Surfactant Science: Principles and Practice Prof Steven Abbott

Total Page:16

File Type:pdf, Size:1020Kb

Surfactant Science: Principles and Practice Prof Steven Abbott Surfactant Science: Principles and Practice Prof Steven Abbott Steven Abbott TCNF Ltd, Ipswich, UK and Visiting Professor, University of Leeds, UK [email protected] www.stevenabbott.co.uk Version history: 1.0.0 20 September 2015 Initial release 1.0.1 23 September 2015 Addition of surfactant solubilizers 1.0.2 26 January 2016 Minor mods 1.0.3 07 March 2016 Update to new website and Fast Scans 1.0.4 03 October 2018 Update on NAC calculations plus minor mods 1.0.5 28 November 2019 Update with the new Acosta Polar Oil approach 1.0.6 20 January 2019 Update on foam making Copyright © 2015/20 Steven Abbott This book is distributed under the Creative Commons BY-ND, Attribution and No-Derivatives license. Contents Preface 6 Abbreviations and Symbols 12 1 Some Basics 13 1.1 A summary in 9 images 13 1.2 What’s not included 14 1.3 CMC, Γm, A, K, E. Who cares? 15 1.4 Why CPP is mostly useless 22 1.5 Bancroft’s “Rule” 25 1.6 Why HLB should be banned 27 1.7 Surfactant blends 29 1.8 Elasticity and bending 30 1.9 Cloud Point and Krafft Point 33 1.10 Dynamic Surface Tension 36 1.10.1 Classic DST 36 1.10.2 DST around equilibrium 42 1.11 Partition coefficient 45 1.11.1 Measuring partition coefficients 46 1.12 The basics summarised 47 2 HLD – towards rational emulsions 49 2.1 Specific HLD examples 50 2.2 A waste of good surfactant 54 2.3 Extended Oil Recovery, EOR 55 2.4 Measuring Cc and EACN 57 2.4.1 Scan tricks 60 2.4.2 Phase volumes 61 2.4.3 Fast scans 61 2.4.4 Silicone oils 64 2.5 Winsor R ratio and Packing Parameter 64 2.6 Who cares about microemulsions? 67 2.7 HLD is not enough 68 3 NAC – Net Average Curvature 70 3.1 What can NAC do? 72 3.2 More fish power from NAC 78 3.3 More power from NAC – the fishtail plot 81 3.4 PIF – Phase Inversion Formulation 83 3.5 Going on for ever 84 3.6 The problem of ξ 86 3.6.1 Phase volumes 88 3.6.2 Other ways to look at ξ 91 3.6.3 Creating a large ξ for efficiency 91 3.6.4 CµC 92 3.6.5 Silicone oils 93 3.7 The point of this chapter 93 4 Emulsions 96 4.1 The numbers behind an emulsion 96 4.2 Size distributions 97 4.3 Viscosity 99 4.4 Avoiding destruction 101 4.4.1 Creaming 101 4.4.2 Ostwald Ripening 102 4.4.3 Flocculation 105 4.4.4 Coalescence 109 4.4.5 DLVO 111 4.4.6 Dynamic barriers: Elasticity, Gibbs-Marangoni and Wedges 114 4.5 How to make an emulsion 117 4.5.1 How not to make an emulsion 118 4.5.2 Predicting drop size 120 4.5.3 Using HLD-NAC 123 4.6 Emulsions by Catastrophic Inversion 126 4.7 Pickering emulsions 133 5 Foams 136 5.1 Foam basics 137 5.2 Elasticity 138 5.3 Foam DLVO 141 5.4 Ostwald ripening 144 5.5 Foam Drainage 148 5.6 Foam Rheology 153 5.7 Antifoams 157 5.7.1 Practical issues 158 5.7.2 3 Coefficients 159 5.7.3 The Entry Barrier problem 161 5.7.4 Fast and slow 163 5.7.5 Disappearing antifoam 164 5.7.6 Now for the science bit 165 5.8 Making foams 168 5.8.1 Foam making essentials 168 5.8.2 But what about my surfactant system? 171 5.8.3 The view from 2020 171 5.8.4 Foaming techniques 173 5.8.5 Measurements of key parameters. 174 5.9 Foam fractionation 175 6 Problems 180 6.1 The polar oil problem 180 6.2 Building on the CIT model 183 6.3 Polar oils as surfactants and oils 186 6.4 Linkers, hydrotropes etc. 189 6.5 From problem to opportunity 192 6.5.1 Γm, A, K and elasticity 193 6.5.2 Curvature and IFT 194 6.5.3 Together 195 7 Phase diagrams 197 7.1 Phases 197 7.2 Binary diagrams 201 7.3 Ternary diagrams 203 7.3.1 Reading values from a ternary diagram 203 7.3.2 Paths through phase diagrams 207 7.3.3 Diagrams with 2-phase regions 208 7.3.4 Diagrams with 3-phase regions 209 7.3.5 HLD-NAC and microemulsion diagrams 211 7.3.6 General ternary diagrams 212 8 Putting the principles into practice 214 8.1 Detergency 214 8.2 EOR 224 8.2.1 Soil remediation 227 8.2.2 Dealing with oil spills 228 8.3 Cosmetics emulsions 229 8.4 Emulsion Polymerisation 234 8.5 Making inorganic nanoparticles 240 8.6 Emulsion Separation 242 8.7 Bicontinuous Microemulsions 244 8.7.1 Microemulsion solvent cleaners 244 8.7.2 Cosmetic microemulsions 246 8.8 Levelling of paints and coatings 248 8.8.1 Surfactants to fix pinholes 249 8.8.2 Surfactants to fix other levelling issues 250 8.9 High