Journal for Geometry and Graphics Volume 15 (2011), No. 1, 45–67. Poristic Loci of Triangle Centers Boris Odehnal Institute of Discrete Mathematics and Geometry, Vienna University of Technology Wiedner Hauptstr. 8-10/104, A 1040 Vienna, Austria email:
[email protected] Abstract. The one-parameter family of triangles with common incircle and circumcircle is called a porisitic1 system of triangles. The triangles of a poristic system can be rotated freely about the common incircle. However this motion is not a rigid body motion for the sidelengths of the triangle are changing. Sur- prisingly many triangle centers associated with the triangles of the poristic family trace circles while the triangle traverses the poristic family. Other points move on conic sections, some points trace more complicated curves. We shall describe the orbits of centers and some other points. Thereby we are able to answer open questions and verify some older results. Key Words: Poristic triangles, incircle, excircle, non-rigid body motion, poristic locus, triangle center, circle, conic section MSC 2010: 51M04, 51N35 1. Introduction The family of poristic triangles has marginally attracted geometers interest. There are only a few articles contributing to this particular topic of triangle geometry: [3] is dedicated to perspective poristic triangles, [12] deals with the existence of triangles with prescribed circumcircle, incircle, and an additional element. Some more general appearances of porisms are investigated in [2, 4, 6, 9, 16] and especially [7] provides an overview on Poncelet’s theorem which is the projective version and thus more general notion of porism. Nevertheless there are some results on poristic loci, i.e., the traces of triangle centers and other points related to the triangle while the triangle is traversing the poristic family.