Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources

Total Page:16

File Type:pdf, Size:1020Kb

Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources Proceedings of the Workshop on SPECIATION, TECHNIQUES AND FACILITIES FOR RADIOACTIVE MATERIALS AT SYNCHROTRON LIGHT SOURCES 4-6 October 1998 Grenoble, France co-sponsored by European Commission Forschungszentrum Rossendorf European Synchrotron Radiation Facility Commissariat à l’Énergie Atomique US Department of Energy NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter; Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996) and the Republic of Korea (12th December 1996). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention). NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of OEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japan became its first non-European full Member. NEA membership today consists of all OECD Member countries, except New Zealand and Poland. The Commission of the European Communities takes part in the work of the Agency. The primary objective of the NEA is to promote co-operation among the governments of its participating countries in furthering the development of nuclear power as a safe, environmentally acceptable and economic energy source. This is achieved by: − encouraging harmonization of national regulatory policies and practices, with particular reference to the safety of nuclear installations, protection of man against ionising radiation and preservation of the environment, radioactive waste management, and nuclear third party liability and insurance; − assessing the contribution of nuclear power to the overall energy supply by keeping under review the technical and economic aspects of nuclear power growth and forecasting demand and supply for the different phases of the nuclear fuel cycle; − developing exchanges of scientific and technical information particularly through participation in common services; − setting up international research and development programmes and joint undertakings. In these and related tasks, the NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has concluded a Co-operation Agreement, as well as with other international organisations in the nuclear field. © OECD 1999 Permission to reproduce a portion of this work for non-commercial purposes or classroom use should be obtained through the Centre français d’exploitation du droit de copie (CCF), 20, rue des Grands-Augustins, 75006 Paris, France, Tel. (33-1) 44 07 47 70, Fax (33-1) 46 34 67 19, for every country except the United States. In the United States permission should be obtained through the Copyright Clearance Center, Customer Service, (508)750-8400, 222 Rosewood Drive, Danvers, MA 01923, USA, or CCC Online: http://www.copyright.com/. All other applications for permission to reproduce or translate all or part of this book should be made to OECD Publications, 2, rue André-Pascal, 75775 Paris Cedex 16, France. FOREWORD X-ray spectroscopic and scattering techniques are powerful tools for providing molecular scale information on radionuclides in solution, and in crystalline and amorphous solids. They permit the characterisation of species that are important for chemical processing, waste management and materials identification and are a key link to laboratory-based techniques. Intense monochromatic X-ray photons, which are necessary for such experiments, are available only at synchrotron light sources. In order to study processes utilising radioactive materials with modern X-ray techniques, special procedures and facilities are necessary. At present a few synchrotron laboratories and users have set up procedures and facilities for the use of radioactive materials. Other synchrotron laboratories and user groups are constructing or planning such facilities. For this reason, the first Euroconference and NEA Workshop on Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, Actinide-XAS-98, was held from 4-6 October 1998 in Grenoble, France, with close to 100 participants from 15 countries (see Annex 1). It was hosted by the European Synchrotron Radiation Facility (ESRF), and organised mainly by the Forschungszentrum Rossendorf, Germany. The European Commission, the CEA (France) and the US DOE co-sponsored the meeting. There were 31 oral presentations and 22 posters covering: 1. Introduction to synchrotron radiation techniques, such as X-ray absorption spectroscopy, X-ray scattering, and X-ray imaging. 2. Results in the field of radionuclide/actinide chemistry and physics obtained by synchrotron radiation: • Radionuclides in the environment. • Nuclear waste management. • Separation technology. • General actinide chemistry. • Radiopharmaceutical chemistry. • Electronic and magnetic properties. 