A Novel, Internet-Based Tool to Assess the Oncogenic Potential of Genes Authors

Total Page:16

File Type:pdf, Size:1020Kb

A Novel, Internet-Based Tool to Assess the Oncogenic Potential of Genes Authors OncoScore: a novel, Internet-based tool to assess the oncogenic potential of genes Authors: Piazza Rocco1, Ramazzotti Daniele2, Spinelli Roberta1, Pirola Alessandra3, De Sano Luca4, Ferrari Pierangelo3, Magistroni Vera1, Cordani Nicoletta1, Sharma Nitesh5, Gambacorti-Passerini Carlo1 1) University of Milano-Bicocca, Dept. of Medicine and Surgery, Monza, 20900, Italy 2) Stanford University, Dept. of Pathology, California 94305, USA 3) GalSeq s.r.l., viale Italia 46, Monza, 20900, Italy 4) University of Milano-Bicocca, Dept. of Informatics, 20125, Milano 5) University of New Mexico, Department of Pediatrics, Albuquerque Suppl. Fig. 1. Distribution of the OncoScore across all the genes with more than 10 citations as of January 2016. Suppl. Tab. 1. List of all the cancer genes comprised in the Cancer Gene Census dataset. Cancer Cancer Tumor Tumor Cancer Chr Cancer Tissue Mutation Translocation Symbol Chr Somatic Germline Types Types Molecular Band Syndrome Type Type Partner Mut Mut (Somatic) (Germline) Genetics 9q34. CML, ALL, BCR, ETV6, ABL1 9 1 yes T-ALL L Dom T, Mis NUP214 1q24- ABL2 1 q25 yes AML L Dom T ETV6 ACSL3 2 2q36 yes prostate E Dom T ETV1 AF15Q1 4 15 15q14 yes AML L Dom T MLL AF1Q 1 1q21 yes ALL L Dom T MLL AF3p21 3 3p21 yes ALL L Dom T MLL AF5q31 5 5q31 yes ALL L Dom T MLL 7q21- papillary AKAP9 7 q22 yes thyroid E Dom T BRAF breast, colorectal, 14q32 ovarian, AKT1 14 .32 yes NSCLC E Dom Mis 19q13 .1- ovarian, AKT2 19 q13.2 yes pancreatic E Dom A 12q24 leiomyom ALDH2 12 .2 yes a M Dom T HMGA2 NPM1, TPM3, TFG, TPM4, ATIC, CLTC, MSN, ALCL, ALO17, NSCLC, familial CARS, neuroblast neuroblast neuroblast EML4, ALK 2 2p23 yes yes oma oma oma L, E, M Dom T, Mis, A KIF5B, C2orf22 17q25 ALO17 17 .3 yes ALCL L Dom T ALK colorectal, colorectal, pancreatic pancreatic adenomat , desmoid, , desmoid, ous hepatobla hepatobla polyposis stoma, stoma, coli; glioma, glioma, Turcot D, Mis, APC 5 5q21 yes yes other CNS other CNS syndrome E, M, O Rec N, F, S ARHGE 11q23 F12 11 .3 yes AML L Dom T MLL ARHH 4 4p13 yes NHL L Dom T BCL6 clear cell ovarian 1p35. carcinoma Mis, N, ARID1A 1 3 yes , RCC E Rec F, S, D hepatocell ular ARID2 12 12q12 yes carcinoma E Rec N, S, F ARNT 1 1q21 yes AML L Dom T ETV6 alveolar ASPSC soft part R1 17 17q25 yes sarcoma M Dom T TFE3 20q11 MDS, ASXL1 20 .1 yes CMML L Rec F, N, Mis malignant melanoma of soft parts, angiomato id fibrous histiocyto EWSR1, ATF1 12 12q13 yes ma E, M Dom T FUS ATIC 2 2q35 yes ALCL L Dom T ALK leukemia, lymphoma , medullobl ataxia- 11q22 astoma, telangiect D, Mis, ATM 11 .3 yes yes T-PLL glioma asia L, O Rec N, F, S Pancreatic neuroendo crine tumors, Xq21. paediatric ATRX X 1 yes GBM E Rec Mis, F, N colorectal, endometri al, prostate and hepatocell ular carcinoma s, hepatobla stoma, sporadic 16p13 medullobl D, Mis, AXIN1 16 .3 yes