throughput 252 8.9.1 Phase scans for Cc, EACN etc. 252 8.9.2 Phase diagrams 253 8.9.3 Small volume tricks 254 8.10 Surfactants as Solubilizers 257 8.11 The future of surfactant formulation practice 260 Preface The target audience for this book is a younger version of myself. I have included all those things I wish I had known years ago. Had I had this book, my life of formulating with surfactants would have been so much more productive! This book, therefore, contains everything that I know about surfactant science that can be useful to someone (such as myself) who formulates with surfactants. So it is a good idea to make it clear right from the start that although there are many good answers to many of our formulation questions (and these answers generally are not the ones you read about) there are lots of surfactant questions for which surfactant science currently has no satisfactory answers. As we will see, I am happy to blame the surfactant community for having wasted decades by not working with the best available surfactant theory, and therefore not having the time or the clarity to investigate the extra questions for which formulators really wanted answers. More specifically I lay the blame on those in academia and industry who perpetuated the myth that armed with critical micelle concentration, CMC, and with hydrophilic lipophilic balance, HLB, one could formulate wisely. As countless formulators have found, these, the only numbers that are generally mentioned in the surfactant literature, are largely useless for most purposes. Those who formulate exclusively with ethoxylates will take some exception to this. Because ethoxylates can be formulated with any combination of alkane and ethoxylate chain lengths there have been endless studies and correlations from which a formulator can derive some useful answers armed only with the CMC and HLB values. Ethoxylates, however, are a good part of the larger problem because their somewhat rational behaviour has been used as a cover to pretend that the rest of surfactant science can use ethoxylate- based techniques. This is simply untrue. Outside the world of ethoxylates, HLB is largely meaningless and valueless. And few of us can take long lists of CMC values and reach deep insights into our formulation problems. The good news is that once you exit the world of HLB there are a set of scientific principles (especially HLD) on which to build a much more solid base for formulations. In some areas the formulations can be entirely rational. In other areas we at least know which bits of science are lacking so the formulator can tell how far to push the science before relying on whatever other resources lie to hand. I always found surfactant science hard, and regularly skipped over stuff I thought was useless or irrelevant. My aim in this book is to give you the science you really must know, and give it in the easiest-possible manner. That means a book/app hybrid. Every key equation in the book is linked to an app that brings the equation to life. Because this is an eBook-only publication, readers simply have to click on the link in whatever eBook Reader they are using (e.g. iBooks, Kindle, Acrobat pdf) and the app will open in their default web browser, ready for immediate exploration. The inputs are invariably via sliders. Those on PCs and Macs might prefer inputs via text boxes. Those on tablets and phones would hate text inputs – they simply aren’t practical when (as is often the case) there are multiple inputs to be provided. What topics should be included? I am still amazed by the way that “useless” knowledge from one subject area turns out to be useful in another area. I have therefore included chapters on any area where I happened to find some useful surfactant science. Even if you have no interest in, say, foams or emulsion polymerisation there is still a lot to learn that might well apply to your own area of interest. Although, for example, it might be obvious to foam scientists that scientifically a foam is very much the same as an emulsion, it certainly wasn’t obvious to me. So ideas in foams carry over to emulsions and vice versa. Ideas that seem to apply only to making fancy microemulsions turn out to be surprisingly useful for those designing laundry detergents – a fact that very much surprised me.