3. Status reports on current and future actinide experimental stations at synchrotron light sources. These proceedings contain the abstracts and some of the full papers presented at the meeting. The editors, Dr. Edelstein, Dr. Nitsche and Dr. Reich, and other anonymous referees reviewed the full papers. The organising committee (see Annex 2) wishes to acknowledge and thank these reviewers. 3 TABLE OF CONTENTS FOREWORD.................................................................................................................................... 3 EXECUTIVE SUMMARY.............................................................................................................. 11 Session I: INTRODUCTION TO SYNCHROTRON RADIATION TECHNIQUES ............ 13 Chairs: N.M. Edelstein, C. Madic, S. Tachimori, D.C. Koningsberger H. Nitsche, T. Reich, C. Hennig, A. Roßberg, G. Geipel, M.A. Denecke L. Baraniak, P. Panak, A. Abraham, B. Mack, S. Selenska-Pobell, G. Bernhard Application of Synchrotron Radiation Techniques to Radionuclide Studies................. 15 D.C. Koningsberger XAFS Spectroscopy: A Powerful Tool to Investigate Local Structure and Electronic Properties...................................................................................................... 29 J. Goulon Experimental Aspects of X-Ray Absorption Spectroscopy........................................... 31 A. Filipponi Theoretical Framework for Data and Error Analysis as Applied to X-Ray Absorption Spectroscopy............................................................................................... 33 V.I. Nefedov Introduction to X-Ray Photoelectron Spectroscopy: A Complementary Technique to X-Ray Absorption Spectroscopy ............................................................. 35 D.K. Shuh Introduction to Actinide Investigations with X-Ray Techniques Below 2 keV ............ 37 W. Matz Introduction to X-Ray Diffraction at Synchrotron Light Sources ................................. 39 G.H. Lander X-Ray Scattering Applied to Magnetism of the Actinides ............................................ 51 U. Wahlgren, B. Schimmelpfennig, L. Maron, V. Vallet, I. Grenthe, O. Gropen Molecular Modelling of Actinide Complexes ............................................................... 53 Session II: APPLICATIONS OF SYNCHROTRON TECHNIQUES....................................... 67 Chairs: P.G. Allen, F.R. Livens, A.M. Scheidegger, N. Baclet, D.K. Smith C. Madic, C. Den Auwer, R. Guillaumont Application of X-Ray Absorption Spectroscopy (XAS) to Actinide Solution Chemistry.......................................................................................................................69 5 P.M. Bertsch, D.B. Hunter, M. Duff Micro/Spatially Resolved XRF and XAFS for the In Situ Interrogation of Radionuclide Distribution and Speciation in Environmental Samples.......................... 81 T. Reich, H. Moll, M.A. Denecke, C. Hennig, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N.M. Edelstein, D.K. Shuh EXAFS Studies of Uranium(VI) Sorption on Mineral Surfaces.................................... 83 D.K. Veirs X-Ray Absorption Spectroscopy Studies of Plutonium Nitrate Species in Solution and on Ion Exchange Resins ....................................................................... 93 F. David, B. Fourest, S. Hubert, J.F. Le Du, R. Revel, C. Den Auwer, C. Madic, L.R. Morss, G. Ionova, V.
Recommended publications
  • Mineral Formation and Sorption Mechanisms in Marine Ferromanganese-Rich Sediments
    Mineral Formation and Sorption Mechanisms In Marine Ferromanganese-rich Sediments Amy Leanne Atkins Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment October 2014 The candidate confirms that the work submitted is her own, except where work, which has formed part of jointly authored publications has been included. The contributions of the candidate and the other authors to this work have been indicated overleaf. The candidate confirms that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgement. ii Declaration Chapter 4 is a reproduction of a peer-reviewed publication in the journal Geochimica et Cosmochimica Acta as: Atkins A. L., Shaw S., Peacock C. L. (2014) Nucleation and growth of todorokite: Implications for trace-metal cycling in marine sediments. Geochim. Cosmochim. Acta. 144, 109-125. TEM images presented in chapter 4 were collected by Michael Ward at the Leeds Electron Microscopy and Spectroscopy centre with the guidance of the candidate. All other experimental work has been conducted by the candidate. The interpretation of the experimental data, and preparation of the manuscript has been undertaken by the candidate with the help and guidance of her supervisors: Caroline L. Peacock and Sam Shaw. Chapter 5 is a reproduction of a manuscript currently in the final stages of preparation for submission to the journal Geochimica et Cosmochimica Acta as: Atkins A.
