Multiphase Bioreactor Design

Total Page:16

File Type:pdf, Size:1020Kb

Multiphase Bioreactor Design Multiphase Bioreactor Design Multiphase Bioreactor Design Edited by Joaquim M.S.Cabral Centre for Biological and Chemical Engineering Instituto Superior Técnico, Lisbon Portugal Manuel Mota Department of Biological Engineering University of Minho Portugal and Johannes Tramper Wageningen Agricultural University Food and Bioprocess Engineering Group The Netherlands London and New York First published 2001 by Taylor & Francis 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Taylor & Francis Inc, 29 West 35th Street, New York, NY 10001 Taylor & Francis is an imprint of the Taylor & Francis Group This edition published in the Taylor & Francis e-Library, 2005. "To purchase your own copy of this or any of Taylor & Francis or Routledge's collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk." © 2001 Taylor & Francis All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Every effort has been made to ensure that the advice and information in this book is true and accurate at the time of going to press. However, neither the publisher nor the authors can accept any legal responsibility or liability for any errors or omissions that may be made. In the case of drug administration, any medical procedure or the use of technical equipment mentioned within this book, you are strongly advised to consult the manufacturer’s guidelines. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalogue record has been requested ISBN 0-203-30304-0 Master e-book ISBN ISBN 0-203-34644-0 (Adobe eReader Format) ISBN 0-415-27209-2 (Print Edition) CONTENTS Preface vii Contributors ix 1 New Methodologies for Multiphase Bioreactors 1:Hydrodynamic and Mass 1 Transfer Characteristics of Multistage Slurry Reactors Jindřich Zahradnik 2 New Methodologies for Multiphase Bioreactors 2: Image Analysis and 27 Multiphase Bioreactors Eugénio C.Ferreira, Manuel Mota and Marie-Noëlle Pons 3 New Methodologies For Multiphase Bioreactors 3: Data Acquisition, 57 Modelling and Control Sebastião Feyo de Azevedo, Rui Oliviera and Bernhard Sonnleitner 4 Design and Modelling of Immobilised Biocatalytic Reactors 90 Bruno S.Ferreira, Pedro Fernandes and Joaquim M.S.Cabral 5 Advances in the Selection and Design of Two-Liquid Phase Biocatalytic 122 Reactors Gary J.Lye and John M.Woodley 6 Enzymatic Membrane Reactors 145 Duarte Miguel F.Prazeres and Joaquim M.S.Cabral 7 Reversed Micellar Bioreaction Systems: Principles and Operation 191 Cristina M.L.Carvalho and Joaquim M.S.Cabral 8 Solid-to-Solid Bioconversions: Batch or Continuous? 238 M.J.F.Michielsen, Rene H.Wijffels, Johannes Tramper and H.H.Beeftink 9 Solid/Gas Systems, Theory and Applications 261 Sylvain Lamare, T.Maugard and Marie D.Legoy 10 Biofilm Reactors 288 Luis F.Melo and Rosário Oliveira 11 Pulsing Bioreactors 328 Juan M.Lema, Enrique Roca, Angeles Sanromán, M. José Núñez, M.Teresa Moreira and Gumersindo Feijoo 12 Design of Liquid-Liquid-Solid Fluidised-Bed Bioreactors 353 Erik van Zessen, Arjen Rinzema and Johannes Tromper 13 Flocculation Bioreactors 387 António A.Vicente, Manuel Mota and José A.Teixeira 14 Bioreactor Design For Plant Cell Suspension Cultures 417 Patricia M.Kieran 15 Lethal Effects of Bubbles in Animal-Cell Culture 453 Dirk E.Martens, Michel F.Muller, Cornelis D.de Gooijer and Johannes Tromper 16 A Low-Cost Technology for Entomopathogenic Nematode Large-Scale 491 Production José Neves, Nelson Simões and Manuel Mota 17 Marine Sponges as Biocatalysts 506 René H.Wijffels, Ronald Osinga, Shirley Pomponi and Johannes Tromper Index 526 PREFACE The term bioreactor was not widey accepted for many years and initially, the term fermentor was preferred. The science-based approach to studying fermentors, using all the available knowledge from Chemical Engineering Science on the one hand, and the widespread use of reactors to perform enzyme-catalysed reactions on the other, gradually made the term bioreactor the most appropriate term to encompass every container where a controlled biological reaction may take place. A bioreactor is defined as “A vessel in which a biological reaction or change takes place, usually a fermentation or a biotransformation, including tank bioreactors, immobilised cell bioreactors, hollow fibre and membrane bioreactors and digestors” (“Biotechnology—from A to Z”, William Bains, Oxford Univ. Press, 2000). For a long time, bioreactors were able to accomplish a single biotransformation, and to contain a single species of an organism. Even when a mixed microbial population was present, the predominance of a certain species allowed for a model simplification, where only the dominant species was taken into account. An attempt to classify bioreactors in two main groups according to the source of power and the degree of homogeneity was made by the Working Party of Bioreactor Performance of the European Federation of Biotechnology (“Physical Aspects of Bioreactor