Recommended publications
  • Some Physical Characteristics of the O/W Macroemulsion of Oleoresin of Astaxanthin Obtained from Biomass of Haematococcus Pluvialis
    Some physical characteristics of the O/W macroemulsion of oleoresin of astaxanthin obtained from biomass of Haematococcus pluvialis 1 Carolina Espinosa-Álvarez a, Carolina Jaime-Matus b & Pedro Cerezal-Mezquita a a Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencia de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile. [email protected], [email protected] b Empresa Atacama BioNatural Products S.A., La Huayca, Pozo Almonte, Chile, Pozo Almonte, Región de Tarapacá. Iquique – Chile [email protected] Received: August 30th, 2018. Received in revised form: December 12th, 2018. Accepted: January 15th, 2019. Abstract Macroemulsions facilitate the solubilization, stability, bioaccessibility, and bioactivity of compounds with low solubility, as is the case of the emulsion developed from astaxanthin oleoresin (10%). In this study, some characteristics of the physical behavior of the macroemulsion with astaxanthin oleoresin that are in close relationship with stability were determined. One of them was the viscosity at 5, 10, 20 and 30°C. Another, corresponded to observing the size variation of the micelles, observed under the microscope for 8 days and finally, the color was determined in CIEL*a*b* system for 34 days. The results showed that the macroemulsion behaved like a shear thinning fluid up to 20°C, becoming a shear thickening fluid at 30° C. In addition, the macroemulsion presented stability in the color as time elapsed;
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,824,877 Glover Et Al
    United States Patent (19) 11 Patent Number: 4,824,877 Glover et al. (45) Date of Patent: Apr. 25, 1989 54 HIGH POLYMER CONTENT SILICONE 4,244,849 1/1981 Saam ................................... 525/477 EMULSIONS 4,620,878 11/1986 Gee ..................................... 252/312 75 Inventors: Shedric O. Glover; Daniel Graiver, OTHER PUBLICATIONS both of Midland, Mich. U.S. Patent Application Ser. No. 809,090. 73) Assignee: Dow Corning Corporation, Midland, Primary Examiner-Morton Foelak Mich. Attorney, Agent, or Firm-Edward C. Elliott (21) Appl. No.: 151,686 57 ABSTRACT 22) Filed: Feb. 2, 1988 A polydiorganosiloxane emulsion having a combination (51) Int. Cl." .............................................. C08L 53/04 of high polymer content and low viscosity can be pro (52) ... 523/221; 524/588 duced by blending a high polymer content polydiorgan (58) Field of Search ......................... 523/221; 528/588 osiloxane macroemulsion, having a polymer content of greater than 60 percent by weight and an average parti 56 References Cited cle size of greater than 0.14 micrometers, and a high U.S. PATENT DOCUMENTS polymer content polydiorganosiloxane microemulsion, 3,294,725 12/1966 Findlay et al. ..................... 260/29.2 having a polymer content of from 20 to 30 percent by 3,433,780 3/1969 Cekada et al. .. ... 260/29.2 weight and an average particle size of less than 0.14 3,975,294 8/1976 Dumoulin ....... ... 252/354 micrometers, with the ratio of the average particle size 4,052,331 10/1977 Dumoulin ... ... 252/312 of the macroemulsion to the average size of the micro 4,146,499 3/1979 Rosano ...........