    [Show full text]
  • Crystallographic Determination of Wild Type, Mutant and Substrate
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Crystallographic Determination of Wild Type, Mutant and SubstrateSubstrate---- Analogue Inhibited Structures of Bacterial Members of a Family of Superoxide Dismutases bybyby Simon Hardie Oakley Submitted as part of the requirements for the degree of Doctor of Philosophy Institute of Fundamental Sciences, Chemistry Massey University, New Zealand 2009 i "Part of the inhumanity of the computer is that, once it is competently programmed and working smoothly, it is completely honest." Isaac Asimov (1920-92), author, inventor of the word “robotics”. ii 0.1 Abstract Crystallographic Determination of Wild Type, Mutant and Substrate-Analogue Inhibited Structures of Bacterial Members of a Family of Superoxide Dismutases The iron and manganese superoxide dismutases are a family of metallo-enzymes with highly conserved protein folds, active sites and dimer interfaces. They catalyse the elimination of the cytotoxic free radical superoxide to molecular oxygen and hydrogen peroxide by alternate reduction then oxidation of the active- site with the concomitant transfer of protons from the solvent. There are many key aspects of enzymatic function that lack a structural explanation. The focus of this study is on three crystal structures. The iron-substituted manganese superoxide dismutase from Escherichia coli complexed with azide, a substrate-mimicking inhibitor, was solved to 2.2 Å. This “wrong” metal form shows a binding pattern seen previously in the manganese superoxide dismutase from Thermus thermophilus.
    [Show full text]
  • Surface Geochemistry of the Clay Minerals
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3358–3364, March 1999 Colloquium Paper This paper was presented at the National Academy of Sciences colloquium ‘‘Geology, Mineralogy, and Human Welfare,’’ held November 8–9, 1998 at the Arnold and Mabel Beckman Center in Irvine, CA. Surface geochemistry of the clay minerals GARRISON SPOSITO*†,NEAL T. SKIPPER‡,REBECCA SUTTON*, SUNG-HO PARK*, ALAN K. SOPER§, AND JEFFERY A. GREATHOUSE¶ *Earth Sciences Division, Mail Stop 90y1116, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; ‡Department of Physics and Astronomy, University College, Gower Street, London WC1E 6BT, United Kingdom; §ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom; and ¶Department of Chemistry, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209 ABSTRACT Clay minerals are layer type aluminosilicates (6) and in the construction of environmental liners (7). Major that figure in terrestrial biogeochemical cycles, in the buff- impact on industrial organic synthesis comes in the many ering capacity of the oceans, and in the containment of toxic designed catalysts developed from clay minerals with adsorbed waste materials. They are also used as lubricants in petroleum polymeric cations (8). extraction and as industrial catalysts for the synthesis of many Certain clay minerals are isostructural with mica (1, 2) but organic compounds. These applications derive fundamentally are not as well crystallized because of random isomorphic from the colloidal size and permanent structural charge of cation substitutions in their structure (9, 10). These cation clay mineral particles, which endow them with significant substitutions lead to a negative net surface charge that induces surface reactivity.
    [Show full text]
  • Arsenic Adsorption Onto Minerals: Connecting Experimental Observations with Density Functional Theory Calculations
    Minerals 2014, 4, 208-240; doi:10.3390/min4020208 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Article Arsenic Adsorption onto Minerals: Connecting Experimental Observations with Density Functional Theory Calculations Heath D. Watts 1,*, Lorena Tribe 2 and James D. Kubicki 1,3,* 1 Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA 2 Division of Science, The Pennsylvania State University, Berks, Reading, PA 19610, USA; E-Mail: [email protected] 3 Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA * Authors to whom correspondence should be addressed; E-Mails: [email protected] (H.D.W.); [email protected] (J.D.K.); Tel.: +1-814-865-3951 (J.D.K.); Fax: +1-814-867-2378 (J.D.K). Received: 24 December 2013; in revised form: 25 February 2014 / Accepted: 6 March 2014 / Published: 27 March 2014 Abstract: A review of the literature about calculating the adsorption properties of arsenic onto mineral models using density functional theory (DFT) is presented. Furthermore, this work presents DFT results that show the effect of model charge, hydration, oxidation state, and DFT method on the structures and adsorption energies for AsIII and AsV onto Fe3+-(oxyhydr)oxide cluster models. Calculated interatomic distances from periodic planewave and cluster-model DFT are compared with experimental data for AsIII and AsV adsorbed to Fe3+-(oxyhydr)oxide models. In addition, reaction rates for the adsorption of AsV on α-FeOOH (goethite) (010) and Fe3+ (oxyhydr)oxide cluster models were calculated using planewave and cluster-model DFT methods. Keywords: arsenic; density functional theory (DFT); kinetics; thermodynamics; adsorption; computational chemistry; planewave DFT; reaction rates; As—Fe bond distances Minerals 2014, 4 209 1.