yes astoma E, O Rec N, F, S uveal melanoma mesotheli 3p21. , breast, oma, 31- NSCLC, uveal N, Mis, BAP1 3 p21.2 yes RCC melanoma E Rec F, S, O BCL10 1 1p22 yes MALT L Dom T IGH@ BCL11A 2 2p13 yes B-CLL L Dom T IGH@ 14q32 BCL11B 14 .1 yes T-ALL L Dom T TLX3 18q21 BCL2 18 .3 yes NHL, CLL L Dom T IGH@ BCL3 19 19q13 yes CLL L Dom T IGH@ BCL5 17 17q22 yes CLL L Dom T MYC IG loci, ZNFN1A1, LCP1, PIM1, TFRC, CIITA, NACA, HSPCB, HSPCA, HIST1H4I, IL21R, POU2AF1, ARHH, EIF4A2, BCL6 3 3q27 yes NHL, CLL L Dom T, Mis SFRS3 12q24 BCL7A 12 .1 yes BNHL L Dom T MYC BCL9 1 1q21 yes B-ALL L Dom T IGH@, IGL@ retinoblast oma, AML, APL Xp11. (translocat F, N, S, BCOR X 4 yes ion) Rec T RARA ABL1, 22q11 CML, ALL, FGFR1, BCR 22 .21 yes AML L Dom T JAK2 renal, fibrofollicul omas, Birt-Hogg- 17p11 trichodisco Dube BHD 17 .2 yes mas syndrome E, M Rec? Mis. N, F 11q22 BIRC3 11 -q23 yes MALT L Dom T MALT1 leukemia, lymphoma , skin squamous cell, other 15q26 tumor Bloom BLM 15 .1 yes types syndrome L, E Rec Mis, N, F gastrointe BMPR1 10q22 stinal juvenile A 10 .3 yes polyps polyposis E Rec Mis, N, F melanoma , colorectal, papillary thyroid, borderline ovarian, NSCLC, cholangioc arcinoma, pilocytic astrocyto AKAP9, BRAF 7 7q34 yes ma E Dom Mis, T, O KIAA1549 hereditary breast/ova breast, rian D, Mis, BRCA1 17 17q21 yes yes ovarian ovarian cancer E Rec N, F, S breast, ovarian, pancreatic hereditary breast, , leukemia breast/ova ovarian, (FANCB, rian D, Mis, BRCA2 13 13q12 yes yes pancreatic FANCD1) cancer L, E Rec N, F, S lethal midline carcinoma of young BRD3 9 9q34 yes people E Dom T C15orf55 lethal midline carcinoma 19p13 of young BRD4 19 .1 yes people E Dom T C15orf55 Fanconi anaemia J, breast AML, cancer leukemia, susceptibli BRIP1 17 17q22 yes breast ty L, E Rec F, N, Mis BTG1 12 12q22 yes BCLL L Dom T MYC mosaic variegated rhabdomy aneuploid Mis, N, BUB1B 15 15q15 yes osarcoma y M Rec F, S 12q14 C12orf9 12 .3 yes lipoma M Dom T LPP C15orf2 15q21 1 15 .1 yes prostate E Dom T ETV1 lethal C15orf5 midline 5 15 15q14 yes carcinoma E Dom T BRD3, BRD4 PMBL, C16orf7 16p13 Hodgkin 5 16 .13 yes lymphoma L Dom T CIITA 2p23. C2orf44 2 3 yes NSCLC E Dom T ALK 1p36. epithelioid 31- haemangi CAMTA p36.2 oendotheli 1 1 3 yes oma M Dom T WWTR1 CANT1 17 17q25 yes prostate E Dom T ETV4 CARD11 7 7p22 yes DLBCL L Dom Mis 11p15 CARS 11 .5 yes ALCL L Dom T ALK CBFA2T 1 8 8q22 yes AML L Dom T MLL, RUNX1 CBFA2T 3 16 16q24 yes AML L Dom T RUNX1 CBFB 16 16q22 yes AML L Dom T MYH11 AML, 11q23 JMML, T, Mis S, CBL 11 .3 yes MDS L Dom, Rec O MLL 3q13. CBLB 3 11 yes AML L Rec Mis S 19q13 CBLC 19 .2 yes AML L Rec M CCDC6 10 10q21 yes NSCLC E Dom T RET CCNB1I 14q11 leiomyom P1 14 .2 yes a M Dom T HMGA2 CLL, B- ALL, IGH@, CCND1 11 11q13 yes breast L, E Dom T FSTL3 CCND2 12 12p13 yes NHL,CLL L Dom T IGL@ CCND3 6 6p21 yes MM L Dom T IGH@ serous CCNE1 19 19q12 yes ovarian E Dom A PMBL, 9p24. Hodgkin CD273 9 2 yes lymphoma L Dom T CIITA PMBL, Hodgkin CD274 9 9p24 yes lymphoma L Dom T CIITA CD74 5 5q32 yes NSCLC E Dom T ROS1 19q13 