    [Show full text]
  • (DWR) Formulation Organoclick AB
    Enhancing the durability of fluorocarbon-free Durable Water Repellant (DWR) formulation OrganoClick AB By: Meron Solomon Degree Project in Fibre and Polymer Technology, 30 credits, Royal Institute of Technology (KTH) Supervisors: Salman Hassanzadeh & Juhanes Aydin Examiner: Minna Hakkarainen 1 Abstract The focus of the project was to alter and optimize the water repellant textile coating formulations to reach enhanced durability. For this purpose, the project was approached with three methods. Firstly, bio-based components were implemented in the mother emulsion to act as surfactant and crosslinking agent and to provide hydrophobic properties. Secondly different binders were added to crosslink and increase the coating resistance towards washes. Lastly additives at nano-scale were added to increase surface roughness in order to obtain higher hydrophobicity and improved of crosslinking capacity due to the presence of more functional groups. The stability of all emulsions was controlled using different techniques such as optical microscopy to determine particle size, distribution and any observable instability (flocculation etc.), normal aging at room temperature and accelerated aging using higher temperature. All coatings were applied using a laboratory padder on standard PA and PES pieces of textiles and hydrophobic performance was evaluated through ISO 4920 spray test. By standard washing and repeating spray test, durability could be assessed. Further structure and property studies have been run using other tests such as: contact angle measurement, breathability of the coating and SEM observations. Based on the obtained results the incorporation of low HLB, bio-based surfactants in low amount (~0,25%) resulted in an increase in the hydrophobic performance of the tested textiles.
    [Show full text]
  • Molecular Interactions in Surfactant Solutions: from Micelles to Microemulsions
    MOLECULAR INTERACTIONS IN SURFACTANT SOLUTIONS: FROM MICELLES TO MICROEMULSIONS By MONICA A. JAMES-SMITH A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 1 Copyright 2006 by Monica A. James-Smith 2 To my parents who have been my #1 supporters since October 17, 1977. 3 ACKNOWLEDGMENTS I thank my Almighty Heavenly Father for allowing me to make it to this point and for seeing me through every obstacle that arose. I am forever grateful to my husband, Rod, for all of his support, love and encouragement. I sincerely thank my parents, Dan and Elaine James, for always believing in me, for their constant prayers, and for always providing the right words when the journey seemed difficult. I would like to thank Melanie, Dan, Chris, and Bruce for knowing how to make me feel like I can accomplish anything. I owe a huge debt of gratitude to my best friend, Brandi Chestang, who has been there to answer every phone call and has cheered me on all my life. I am also greatly appreciative to all of my other friends, family, and loved ones. I must also extend my sincerest appreciation to my in-laws who have taken me in as a family member and provided tremendous support as I have pursued this degree. I am forever grateful to Dr. Dinesh O. Shah for being a mentor, an advisor, and a confidant, for providing me with the highest caliber of guidance and for always pushing me towards greatness.
    [Show full text]
  • Impact of the Application of Fuel and Water Emulsion on CO and Nox Emission and Fuel Consumption in a Miniature Gas Turbine
    energies Article Impact of the Application of Fuel and Water Emulsion on CO and NOx Emission and Fuel Consumption in a Miniature Gas Turbine Paweł Niszczota * and Marian Gieras Department of Division of Aircraft Engines, Warsaw University of Technology, 00-661 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Miniature gas turbines (MGT) are an important part of the production of electric energy in distributed systems. Due to the growing requirements for lower emissions and the increasing prices of hydrocarbon fuels, it is becoming more and more important to enhance the efficiency and improve the quality of the combustion process in gas turbines. One way to reduce NOx emissions is to add water to the fuel in the form of a water-based emulsion (FWE). This article presents the research results and the analysis of the impact of the use of FWE on CO and NOx emissions as well as on fuel consumption in MGT GTM-120. Experimental tests and numerical calculations were carried out using standard fuel (DF) and FWE with water content from 3% to 12%. It was found that the use of FWE leads to a reduction in NOx and CO emissions and reduction in the consumption of basic fuel. The maximum reduction in emissions by 12.32% and 35.16% for CO and NOx, respectively, and a reduction in fuel consumption by 5.46% at the computational operating point of the gas turbine were recorded. Citation: Niszczota, P.; Gieras, M. Keywords: miniature gas turbine; combustion zone; CO emissions; NOx emissions; water fuel Impact of the Application of Fuel and Water Emulsion on CO and NOx emulsion; fuel consumption Emission and Fuel Consumption in a Miniature Gas Turbine.
