other solar thermal applications 146 6.1 Introduction 146 6.2 Air heaters 147 6.3 Energy-efficient buildings 149 6.4 Crop driers 157 6.5 Space cooling 161 6.6 Water desalination 162 Contents vii 6.7 Solar ponds 164 6.8 Solar concentrators 166 6.9 Solar thermal electric power systems 170 6.10 Social and environmental aspects 173 Problems 175 Bibliography 179 7 Photovoltaic generation 182 7.1 Introduction 182 7.2 The silicon p–n junction 184 7.3 Photon absorption at the junction 193 7.4 Solar radiation absorption 197 7.5 Maximising cell efficiency 200 7.6 Solar cell construction 208 7.7 Types and adaptations of photovoltaics 210 7.8 Photovoltaic circuit properties 220 7.9 Applications and systems 224 7.10 Social and environmental aspects 229 Problems 233 Bibliography 234 8 Hydro-power 237 8.1 Introduction 237 8.2 Principles 240 8.3 Assessing the resource for small installations 240 8.4 An impulse turbine 244 8.5 Reaction turbines 249 8.6 Hydroelectric systems 252 8.7 The hydraulic ram pump 255 8.8 Social and environmental aspects 257 Problems 258 Bibliography 261 9 Power from the wind 263 9.1 Introduction 263 9.2 Turbine types and terms 268 9.3 Linear momentum and basic theory 273 9.4 Dynamic matching 283 9.5 Blade element theory 288 viii Contents 9.6 Characteristics of the wind 290 9.7 Power extraction by a turbine 305 9.8 Electricity generation 307 9.9 Mechanical power 316 9.10 Social and environmental considerations 318 Problems 319 Bibliography 322 10 The photosynthetic process 324 10.1 Introduction 324 10.2 Trophic level photosynthesis 326 10.3 Photosynthesis at the plant level 330 10.4 Thermodynamic considerations 336 10.5 Photophysics 338 10.6 Molecular level photosynthesis 343 10.7 Applied photosynthesis 348 Problems 349 Bibliography 350 11 Biomass and biofuels 351 11.1 Introduction 351 11.2 Biofuel classification 354 11.3 Biomass production for energy farming 357 11.4 Direct combustion for heat 365 11.5 Pyrolysis (destructive distillation) 370 11.6 Further thermochemical processes 374 11.7 Alcoholic fermentation 375 11.8 Anaerobic digestion for biogas 379 11.9 Wastes and residues 387 11.10 Vegetable oils and biodiesel 388 11.11 Social and environmental aspects 389 Problems 395 Bibliography 397 12 Wave power 400 12.1 Introduction 400 12.2 Wave motion 402 12.3 Wave energy and power 406 12.4 Wave patterns 412 12.5 Devices 418 Contents ix 12.6 Social and environmental aspects 422 Problems 424 Bibliography 427 13 Tidal power 429 13.1 Introduction 429 13.2 The cause of tides 431 13.3 Enhancement of tides 438 13.4 Tidal current/stream power 442 13.5 Tidal range power 443 13.6 World range power sites 447 13.7 Social and environmental aspects of tidal range power 449 Problems 450 Bibliography 451 14 Ocean thermal energy conversion (OTEC) 453 14.1 Introduction 453 14.2 Principles 454 14.3 Heat exchangers 458 14.4 Pumping requirements 464 14.5 Other practical considerations 465 14.6 Environmental impact 468 Problems 469 Bibliography 469 15 Geothermal energy 471 15.1 Introduction 471 15.2 Geophysics 472 15.3 Dry rock and hot aquifer analysis 475
Recommended publications
  • Development of a Racing Strategy for a Solar Car
    DEVELOPMENT OF A RACING STRATEGY FOR A SOLAR CAR A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ETHEM ERSÖZ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING SEPTEMBER 2006 Approval of the Graduate School of Natural and Applied Sciences Prof. Dr. Canan Özgen Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science Prof. Dr. Kemal İder Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science Asst. Prof. Dr. İlker Tarı Supervisor Examining Committee Members Prof. Dr. Y. Samim Ünlüsoy (METU, ME) Asst. Prof. Dr. İlker Tarı (METU, ME) Asst. Prof. Dr. Cüneyt Sert (METU, ME) Asst. Prof. Dr. Derek Baker (METU, ME) Prof. Dr. A. Erman Tekkaya (Atılım Ü., ME) I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Ethem ERSÖZ Signature : iii ABSTRACT DEVELOPMENT OF A RACING STRATEGY FOR A SOLAR CAR Ersöz, Ethem M. S., Department of Mechanical Engineering Supervisor : Asst. Prof. Dr. İlker Tarı December 2006, 93 pages The aerodynamical design of a solar race car is presented together with the racing strategy.