    [Show full text]
  • Kinetics and Mechanisms of Electron Transfer Reactions of Metal Complexes Ormond Jerry Parker Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Kinetics and mechanisms of electron transfer reactions of metal complexes Ormond Jerry Parker Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Parker, Ormond Jerry, "Kinetics and mechanisms of electron transfer reactions of metal complexes " (1968). Retrospective Theses and Dissertations. 4619. https://lib.dr.iastate.edu/rtd/4619 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 69-9882 PARKER, Ormond Jerry, 1939- KINETICS AND MECHANISMS OF ELECTRON TRANSFER REACTIONS OF METAL COMPLEXES. Iowa State University, Ph.D., 1968 Chemistry, physical University Microfilms. Inc., Ann Arbor, Michigan KINETICS AND MECHANISMS OF ELECTRON TRANSFER REACTIONS OF METAL COMPLEXES by Ormond Jerry Parker A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Chemistry Approved: Signature was redacted for privacy. IffyCharge of Maj<6r Work Signature was redacted for privacy.
    [Show full text]
  • April 24-27, 2007
    Program and Abstracts Separations Program Heavy Element Chemistry Program Contractors’ Meeting O’Callaghan Annapolis Hotel, Annapolis, MD April 24-27, 2007 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy Program and Abstracts Separations Program Heavy Element Chemistry Program Contractors’ Meeting O’Callaghan Annapolis Hotel Annapolis, MD April 24-27, 2007 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy Cover Graphics: The cover artwork is a metaphor of DMDOHEMA dragging down Am3+ into the organic layer, while HDHP tugs at Yb3+. The “teeth” illustrate a stretched “adhesive,” a metaphor for the difficulty in separating 4f from 5f trivalent ions. For more detail see abstract P1-2, Mark R. Antonio, “Structural Chemistry of Lanthanide and Americium Complexes in Solvent Extraction,” p 25. Image reproduced by permission of Mark R. Antonio and The Royal Society of Chemistry from Benoît Gannaz, Mark R. Antonio, Renato Chiarizia, Clément Hill and Gérard Cote, Dalton Trans., 2006, 4553, DOI: 10.1039/b609492a. i This document was produced under contract number DE-AC05-06OR23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. The research grants and contracts described in this document are supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division. ii Foreword This abstract booklet provides a record of the seventh U.S. Department of Energy contractors’ meeting in separations sciences and the fourth in heavy element chemistry. The Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences and its predecessors have sponsored research in heavy element chemistry and separations sciences for some sixty years.
    [Show full text]
  • The Chemical Complexities of Plutonium David L
    The Chemical Complexities of Plutonium David L. Clark ew people have ever seen plutonium, and far fewer have actually handled or manipu- lated it. Yet this manmade element has arguably altered the course of civilization as Fmuch as copper, bronze, iron, or steel. Within five years of its synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of mass destruction, and it seemed that the new element might lead the human race to the brink of self-annihilation. But instead, plutonium has become a stabilizing agent in global politics, forcing the human race to govern itself without resorting to nuclear war. Never before has a simple chemical element had such a profound impact on the consciousness of mankind. Plutonium has had a similarly humbling impact in the more circumscribed arena of science. Incredibly, it displays physicochemical behaviors that are among the most complex of any element in the periodic table. The pure element exhibits seven distinct crystal phases, is highly reactive, and is known to form compounds, complexes, or alloys with virtually every other element. Molten plutonium is highly corrosive and will slowly react with its container, causing difficulties for handling. When elemental plutonium reacts to give up its valence electrons, it can form a wide variety of positively charged ions with the ability to form up to twelve chemical bonds to other ions or molecules in solution. The element can exhibit five oxidation states, and under certain chemical conditions, four different oxidation states can be present in appreciable amounts simultaneously! No other element displays such a complex chemistry.