    [Show full text]
  • Microemulsion and Macroemulsion Behaviour of Systems Containing Oil
    THE UNIVERSITY OF HULL MICROEMULSION AND MACROEMULSION BEHAVIOUR OF SYSTEMS CONTAINING OIL, WATER AND NONIONIC SURFACTANT being a Thesis submitted for the Degree of Doctor of Philosophy in the University of Hull by N David Ian Horsup, B. Sc. August 1991 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisor, Dr. Paul Fletcher for his assistance -and advice during the period of my research and for his encouragement of my interest in surface and colloid chemistry. Thanks are also due to Dr. Robert Aveyard, Dr. Bernard Binks and my fellow colleagues for many fruitful discussions. I am also grateful to the Agricultural and Food ResearchCouncil and Unilever (Colworth) for the provision of a three year studentship. August 1991 To my parentsfor providing me with the opportunity to pursue my academicstudies. Scientist atoneis tracepoet, fiegives us the moon,he promises the stars, he'fI makpus a new universeif it comesto that. Allen Ginsberg, "Poem Rocket, " Kaddish and Other Poems (1961). ABSTRACT In this thesis, attempts have been made to correlate some equilibrium properties of microemulsions with the formation and stability of macroemulsions. Studies have been mainly limited to water-in-oil (W/O) systems stabilised by pure nonionic (CnE, Initially however, brief surfactantsof the poly-oxyethylene alkyl ether n) type. a accountis presentedof the behaviour of W/O microemulsions stabilised by commercial nonionic surfactantsof the type usedin foods. A detailed study of the equilibrium behaviour of W/O microemulsions stabilised by tetra-oxyethylene mono-n-dodecyl ether, C12E4,in hydrocarbon oils is presented. Aggregates form above a certain surfactant concentration in the oil, designated the critical microemulsion concentration, cµc.
    [Show full text]
  • Microemulsion Microstructure(S): a Tutorial Review
    nanomaterials Review Microemulsion Microstructure(s): A Tutorial Review Giuseppe Tartaro 1 , Helena Mateos 1 , Davide Schirone 1 , Ruggero Angelico 2 and Gerardo Palazzo 1,* 1 Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; [email protected] (G.T.); [email protected] (H.M.); [email protected] (D.S.) 2 Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 18 August 2020; Published: 24 August 2020 Abstract: Microemulsions are thermodynamically stable, transparent, isotropic single-phase mixtures of two immiscible liquids stabilized by surfactants (and possibly other compounds). The assortment of very different microstructures behind such a univocal macroscopic definition is presented together with the experimental approaches to their determination. This tutorial review includes a necessary overview of the microemulsion phase behavior including the effect of temperature and salinity and of the features of living polymerlike micelles and living networks. Once these key learning points have been acquired, the different theoretical models proposed to rationalize the microemulsion microstructures are reviewed. The focus is on the use of these models as a rationale for the formulation of microemulsions with suitable features. Finally, current achievements and challenges of the use of microemulsions are reviewed. Keywords: microemulsions; wormlike micelles; packing parameter; flexible surface model; hydrophilic–lipophilic difference (HLD); net average curvature (NAC) 1. Introduction As a matter of fact, water and oil do not mix. There are several applications in which this is a bitter truth and the coexistence of oil and water as separate macroscopic phases, interacting just through a small interface, is highly disappointing.