    [Show full text]
  • The History of Solar
    Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth.
    [Show full text]
  • Heuristic Optimization for the Energy Management and Race Strategy of a Solar Car
    sustainability Article Heuristic Optimization for the Energy Management and Race Strategy of a Solar Car Esteban Betancur 1,*, Gilberto Osorio-Gómez 1 ID and Juan Carlos Rivera 2 ID 1 Universidad EAFIT, Design Engineering Research Group (GRID), Cra. 49 N. 7 Sur 50, Medellín 050002, Colombia; gosoriog@eafit.edu.co 2 Universidad EAFIT, Functional Analysis and Applications Research Group, Cra. 49 N. 7 Sur 50, Medellín 050002, Colombia; jrivera6@eafit.edu.co * Correspondence: ebetanc2@eafit.edu.co; Tel.: +57-3136726555 Received: 7 July 2017; Accepted: 1 September 2017; Published: 26 September 2017 Abstract: Solar cars are known for their energy efficiency, and different races are designed to measure their performance under certain conditions. For these races, in addition to an efficient vehicle, a competition strategy is required to define the optimal speed, with the objective of finishing the race in the shortest possible time using the energy available. Two heuristic optimization methods are implemented to solve this problem, a convergence and performance comparison of both methods is presented. A computational model of the race is developed, including energy input, consumption and storage systems. Based on this model, the different optimization methods are tested on the optimization of the World Solar Challenge 2015 race strategy under two different environmental conditions. A suitable method for solar car racing strategy is developed with the vehicle specifications taken as an independent input to permit the simulation of different solar or electric vehicles. Keywords: solar car; race strategy; energy management; heuristic optimization; genetic algorithms 1. Introduction Solar car races are well-known as universities and college competitions with the aim of of promoting alternative energies and energy efficiency.
    [Show full text]
  • Thesis Title
    Decision and control system of a solar powered train Maria Beatriz Namorado Stoffel Feria´ Dissertac¸ao˜ para obter o grau de Mestre em Engenharia Electrotecnica´ e de computadores J ´uri Presidente: Doutor Carlos Filipe Gomes Bispo Orientador: Doutor Joao˜ Fernando Cardoso Silva Sequeira Arguente: Doutor Hugo Filipe Costelha de Castro Vogal: Doutor Horacio´ Joao˜ Matos Fernandes Abril 2012 Reasonable people adapt to the world. Unreasonable people persist in trying to adapt the world to themselves. Therefore, all progress depends on unreasonable people. George Bernard Shaw Acknowledgments I would like to express my appreciation to my advisor Professor Joao˜ Sequeira for his guidance and continuous support through the development of my thesis. All the positive and constructive dis- cussions that we had during these last months motivated me and pushed me into wanting to do better, investigate more and find new solutions so that both of us could feel proud of our work. Abstract This thesis addresses the design and simulation of a Decision and Control System (DCS) for a Solar Powered Train (SPT). An intelligent control approach is followed, namely by modeling the whole infrastructure as a discrete event system, represented by Petri nets (PNs), and designing a supervisory controller for the whole system. The DCS is able to manage all energy consumption devices onboard the train, namely, solar panels, batteries, sensors and computational devices, in order to ensure that the train finishes its missions successfully. The system uses previously acquired information on the topology of the line, e.g., length and slopes, locations of the intermediate stations, dynamics of the train, current solar irra- diance and weather forecasting, and passenger weight to determine boundaries on the train velocity profile.