Performance”, Dechema, W.Crueger (Ed.), 1987). Even so, the authors noted that “…Many designs of bioreactor attempt to keep the whole of their volume homogeneous. Most stirred volumes are in this category although, as the scale increases, total homogeneity becomes progressively more difficult. There is no such thing as a true plug-flow bioreactor (except for immobilised bioconversions), since the characteristic fermentation time is of a magnitude greater than the outflow rate. Nevertheless, some bioreactors do aim to cycle the conditions; the deep shaft effluent treatment reactor is a good example. Oxygen is absorbed at the high pressures in the bottom, while carbon dioxide is desorbed best near the surface. In other configurations the designer may consciously decide to let the conditions vary within acceptable limits (e.g. the temperature in a reactor with an external cooling loop). These designs represent an intermediate case.” The omnipresence of mixed populations in natural systems has always been the rule rather than the exception. Every bioprocess engineer working with single species cultures is deeply conscious of how relentless his strife against external contamination has to be. Today, there is a generalised recognition of wastewater treatment systems as mixed population bioreactors, where a cohort of protozoa and many bacterial species cohabit and co-operate to remove contaminants from water. Furthermore, with the enormous liquid volumes dealt with by these systems—many billions of gallons of wastewater are processed each day around the world—there is no more excuse for excluding mixed species bioreactors as an important field of research. Even when a single species is present, there is often the need for considering different developmental stages or physiological states, of which only one is responsible for the production of the active substance that is sought after. On the other hand, more and more complex biotransformations are taking place within bioreactors. Some of them involve different phases, namely in biocatalysis in organic media, and the interplaying reactions are sometimes difficult to explain with the conventional models. The same applies to gas-solid, liquid-solid or solid-solid transformations where in several instances it will be the structure of one of the phases, or its distribution inside the bioreactor that is going to control the final product yield. Recently bioreactors were proposed for large-scale production of complex metazoan organisms. New problems arose, especially in those cases where sexual reproduction is compulsory. The problems will be still more complex whenever sexes exhibit different morphologies or physical properties. Another level of complexity will then be brought about, because the consideration of extra solid phases will be unavoidable. All the aforementioned cases deal with multiphase bioreactors. In most of them, the quest for homogeneity is no longer a matter of concern. On the contrary, the absence of homogeneity is the rule. The number of liquid or solid phases may be greater than one, and, in several cases—membrane bioreactors, high-density cell cultures, fixed-film bioreactors, among others—phase segregation is a must, in order to optimise products recovery. We are thus obliged to consider the appropriate design of a multiphase bioreactor, each of which may be a special case with totally new questions to solve. Research on this field will need new methodologies, able to deal with the different phases interplaying within the same time window. Eventually, new mathematical tools will be necessary, as well as new experimental methodologies. That is why the present work was divided into three different parts. Part I presents new methodologies that are being successfully applied to the study of multiphase bioreactors. Part II is devoted to the presentation of bioreactors that, by their very own design, are specially fitted to deal with multiphase bioprocesses, and which may, in some instances, be the first solution for a multiphase reaction. Part III is devoted to the presentation of several case studies, where different approaches were used to solve real multiphase reaction problems. We are convinced that, in the forthcoming years, a very active and flourishing area will emerge, dealing with these special kinds of bioreactors. We expect that this work will be helpful to all those who are at present struggling to increase the productivity of a bioprocess where multiple phases are playing a central role. Joaquim Cabral Manuel Mota Johannes Tramper CONTRIBUTORS H.H.Beeftink Food and Bioprocess Engineering Group Wageningen University P.O. Box 8129 6700 EV Wageningen The Netherlands Joaquim M.S.Cabral Centre for Biological and Chemical Engineering Instituto Superior Técnico Av. Rovisco Pais 1049–001 Lisboa Portugal Cristina M.L.Carvalho Faculdade de Farmácia de Lisboa Universidade de Lisboa Av. Prof. Gama Pinto 1649–003 Lisboa Portugal Cornelis D.
