Minerals 2014, 4, 208-240; doi:10.3390/min4020208 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Article Arsenic Adsorption onto Minerals: Connecting Experimental Observations with Density Functional Theory Calculations Heath D. Watts 1,*, Lorena Tribe 2 and James D. Kubicki 1,3,* 1 Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA 2 Division of Science, The Pennsylvania State University, Berks, Reading, PA 19610, USA; E-Mail:
[email protected] 3 Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA * Authors to whom correspondence should be addressed; E-Mails:
[email protected] (H.D.W.);
[email protected] (J.D.K.); Tel.: +1-814-865-3951 (J.D.K.); Fax: +1-814-867-2378 (J.D.K). Received: 24 December 2013; in revised form: 25 February 2014 / Accepted: 6 March 2014 / Published: 27 March 2014 Abstract: A review of the literature about calculating the adsorption properties of arsenic onto mineral models using density functional theory (DFT) is presented. Furthermore, this work presents DFT results that show the effect of model charge, hydration, oxidation state, and DFT method on the structures and adsorption energies for AsIII and AsV onto Fe3+-(oxyhydr)oxide cluster models. Calculated interatomic distances from periodic planewave and cluster-model DFT are compared with experimental data for AsIII and AsV adsorbed to Fe3+-(oxyhydr)oxide models. In addition, reaction rates for the adsorption of AsV on α-FeOOH (goethite) (010) and Fe3+ (oxyhydr)oxide cluster models were calculated using planewave and cluster-model DFT methods. Keywords: arsenic; density functional theory (DFT); kinetics; thermodynamics; adsorption; computational chemistry; planewave DFT; reaction rates; As—Fe bond distances Minerals 2014, 4 209 1.