CD79A 19 .2 yes DLBCL L Dom O, S CD79B 17 17q23 yes DLBCL L Dom Mis, O lobular familial 16q22 breast, gastric Mis, N, CDH1 16 .1 yes yes gastric gastric carcinoma E Rec F, S aneurysm 16q22 al bone CDH11 16 .1 yes cyst M Dom T USP6 serous CDK12 17 17q12 yes ovarian E Rec Mis, N, F familial malignant CDK4 12 12q14 yes melanoma melanoma E Dom Mis 7q21- CDK6 7 q22 yes ALL L Dom T MLLT10 melanoma , multiple other melanoma familial CDKN2 tumor , malignant L, E, M, D, Mis, A 9 9p21 yes yes types pancreatic melanoma O Rec N, F, S melanoma , multiple other melanoma familial CDKN2a tumor , malignant L, E, M, (p14) 9 9p21 yes yes types pancreatic melanoma O Rec D, S CDKN2 glioma, C 1 1p32 yes MM O, L Rec D 13q12 CDX2 13 .3 yes AML L Dom T ETV6 19q13 AML, CEBPA 19 .1 yes MDS L Dom Mis, N, F CEP1 9 9q33 yes MPD, NHL L Dom T FGFR1 salivary CHCHD 8q11. gland 7 8 2 yes adenoma E Dom T PLAG1 familial 22q12 breast CHEK2 22 .1 yes breast cancer E Rec F 4q11- CHIC2 4 q12 yes AML L Dom T ETV6 extraskele tal myxoid 2q31- chondrosa CHN1 2 q32.1 yes rcoma M Dom T TAF15 oligodendr oglioma, 19q13 soft tissue Mis, F, CIC 19 .2 yes sarcoma O Rec S,T DUX4 FLJ27352, CD274, CD273, RALGDS, PMBL, RUNDC2A, Hodgkin C16orf75, CIITA 16 16p13 yes lymphoma L Dom T BCL6 17q11 ALCL, CLTC 17 -qter yes renal L Dom T ALK, TFE3 22q11 CLTCL1 22 .21 yes ALCL L Dom T ? CMKOR 2q37. 1 2 3 yes lipoma M Dom T HMGA2 19q13 CNOT3 19 .4 yes T-ALL L Dom Mis, N dermatofib rosarcoma protubera ns, 17q21 aneurysm .31- al bone PDGFB, COL1A1 17 q22 yes cyst M Dom T USP6 prostate, COPEB 10 10p15 yes glioma E, O Rec Mis, N uterine 8q22- leiomyom COX6C 8 q23 yes a M Dom T HMGA2 clear cell sarcoma, angiomato id fibrous histiocyto CREB1 2 2q34 yes ma M Dom T EWSR1 CREB3L 11p11 myxofibro 1 11 .2 yes sarcoma M Dom T FUS CREB3L fibromyxoi 2 7 7q34 yes d sarcoma M Dom T FUS ALL, AML, CREBB 16p13 DLBCL, B- T, N, F, MLL, MORF, P 16 .3 yes NHL L Dom/Rec Mis, O RUNXBP2 Xp22. B-ALL, 3; Downs Yp11. associated P2RY8, CRLF2 X,Y 3 yes ALL L Dom Mis, T IGH@ salivary gland 15q26 mucoepid CRTC3 15 .1 yes ermoid E Dom T MAML2 colorectal, ovarian, hepatobla stoma, pleomorph ic salivary gland adenoma, other 3p22- tumor CTNNB1 3 p21.3 yes types E, M, O Dom H, Mis, T PLAG1 familial 16q12 cylindrom cylindrom cylindrom Mis, N, CYLD 16 -q13 yes yes a a atosis E Rec F, S papillary D10S17 thyroid, RET, 0 10 10q21 yes CML E Dom T PDGFRB pancreatic neuroendo crine tumor, paediatric 6p21.
Recommended publications
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Mapk8ip1 (NM 011162) Mouse Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MG226852 Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone Tag: TurboGFP Symbol: Mapk8ip1 Synonyms: IB1; JIP-1; Jip1; mjip-2a; Prkm8ip; Skip Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 5 Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone – MG226852 ORF Nucleotide >MG226852 representing NM_011162 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCGGAGCGAGAGAGCGGCCTGGGCGGGGGCGCCGCGTCCCCACCGGCCGCTTCCCCATTCCTGGGAC