Recommended publications
  • WO 2017/048702 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/048702 A l 2 3 March 2017 (23.03.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 487/04 (2006.01) A61P 35/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/519 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 16/05 1490 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 13 September 2016 (13.09.201 6) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/218,493 14 September 2015 (14.09.2015) US (84) Designated States (unless otherwise indicated, for every 62/218,486 14 September 2015 (14.09.2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: INFINITY PHARMACEUTICALS, INC.
    [Show full text]
  • Platinum Metals Review
    VOLUME 55 NUMBER 3 JULY 2011 Platinum Metals Review www.platinummetalsreview.com E-ISSN 1471-0676 © Copyright 2011 Johnson Matthey Plc http://www.platinummetalsreview.com/ Platinum Metals Review is published by Johnson Matthey Plc, refi ner and fabricator of the precious metals and sole marketing agent for the six platinum group metals produced by Anglo American Platinum, South Africa. All rights are reserved. Material from this publication may be reproduced for personal use only but may not be offered for re-sale or incorporated into, reproduced on, or stored in any website, electronic retrieval system, or in any other publication, whether in hard copy or electronic form, without the prior written permission of Johnson Matthey. Any such copy shall retain all copyrights and other proprietary notices, and any disclaimer contained thereon, and must acknowledge Platinum Metals Review and Johnson Matthey as the source. No warranties, representations or undertakings of any kind are made in relation to any of the content of this publication including the accuracy, quality or fi tness for any purpose by any person or organisation. E-ISSN 1471-0676 • Platinum Metals Rev., 2011, 55, (3), 152• Platinum Metals Review A quarterly journal of research on the platinum group metals and of developments in their application in industry http://www.platinummetalsreview.com/ JULY 2011 VOL. 55 NO. 3 Contents The PGM 2011 Industrial Commercialization Competition 153 A guest editorial by Michael Joseph Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts 154 for Use in Hydrogenation Reactions By R. S. Oosthuizen and V. O. Nyamori 6th International Conference on Environmental Catalysis 170 A conference review by Noelia Cortes Felix 9th International Frumkin Symposium 175 A conference review by Alexey Danilov “Heterogenized Homogeneous Catalysts for Fine Chemicals 180 Production: Materials and Processes” A book review by Raghunath V.
    [Show full text]
  • The Toxicity Characteristic Leaching Procedure Epa Method 1311
    Effective Date: 3/6/2009 Revision Date: 3/6/2009 Revision Authors: C. Selby, M. Thompson MT-004-4.11 THE TOXICITY CHARACTERISTIC LEACHING PROCEDURE EPA METHOD 1311 TABLE OF CONTENTS 1. SCOPE AND APPLICATION 1 2. SUMMARY OF THE METHOD 1 3. APPARATUS AND EQUIPMENT 2 4. REAGENTS AND CHEMICALS 2 5. SAMPLE COLLECTION, PRESERVATION, AND HANDLING 3 6. SAMPLE PREPARATION PROCEDURE 4 7. QUALITY CONTROL 14 8. SAFETY/HAZARDOUS WASTE MANAGEMENT 14 9. REFERENCES 14 Appendices A. Maximum Concentration of Contaminants for Toxicity Characteristic B. Totals Thresholds for possible TCLP violations C. Appendix of Significant Changes 1. SCOPE AND APPLICATION 1.1. The toxicity characteristic leaching procedure (TCLP) is designed to determine the mobility of both organic and inorganic analytes in liquid, solid, and multiphasic waste under conditions that simulate those found in a landfill. This SOP applies to TCLP for inorganic and organic analytes. 1.2. This method is applicable to soil, sediments and chemical waste. Samples are extracted according to EPA Method 1311 and for inorganic analyses the TCLP extract is digested in preparation for inductively coupled plasma-atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICPMS), or cold vapor atomic absorption spectroscopy (CVAAS, for mercury analysis). For organic analyses the TCLP extract goes through the organic extraction process in preparation for gas chromatography mass spectrometry (GC/MS) or gas chromatography with electron capture detection (GC/ECD). 2. SUMMARY OF THE METHOD 2.1. The sample undergoes a preliminary evaluation, which may include determination of percent solids as well as particle size reduction. For samples with < 0.5% dry solids, the sample filtrate is defined as the extract.