    [Show full text]
  • Master's Thesis Template
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EXPERIMENTAL STUDY OF THE RHEOLOGY AND STABILITY BEHAVIOUR OF SURFACTANT STABILIZED WATER-IN-OIL EMULSION A THESIS SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN NATURAL GAS ENGINEERING AND MANAGEMENT By ISRAEL OLUWATOSIN Norman, Oklahoma 2016 EXPERIMENTAL STUDY OF THE RHEOLOGY AND STABILITY BEHAVIOUR OF SURFACTANT STABILIZED WATER-IN-OIL EMULSION A THESIS APPROVED FOR THE MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING BY ______________________________ Dr. Fahs Mashhad, Chair ______________________________ Dr. Suresh Sharma ______________________________ Dr. Maysam Pournik © Copyright by ISRAEL OLUWATOSIN 2016 All Rights Reserved. Dedication I dedicate this work first to God almighty for his love, provision and protection. My deepest gratitude goes also to my parents, brothers and my fiancée for their indefatigable love and support throughout my life. Thank you all for being there for me always. Acknowledgement I am deeply indebted to my advisor Dr. Fahs Mashhad whose inspiring suggestions and encouragement helped throughout the research. I also appreciate her team building approach to research. My thanks and appreciation goes to Dr. Bryan Grady for training me on how to use the rotational viscometer in his lab. I appreciate Dr. Suresh Sharma and Dr. Maysam Pournik for serving on my thesis committee. I am especially grateful to Sergio Gomez for assisting me in running some of the experiments. My thanks go also to all my colleagues in the PERL research lab for their direct and indirect assistance and helpful discussions during my work. Finally, I like to also appreciate Joe Flenniken and Gary Stowe for their useful suggestions and also helping me out with the lab equipment.
    [Show full text]
  • Limestone-Particle-Stabilized Macroemulsion of Liquid And
    Environ. Sci. Technol. 2004, 38, 4445-4450 Limestone-Particle-Stabilized subterranean disposal, in enhanced oil recovery, in super- critical CO2 extraction processes, and in liquid or supercritical Macroemulsion of Liquid and CO2 reaction schemes. Here we emphasize the application of CaCO3-particle-stabilized CO2-in-water macroemulsions Supercritical Carbon Dioxide in for ocean sequestration of CO2 to ameliorate global warming. Water for Ocean Sequestration Materials and Methods The exploration of the formation and properties of a calcite- D. GOLOMB,* E. BARRY, D. RYAN, particle-stabilized liquid carbon dioxide in water macro- C. LAWTON, AND P. SWETT emulsion is performed in a high-pressure batch reactor with Departments of Environmental, Earth and Atmospheric view windows. The reactor, the auxiliary equipment for Sciences, Chemistry, and Chemical Engineering, University of MassachusettssLowell, Lowell, Massachusetts 01854 introducing the reactants into the reactor, and the monitoring instruments are depicted in Figure 1. The reactor consists of a 110 mL volume high-pressure stainless steel cell equipped with tempered glass windows (PresSure Products F03XC06B). When liquid or supercritical CO2 is mixed with an aqueous The windows are placed at right angles, one illuminated with a 20 W 12 V compact halogen bulb, the other allowing slurry of finely pulverized (1-20 µm) limestone (CaCO3) in a high-pressure reactor, a macroemulsion is formed recording on a video camera. The view window diameter is 24 mm. The window diameter is used as a scale for consisting of droplets of CO2 coated with a sheath of CaCO3 particles dispersed in water. The coated droplets are determining droplet and globule diameter sizes.