    [Show full text]
  • Adsorption of Selenite on Heat Treated Sea Nodule Residue
    International Journal of Advanced Chemical Science and Applications (IJACSA) ________________________________________________________________________ Adsorption of Selenite on Heat Treated Sea Nodule Residue 1P.K.Satapathy, 2T.R.Mohanta, 3A.K.Sahoo 1P.G. Department of Chemistry, North Orissa University, Baripada 2Department of Chemistry, F.M. Junior College, Balasore Email: [email protected] Adsorption of selenite/selenate on hydrous oxides of ABSTRACT: - The present study was carried out to investigate the adsorption characteristics of sea nodule iron, manganese, and aluminum [2, 3-6] appears to be an efficient and inexpensive method for removing trace residue (SNR) heated at 400°C towards aqueous selenite. contaminants. Selenite adsorption on manganese nodule Physico-chemical characterization revealed that the leached residue was a complex mixture of oxides of mainly surface was also studied by Parida et al[7]. However adsorption of selenite has not yet been studied using heat manganese and iron along with MnCO3. Adsorption studies were carried out at varying the pH, selenite ion treated sea nodule residue. So the present study is an concentration, SNR dosage and in presence of competitive attempt to use 400°C heated sea nodule residue sample ions. It was found that the selenite adsorption increased as adsorbent towards adsorption of selenium. with pH reaches maximum at pH 5.0 and then decreased. Further it was found that the percentage of selenite II. EXPERIMENTAL adsorption increased with increasing amount of adsorbent Materials (SNR) and decreased with increasing initial concentration of selenite. It was observed that the percentage of Leached residue sample (SNR), generated after adsorption of selenite decreased with increasing reduction roast-ammoniacal leaching process were concentration of externally added ions.
    [Show full text]
  • Surface Chemistry of Al and Si (Hydr)Oxides, with Emphasis On
    i Surface chemistry of Al and Si (hydr)oxides, with emphasis on nano-sized gibbsite (α-Al(OH)3) by Jörgen Rosenqvist Department of Chemistry, Inorganic Chemistry Umeå University Umeå, Sweden ii ISBN 91-7305-245-0 Printed by Solfjädern Offset AB Umeå, Sweden, 2002 iii Surface chemistry of Al and Si (hydr)oxides, with emphasis on nano-sized gibbsite (α-Al(OH)3) by Jörgen Rosenqvist Akademisk avhandling som med tillstånd av rektorsämbetet vid Umeå Universitet för erhållande av Teknologie Doktorsexamen framlägges till offentlig granskning vid kemiska institutionen, sal KB3B1, fredagen den 31 maj 2002, kl. 13.00. Fakultetsopponent: Dr. Gerhard Furrer, Institute of Terrestrial Ecology, ETH Zürich, Schweiz. iv Title: Surface chemistry of Al and Si (hydr)oxides, with emphasis on nano-sized gibbsite (α-Al(OH)3). Author: Jörgen Rosenqvist Address: Department of Chemistry, Inorganic Chemistry, Umeå University, SE-901 87 Umeå, Sweden Abstract: This thesis contains an introduction to the surface chemistry of minerals in aqueous environment, and a summary of five manuscripts concerning adsorption reactions at the surfaces of nano-sized gibbsite (α-Al(OH)3), amorphous silica and kaolinite. Nano-sized gibbsite was synthesized and thoroughly characterized using X-ray diffraction, high-resolution transmission electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy. The adsorption of protons and the development of charge at the surfaces were studied using high precision potentiometry and zeta potential measurements. The results showed that singly coordinated surface sites at the particle edges protonate/deprotonate, while ion pairs with the medium ions are formed at doubly coordinated surface sites at the basal planes.
    [Show full text]
  • The Radiochemistry of Plutonium
    National v Academy of Sciences National1Research Council . E The Radiocheunistry of Plutonium ,“. m COMMlllEE ON NUCLEAR SCIENCE ~. A. Bromley, Chainmm R. D. Evans, Vice Cluri7man Yale University Massachusetts Institute of Technology Lewis Slack, Secrekq National Rese=ch COunCtl E. C. Anderson Jerry B. Marion Los Afamo6 Scientific Laboratory University of Maryland N. E. Baflou R. L. PLatman U. S. Naval Radiological Defense Argonne National Laboratory Labomto~ Ernest C. Pollard Martin J. Barger Pennsylvania State University , National Bureau of Standards Katharine Way C. J. Borkowski Oak Ridge National Laboratory Oak Ridge National Laboratory George W. Wetherill Herbert Goldstein University of California Columbia Uoivereity Marvin E. Wyman Bemd Kahn University of Illinois Taft Sanitary Engineering Center Harold Glsser William S. Rodney Office of Navsl Reeearch National Science Foundation George A. Kolstad Atomic Energy Commission SllWllMMITIEEON RADIOCNEMiSTSY Nathao E. Ballou, Chaivman Julian M. Nielsen U. S. Naval Radiolostcal Defense Battefle Pacific Northwest Lain-atow G. D. O’Ke!.ley G. R. Chq@n Oak Ridge National Laboratory Florida State University E. P. Steinberg Herbert M. Clark Argonne Nationaf Laboratory Rensselaer Polytechnic Institute D. N. Sunderman Richard M. Diamond Battelle Memoriel Institute IJmrence Radiation Laboratory John W. Winchester Jerome Hudla Massachusetts Institute of Technology Brookhaven National Laboratory R. P. Schuman, Consultant Jere D. Knight Sri Venkateswara University Los Alsmos Scientific Laboratow Tirupati, AndhI= Pradesh, India W. E. Nervik Lawrence Radiation Laborstory The Radiochemistry of Plutonium. George” H. Coleman September 1, 1965 UN17JERSITY OF CALIFORNIA Lawrence Radiation Laboratory Livermore, California AEC Contract No. W-7405 -eng-48 Subcommittee on Radiochemistry National Academy of Sciences—National Reaearcb Council Prfmtedin USA.