TGCACATCGCGTCGCCTCCCAATTTCAGGCTCACCCATGACATCAGCCTGGAGGAGTTTGAGGATGAAGA CCTTTCGGAGATCACTGACGAGTGTGGCATCAGCCTGCAGTGCAAAGACACCCTGTCTCTCCGGCCCCCG CGCGCCGGGCTGCTGTCTGCGGGTAGCAGCGGCAGCGCGGGGAGCCGGCTGCAGGCGGAGATGCTGCAGA TGGACCTGATCGACGCGGCAGGTGACACTCCGGGCGCCGAGGACGACGAGGAGGAGGAGGACGACGAGCT CGCTGCCCAACGACCAGGAGTGGGGCCTCCCAAAGCGGAGTCCAACCAGGATCCGGCGCCTCGCAGCCAG GGCCAGGGCCCGGGCACAGGCAGCGGAGACACCTACCGACCCAAGAGGCCTACCACGCTCAACCTTTTCC CGCAGGTGCCGCGGTCTCAGGACACGCTGAATAATAACTCTTTAGGCAAAAAGCACAGTTGGCAGGACCG TGTGTCTCGATCATCCTCCCCTCTGAAGACAGGAGAACAGACGCCTCCACATGAACACATCTGCCTGAGT
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Tranexamic Acid Inhibits the Plasma and Non-Irradiated Skin Markers Of
    Biomedicine & Pharmacotherapy 107 (2018) 54–58 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha Original Article Tranexamic acid inhibits the plasma and non-irradiated skin markers of photoaging induced by long-term UVA eye irradiation in female mice T ⁎ Keiichi Hiramotoa, , Yurika Yamatea, Daijiro Sugiyamab, Kazunari Matsudab, Yasutaka Iizukab, Tomohiko Yamaguchib a Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagakicho, Suzuka, Mie, 513-8670, Japan b R&D Department, Daiichi Sankyo Healthcare Co., LTD., 3-14-10 Nihonbashi, Chuo-ku, Tokyo, 103-8234, Japan ARTICLE INFO ABSTRACT Keywords: Photoaging can be induced by long-term ultraviolet (UV)A eye irradiation, but an ameliorating method for such Tranexamic acid photoaging is not known. In this study, we examined the effects of tranexamic acid (trans-4-aminomethylcy- Photoaging clohexanecarboxylic acid) on photoaging of the skin induced by UVA eye irradiation. We used the C57BL/6 j Urocortin 2 female mice and locally exposed their eyes to UVA at a dose of 110 kJ/m2 using an FL20SBLB-A lamp multiple β-Endorphin times a week for one year. The plasma urocortin 2, β-endorphin, methionine enkephalin (OGF), and histamine Methionine encephalin content, as well as the expression of the corticotropin-releasing hormone receptor (CRHR) type 2, μ-opioid Histamine Estrogen receptor-β receptor, opioid growth factor receptor (OGFR), T-bet, and GATA3 increased in the mice subjected to UVA eye irradiation. However, the increased levels of urocortin 2, methionine enkephalin, histamine, OGFR, T-bet, and GATA3 were suppressed by tranexamic acid treatment.
    [Show full text]
  • Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
    Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • An Amino-Terminal Domain of Mxil Mediates Anti-Myc Oncogenic Activity and Interacts with a Homolog of the Yeast Transcriptional Repressor SIN3