    [Show full text]
  • Teaching Instrumentation Through Solar Car Racing
    Session 1359 Teaching Instrumentation through Solar Car Racing Michael J. Batchelder, Electrical and Computer Engineering Department Daniel F. Dolan, Mechanical Engineering Department South Dakota School of Mines and Technology Abstract Solar car racing has been a means of motivating hands-on engineering education through competition among North American higher education institutions. Sunrayce, and now Formula Sun and American Solar Challenge, have tested the abilities of engineering students over the past decade. Proper instrumentation of the vehicle is critical for testing during the vehicle design and for successful racing. As an important part of the solar car team, the instrumentation team not only learns technical skills, but also the soft skills of planning, managing, and working with others to reach a common goal. Introduction Focusing engineering education on projects and competitions is a popular approach to giving students experience with real open-ended design problems, teamwork, communication, and leadership1,2,3,4. ABET requires engineering programs to demonstrate that their graduates have fundamental knowledge and know how to apply it working in teams. Student teams participating in solar car racing develop not only technical skills, but also communication, project management, and teaming skills. The Center for Advanced Manufacturing and Production (CAMP)5,6 at the South Dakota School of Mines and Technology promotes engineering education through team-based projects. One of these team projects is the solar car competition. Sunrayce, patterned after the World Solar Challenge in Australia, has been a biennial competition among North American higher education institutions. Students design, build, and race solar powered vehicles on secondary roads over a ten day period.
    [Show full text]
  • Analysis and Optimization of Electrical Systems in a Solar Car with Applications to Gato Del Sol Iii-Iv
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2010 ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV Krishna Venkatesh Prayaga University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Prayaga, Krishna Venkatesh, "ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV" (2010). University of Kentucky Master's Theses. 29. https://uknowledge.uky.edu/gradschool_theses/29 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV Gato del Sol III, was powered by a solar array of 480 Silicon mono-crystalline photovoltaic cells. Maximum Power Point trackers efficiently made use of these cells and tracked the optimal load. The cells were mounted on a fiber glass and foam core composite shell. The shell rides on a lightweight aluminum space frame chassis, which is powered by a 95% efficient brushless DC motor. Gato del Sol IV was the University of Kentucky Solar Car Team’s (UKSCT) entry into the American Solar Car Challenge (ASC) 2010 event. The car makes use of 310 high density lithium-polymer batteries to account for a 5 kWh pack, enough to travel over 75 miles at 40 mph without power generated by the array.
    [Show full text]
  • Designing, Building of Solar Race Car for the World Solar Challenge (Phase I)
    Universal Journal of Mechanical Engineering 3(4): 122-130, 2015 http://www.hrpub.org DOI: 10.13189/ujme.2015.030402 Designing, Building of Solar Race Car for the World Solar Challenge (Phase I) Nader A. Nader*, Mohammad Ghoneim, Rami S. Alsayed Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, KSA Copyright © 2015 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License. Abstract The purpose of this project is to design and The cars require intensive support teams similar in size to build a solar race car for the world solar challenge. Three professional motor racing teams. This is especially the case main goals were targeted for the competition: lightweight, with the World Solar Challenge where sections of the race aerodynamics, and efficiency. The renewable energy is run through very remote country. The solar car will travel becoming an alternative source for the fossil fuel. Solar escorted by a small caravan of support cars. In a long energy in particular is abundant all year round within the distance race each solar car will be preceded by a lead car Kingdome of Saudi Arabia. It is vital for the whole that can identify problems or obstacles ahead of the race car. community to utilize this free energy into many areas such as Behind the solar car there will be a mission control vehicle power generation and building of solar cars. As many studies from which the race pace is controlled [2]. Here tactical pointed out that the consumption of oil within the Kingdome decisions are made based on information from the solar car is an alarming four million barrel per day.