    [Show full text]
  • Researches of a Combustion Engine Fuelled with a Fuel-Water Microemulsion
    Journal of KONES Powertrain and Transport, Vol. 25, No. 4 2018 ISSN: 1231-4005 e-ISSN: 2354-0133 DOI: 10.5604/01.3001.0012.4791 RESEARCHES OF A COMBUSTION ENGINE FUELLED WITH A FUEL-WATER MICROEMULSION Mirosław Kowalski, Antoni Jankowski Air Force Institute of Technology Ksiecia Boleslawa 6, 01-494 Warsaw, Poland tel.: +48 22 851301, fax: +48 22 851313 e-mail: [email protected], [email protected] Abstract The emulsion is a mixture of two or more insoluble liquids. Microemulsion is the emulsion with particles dimension in a range of one micrometre and smaller. Such a microemulsion of water and diesel fuel will create a novel quality and allows one to simultaneously achieve environmental and economic effects, as well as eliminate the ad-verse impact of normal emulsions, or adverse effects of water injection into the engine intake system or directly into the combustion chamber, as well as the sequential injection of water directly into the combustion chamber. Application of microemul- sion of water and diesel to fuel diesel engine positively affects the combustion process through the catalytic impact of microparticles of water, and improves the process of preparation of the microemulsion injection into the combustion chamber as a result of water microparticles’ microexplosions. This article presents the investigation results of an inter- nal combustion engine fuelled by an emulsion of water and diesel fuel and fuelled by emulsion of FAME and water. It therefore seems appropriate to a strong increase in the degree of dispersion of water droplets in the emulsion by apply- ing the methods to obtain the size of water droplets on nanometric range.
    [Show full text]
  • 49660955016.Pdf
    DYNA ISSN: 0012-7353 Universidad Nacional de Colombia Espinosa-Álvarez, Carolina; Jaime-Matus, Carolina; Cerezal-Mezquita, Pedro Some physical characteristics of the O/W macroemulsion of oleoresin of astaxanthin obtained from biomass of Haematococcus pluvialis DYNA, vol. 86, no. 208, 2019, January-March, pp. 136-142 Universidad Nacional de Colombia DOI: https://doi.org/10.15446/dyna.v86n208.74586 Available in: https://www.redalyc.org/articulo.oa?id=49660955016 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Some physical characteristics of the O/W macroemulsion of oleoresin of astaxanthin obtained from biomass of Haematococcus pluvialis 1 Carolina Espinosa-Álvarez a, Carolina Jaime-Matus b & Pedro Cerezal-Mezquita a a Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencia de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile. [email protected], [email protected] b Empresa Atacama BioNatural Products S.A., La Huayca, Pozo Almonte, Chile, Pozo Almonte, Región de Tarapacá. Iquique – Chile [email protected] Received: August 30th, 2018. Received in revised form: December 12th, 2018. Accepted: January 15th, 2019. Abstract Macroemulsions facilitate the solubilization, stability, bioaccessibility, and bioactivity of compounds with low solubility, as is the case of the emulsion developed from astaxanthin oleoresin (10%). In this study, some characteristics of the physical behavior of the macroemulsion with astaxanthin oleoresin that are in close relationship with stability were determined.
    [Show full text]
  • Nanoemulsions: Formation, Properties and Applications Cite This: Soft Matter, 2016, 12,2826 Ankur Gupta,A H
    Soft Matter View Article Online REVIEW View Journal | View Issue Nanoemulsions: formation, properties and applications Cite this: Soft Matter, 2016, 12,2826 Ankur Gupta,a H. Burak Eral,bc T. Alan Hattona and Patrick S. Doyle*a Nanoemulsions are kinetically stable liquid-in-liquid dispersions with droplet sizes on the order of 100 nm. Their small size leads to useful properties such as high surface area per unit volume, robust stability, optically transparent appearance, and tunable rheology. Nanoemulsions are finding application in diverse areas such as drug delivery, food, cosmetics, pharmaceuticals, and material synthesis. Additionally, they serve as model systems to understand nanoscale colloidal dispersions. High and low Received 7th December 2015, energy methods are used to prepare nanoemulsions, including high pressure homogenization, Accepted 19th February 2016 ultrasonication, phase inversion temperature and emulsion inversion point, as well as recently developed DOI: 10.1039/c5sm02958a approaches such as bubble bursting method. In this review article, we summarize the major methods to prepare nanoemulsions, theories to predict droplet size, physical conditions and chemical additives Creative Commons Attribution-NonCommercial 3.0 Unported Licence. www.rsc.org/softmatter which affect droplet stability, and recent applications. 1 Introduction and water phases of the emulsion. The emulsifier also plays a role in stabilizing nanoemulsions through repulsive electro- Nanoemulsions are emulsions with droplet size on the order of static
    [Show full text]