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cell, Vol, 80, 777-786, March 10, 1995, Copyright © 1995 by Cell Press An Amino-Terminal Domain of Mxil Mediates Anti-Myc Oncogenic Activity and Interacts with a Homolog of the Yeast Transcriptional Repressor SIN3 Nicole Schreiber-Agus,*t Lynda Chin,*tt Ken Chen,t et al., 1990), and a carboxy-terminal a-helical domain re- Richard Torres, t Govinda Rao,§ Peter Guida,t quired for dimerization with another basic region-helix- Arthur h Skoultchi,§ and Ronald A. DePinhot Ioop-helix-leucine zipper (bHLH-LZ) protein, Max (Black- "rDepartments of Microbiology and Immunology wood and Eisenman, 1991; Prendergast et al., 1991). and of Medicine Many of the biochemical and biological activities of Myc §Department of Cell Biology appear to be highly dependent upon its association with ~Division of Dermatology Max (Blackwood and Eisenman, 1991 ; Prendergast et al., Albert Einstein College of Medicine 1991; Kretzner et al., 1992; Amati et al., 1993a, 1993b). Bronx, New York 10461 In addition to its key role as an obligate partner in transacti- vation-competent Myc-Max complexes, Max may also re- press Myc-responsive genes through the formation of Summary transactivation-inert complexes that are capable of bind- ing the Myc-Max recognition sequence (Blackwood et al., Documented interactions among members of the Myc 1992; Kato et al., 1992; Kretzner et al., 1992; Makela et superfamily support a yin-yang model for the regula- al., 1992; Mukherjee et al., 1992; Prendergast et al., 1992; tion of Myc-responsive genes in which t ransactivation- Ayer et al., 1993; Zervos et al., 1993).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Rationale for the Development of Alternative Forms of Androgen Deprivation Therapy
    248 S Kumari, D Senapati et al. New approaches to inhibit 24:8 R275–R295 Review AR action Rationale for the development of alternative forms of androgen deprivation therapy Sangeeta Kumari1,*, Dhirodatta Senapati1,* and Hannelore V Heemers1,2,3 1Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA Correspondence 2Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA should be addressed 3Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA to H V Heemers *(S Kumari and D Senapati contributed equally to this work) Email [email protected] Abstract With few exceptions, the almost 30,000 prostate cancer deaths annually in the United Key Words States are due to failure of androgen deprivation therapy. Androgen deprivation f androgen receptor therapy prevents ligand-activation of the androgen receptor. Despite initial remission f prostate cancer after androgen deprivation therapy, prostate cancer almost invariably progresses while f nuclear receptor continuing to rely on androgen receptor action. Androgen receptor’s transcriptional f coregulator output, which ultimately controls prostate cancer behavior, is an alternative therapeutic f transcription target, but its molecular regulation is poorly understood. Recent insights in the molecular f castration mechanisms by which the androgen receptor controls transcription of its target genes f hormonal therapy are uncovering gene specificity as well as context-dependency. Heterogeneity in the Endocrine-Related Cancer Endocrine-Related androgen receptor’s transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer’s clinical progression are active simultaneously in prostate cancer cells.