    [Show full text]
  • EXAFS Study of Sr Sorption to Illite, Goethite, Chlorite, and Mixed Sediment Under Hyperalkaline Conditions Adam J
    Article pubs.acs.org/Langmuir EXAFS Study of Sr sorption to Illite, Goethite, Chlorite, and Mixed Sediment under Hyperalkaline Conditions Adam J. Fuller,†,∥ Samuel Shaw,‡ Caroline L. Peacock,† Divyesh Trivedi,§ and Ian T. Burke*,† † School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom ‡ School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester M13 9PL, United Kingdom § National Nuclear Laboratory Ltd, Chadwick House, Warrington Road, Birchwood Park, Warrington WA3 6AE, United Kingdom *S Supporting Information ABSTRACT: Strontium is an important contaminant radionuclide at many former nuclear sites. This paper investigates the effect of changing pH and ionic strength on the sorption of Sr to a range of common soil minerals. Specifically it focuses on the sorption of Sr onto illite, chlorite, goethite, and a mixed sediment. The interplay between ionic strength and pH was determined by varying the background ionic strength of the system using both NaCl (for a constant pH) and NaOH (to also vary pH). Under conditions of moderate pH, Sr sorption decreased with increasing ionic strength, due to competition between the Na and Sr atoms for the outer-sphere complexes. However, where increasing ionic strength was accompanied by increasing pH, Sr sorption remained high. This suggested that Sr was sorbed to the minerals without competition from background Na ions. Extended X-ray absorption fine structure (EXAFS) spectra confirmed that at highly alkaline pH (>12.5) Sr was forming inner-sphere complexes on the surfaces of all minerals. This specific adsorption of the Sr (as SrOH+) explains why it was still adsorbed to the minerals under very high ionic strength conditions and was not out- competed by Na.
    [Show full text]
  • Density Functional Theory Calculations on the Sorption Of
    Density Functional Theory Calculations on the Sorption of Organoarsenicals onto Hydrated Iron (III) Oxyhydroxide Clusters by Adrian Adamescu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2017 © Adrian Adamescu 2017 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner NAME: Dr. Randall Dumont Title: Associate Professor Supervisor(s) NAME: Dr. Marcel Nooijen Title: Associate Professor NAME: Dr. Ian Hamilton Title: Professor NAME: Dr. Hind Al-Abadleh Title: Associate Professor Internal Member NAME: Dr. Pierre-Nicholas Roy Title: Professor Internal-external Member NAME: Dr. Philippe Van Cappellen Title: Canada Excellence Research Chair Other Member(s) NAME: Dr. Michael Denk Title: Associate Professor NAME: Dr. Carol Ptacek Title: Professor ii Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Organic forms of arsenic are introduced into the environment by natural and anthropogenic processes and they pose a threat to human health. The fate of these pollutants depends on their interactions with reactive soils components, such as iron oxyhydroxides. Reaction pathway information and transition states are essential for understanding adsorption mechanisms of pollutants at the liquid–solid interface. Density functional theory (DFT) calculations on the energies, optimal geometries, vibrational frequencies for organic arsenical complexes, p-arsanilic acid (pAsA), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) with iron oxyhydroxide clusters are performed.
    [Show full text]