    [Show full text]
  • Solar Eagle Ii Technical Report
    SOLAR EAGLE II TECHNICAL REPORT January, 1995 School of Engineering and Technology California State University, Los Angeles NASA-CR-t98043 OC/ - SOLAR EAGLE II PROJECT NAG-l-1455 FINAL TECHNICAL REPORT September 15, 1992 to November 15, 1993 Richard D. Roberto Principal Investigator California State University Los Angeles 5151 State University Drive Los Angeles, CA 90032 (NASA-CR-198043) SOLAR EAGLE 2 N95-24199 Final Technical Report, 15 Sep. 1992 - 15 Nov. 1993 (California State Univ.) 58 p Unclas G3/44 0045317 SOLAR EAGLE II TECHNICAL REPORT Prepared by: Richard Roberto, Professor Mechanical Engineering y: School of Engineering and Technology School of Engineering and Technology California State University, Los Angeles V January, 1995 TABLE OF CONTENTS SUMMARY .................................................... i INTRODUCTION ............................................... 1 Background .............................................. 1 Cal State L.A.'s Response ..................................... 2 Development of Team Solar Eagle .............................. 3 Design Overview ........................................... 5 Summary of Vehicle Fabrication ................................ 7 Final Vehicle Specification .................................... 8 DESIGN AND FABRICATION OF SOLAR EAGLE ..................... 10 Aerodynamic Design/Selection of the External Shape ................ 10 Mechanical Systems ....................................... 13 Electrical Systems ......................................... 16 Solar Power System ......................................
    [Show full text]
  • Decision Making for the Design of Solar Cars and Basis for Driving Strategy
    Decision making for the design of solar cars and basis for driving strategy General estimation of recommended mean speed for solar cars Main Subject area: Computer Engineering Author: Isac Sélea, Håkan Thorleifsson Supervisor: Rickard Nyberg JÖNKÖPING 2021 February This final thesis has been carried out at the School of Engineering at Jönköping University within Computer Engineering. The authors are responsible for the presented opinions, conclusions, and results. Examiner: Rachid Oucheikh Supervisor: Rickard Ninde Scope: 15 hp (first-cycle education) Date: 2021-08-07 i Abstract The global interest in green vehicles has been growing since it is letting out less pollution than normal internal combustion engines (ICE) and many people want to get into the ecological-friendly alternative mode of transport. The solar car is one of these types of green vehicles, which is powered by renewable energy with zero emissions. The solar car makes use of its solar panel that uses photovoltaic cells to convert sunlight into electricity to the batteries and to also power the electric motor. The state of solar cars is that it is almost exclusively for competition and when competing a strategy is needed to get the best placement. Having knowledge about how the car is behaving is a good basis for building a driving strategy. Therefore, a case study is made on World Solar Challenge (WSC) focused on the cars of JU Solar team with the use of datasets such as topographical data and solar irradiation. An optimization model is made that inputs these datasets and simulates a time period (an hour) and checks the set battery discharge rate (BDR or C rating).