    [Show full text]
  • MTGR1 (CBFA2T2) (NM 001039709) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG202013 MTGR1 (CBFA2T2) (NM_001039709) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: MTGR1 (CBFA2T2) (NM_001039709) Human Tagged ORF Clone Tag: TurboGFP Symbol: CBFA2T2 Synonyms: EHT; MTGR1; p85; ZMYND3 Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 MTGR1 (CBFA2T2) (NM_001039709) Human Tagged ORF Clone – RG202013 ORF Nucleotide >RG202013 representing NM_001039709 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGGGTTTCACCATGTTGGCCAGGCTCGTCTTGAACTCCTGACCTCAGGTGATCTGCCTGCATTGGCCT CCCAACGTGCTGGGATTACAGTTGGTCCTGAGAAAAGGGTGCCAGCGATGCCTGGATCGCCTGTGGAAGT GAAGATACAGTCCAGATCCTCACCTCCCACCATGCCACCCCTCCCACCAATAAATCCTGGAGGACCGAGG CCAGTGTCCTTCACTCCTACTGCATTAAGCAATGGCATCAACCATTCTCCTCCTACCCTGAATGGTGCCC CATCACCGCCACAGAGATTCAGCAATGGTCCTGCCTCCTCCACATCATCTGCACTCACAAATCAGCAATT GCCAGCCACTTGTGGTGCTCGACAACTCAGCAAGTTGAAACGCTTTCTTACCACTCTGCAACAGTTTGGC AATGACATCTCCCCTGAGATTGGGGAGAAGGTGCGGACTCTTGTTCTTGCACTGGTGAACTCAACAGTGA CAATTGAGGAATTCCACTGTAAGCTCCAAGAAGCCACAAACTTTCCCCTTCGTCCTTTTGTGATTCCATT
    [Show full text]
  • DUSP10/MKP5 Antibody A
    Revision 1 C 0 2 - t DUSP10/MKP5 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 3 8 Web: [email protected] 4 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Endogenous 54 Rabbit Q9Y6W6 11221 Product Usage Information 3. Salojin, K. and Oravecz, T. (2007) J Leukoc Biol 81, 860-9. 4. Tanoue, T. et al. (2002) J Biol Chem 277, 22942-9. Application Dilution 5. Dickinson, R.J. and Keyse, S.M. (2006) J Cell Sci 119, 4607-15. 6. Wu, G.S. (2007) Cancer Metastasis Rev 26, 579-85. Western Blotting 1:1000 7. Teng, C.H. et al. (2007) J Biol Chem 282, 28395-407. 8. Zhang, Y. et al. (2004) Nature 430, 793-7. Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity DUSP10/MKP5 Antibody detects endogenous levels of total DUSP10 protein. Species Reactivity: Human, Mouse, Rat Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to human DUSP10. Antibodies are purified by protein A and peptide affinity chromatography. Background MAP kinases are inactivated by dual-specificity protein phosphatases (DUSPs) that differ in their substrate specificity, tissue distribution, inducibility by extracellular stimuli, and cellular localization. DUSPs, also known as MAPK phosphatases (MKP), specifically dephosphorylate both threonine and tyrosine residues in MAPK P-loops and have been shown to play important roles in regulating the function of the MAPK family (1,2).
    [Show full text]