    [Show full text]
  • Operation Technology of Solar Photovoltaic Power Station Roof and Policy Framework
    Operation Technology of Solar Photovoltaic Power Station Roof and Policy Framework Expert Group on New and Renewable Energy Technologies (EGNRET) Of Energy Working Group (EWG) (May 2014) Operation Technology of Solar Photovoltaic Power Station Roof and Policy Framework APEC Project: EWG 24 2012A -- Operation Technology of Solar Photovoltaic Power Station Roof and Policy Framework Produced by Beijing QunLing Energy Resources Technology Co., Ltd For Asia Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace Singapore 119616 Tel: (65) 68919 600 Fax: (65) 68919 690 Email: [email protected] Website: www.apec.org © 2014 APEC Secretariat APEC Publication number : APEC#214-RE-01.8 Page 2 of 170 Operation Technology of Solar Photovoltaic Power Station Roof and Policy Framework Operation Technology of Solar Photovoltaic Power Station Roof and Policy Framework Content 1 Introduction.............................................................................................8 1.1 Background ..................................................................................................... 8 1.2 Project Goal................................................................................................... 12 1.2.1 Solar Resources Analysis.......................................................................... 12 1.2.2 PV Technology Development .................................................................... 12 1.2.3 Policy Review ............................................................................................ 12 1.2.4 PV
    [Show full text]
  • Solar Botanic Tree to Harnessing the Power of the Sun and Wind
    IJCSNT Vol.6, No.3, 2017 DOI- 10.18486/ijcsnt.2017.6.3.04 Solar Botanic Tree to Harnessing the Power of the Sun and Wind Vikrant Kumar Dept of Electrical Engineering, THDC IHET, B.Puram, Uttarakhand, India [email protected] Mohd Azmal Mansoori Dept of Electrical Engineering, THDC IHET, B.Puram, Uttarakhand, India Ashutosh puri Dept of Electrical Engineering, THDC IHET, B.Puram, Uttarakhand, India Abstract: In the course of the beyond few decades, the advanced technological nation of the words had been engaged in an electricity and assets race that has introduced us to the location of the energy crisis. Many developing countries including India have also been engaged in this race during the last two decades or so. it is now widely diagnosed that the fossil fuels and other traditional assets, presently used in the generation of electrical energy, may not be either sufficient or suitable to preserve tempo with the ever growing world call for electric energy. The prospects for assembly this call for and heading off a crisis in delivering would be progressed if new and alternative power sources can be advanced. One such alternative is solar botanic tree, this energy source will produce electrical energy from three natural and inexhaustible energy sources. This solar botanic tree can be the best available renewable resource in India for generating electricity. Keywords: Renewable energy resources, Solar Botanic tree, Nano leaves, Nano inverter, transducer. I. Introduction generating system which is compact enough to be applied in congested location and versatile enough to In countries like India, strength intake has been growing employ two or more sources simultaneously.
    [Show full text]
  • Design and Implementation of a PV Powered Tri-Cycle
    Current World Environment Vol. 11(1), 83-88 (2016) Design and Implementation of a PV powered Tri-cycle SOUMYA DAS1, PRADIP K SADHU2, SUPRAVA CHAKRABORTY*2, SAUMEN DHARA3 and SHRAMABATI SEN1 1Department of Electrical Engineering, University Institute of Technology, Burdwan, WB-713104, India. 2Electrical Engineering Department, Indian School of Mines (Under MHRD, Govt. of India), Dhanbad - 826004, India. 3Department of Electrical Engineering, Saroj Mohan Institute of Technology, Guptipara, Hooghly, WB -712512, India. http://dx.doi.org/10.12944/CWE.11.1.11 (Received: February 24, 2016; Accepted: April 03, 2016) ABSTRACT Solar PV technology is one of the first among the various renewable energy technologies that have been adopted and accepted universally in order to meet the basic needs of generation of electricity. The objective of this paper is to propose a tri-cycle that utilises the application of stand- alone photovoltaic (PV) system. A preliminary design and construction of a solar tri-cycle has been performed by evaluating and estimating the required panel size, battery capacity and motor power. Calculation in this paper exhibit that the solar power alone will be sufficient to operate a tri-cycle from one place to another. Keywords: PV, Tri-cycle, PMDC motor, Charge Controller, DPDT switch. INTRODUCTION a vehicle is expected to have very limited range (40 to 50 km), the possibility of being able to drive a In this rapidly growing and ever evolving tri-cycle to work, recharge the batteries with solar society, the transportation sector has been energy during the day, and drive back home at night progressing heavily day by day.
    [Show full text]