    [Show full text]
  • Woolsey Fire Cleanup Sampling and Analysis Plan
    Woolsey Fire Cleanup Sampling and Analysis Plan Santa Monica Mountains National Recreation Area Paramount Ranch, Peter Strauss Ranch, Morrison Ranch, Rocky Oaks, Cooper Brown, Dragon Property, Miller Property, Arroyo Sequit, Circle X Ranch Prepared by Terraphase Engineering, Inc. 5/27/2020 Santa Monica Mountains National Recreation Area May 27, 2020 Page | i Signatories: [Federal Government Lead] [Signature] [Date Signed] [Cleanup Lead] [Signature] [Date Signed] [Legal Lead] [Signature] [Date Signed] [Regional Coordinator] [Signature] [Date Signed] [Contaminated Sites Program] [Signature] [Date Signed] By signing above, the signatories verify that they understand and concur with the information, procedures, and recommendations presented herein. Santa Monica Mountains National Recreation Area May 27, 2020 Page | ii Table of Contents List of Figures ........................................................................................................................................ v List of Tables .......................................................................................................................................... v 1 Introduction .................................................................................................................................. 1-1 1.1 CERCLA and National Park Service (NPS) Authority ................................................... 1-1 1.2 Purpose of Field Sampling...................................................................................................... 1-2 2 Site Description
    [Show full text]
  • Catalytic Hydroformylation Reactions in Liquid-Liquid Multiphase Systems with Polymer Particles and Without Phase Transfer Agents
    Catalytic Hydroformylation Reactions in Liquid-Liquid Multiphase Systems with Polymer Particles and without Phase Transfer Agents vorgelegt von M.Sc. Bachir Bibouche ORCID: 0000-0002-9611-5325 von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Matthias Bickermann Gutachter: Prof. Dr. Dieter Vogt Gutachter: Prof. Dr. Reinhard Schomäcker Gutachter: Prof. Dr. Paul Kamer Tag der wissenschaftlichen Aussprache: 26.07.2019 Berlin 2019 Zusammenfassung Die Nutzung von molekularen Katalysatoren ermöglicht selektive und ressourcenschonende Reaktionen. Eine große Herausforderung dieser Katalysatoren ist jedoch die Wiederverwendbarkeit, da sie oft bei der Produktabtrennung inaktiv werden. Thema dieser Arbeit sind mehrphasige, flüssig-flüssig Systeme, in denen Reaktionen mit molekularen Katalysatoren durchgeführt werden, sowie deren Recyclingprozesse. In den verschiedenen Ansätzen ist immer eine wässrige Phase mit einem wasserlöslichen Katalysator vorhanden. Ziel ist, die gesamte wässrige Phase, inklusive Katalysator zu recyceln. Edukt und Produkt der Reaktion bilden eine unpolare Phase und können nach der Reaktion leicht abgetrennt werden. Der Erste Teil der Arbeit behandelt Polymerpartikel, welche in mehrphasigen, katalytischen Systemen als Phasentransferstoffe dienen und so die Reaktion ermöglichen. Die Charakterisierung der Partikel zeigt, dass sie reproduzierbar
    [Show full text]
  • November/December 2018 (.Pdf)
    inform November/December 2018 November/December inform International News on Fats, Oils, and Related Materials Volume 29 (10) Volume NATURAL ANTIOXIDANTS FOR MEAT ALSO INSIDE: Oilseeds in Sudan Plant protein in Latin America Gene-edited crops We team up with the most demanding Oils & Fats processors in the world COMPLETE PREPARATION PLANTS Innovative proprietary Technologies based on the experience of • 220+ Preparation Plants • 3,000+ Rosedowns Presses COMPLETE EXTRACTION PLANTS Reliable and unmatched Technologies based on the experience of • 900+ Extractors • 900+ Desolventiser Toasters (Dryer Coolers) • 700+ Distillations & Solvent Recovery Sections COMPLETE REFINING PLANTS State-of-the-Art refining Technologies based on the experience of • 700+ Oil pretreatment Processes • 900+ Bleaching Processes • 1,400 + Deodorizing Processes COMPLETE FAT MODIFICATION PLANTS High performance Technologies based on the experience of : Desmet Ballestra designed and • 100+ Full Hydrogenation Processes delivered the largest extraction plant • 80+ Interesterification Processes in the world, operating at 20,000 TPD • 400+ Fractionation Processes with unmatched effi ciency. Science behind Technology 3/7/17 9:37 AM US-Process-2017.indd 1 We team up with the most demanding Oils & Fats processors in the world COMPLETE PREPARATION PLANTS Innovative proprietary Technologies based on the experience of • 220+ Preparation Plants • 3,000+ Rosedowns Presses COMPLETE EXTRACTION PLANTS Reliable and unmatched Technologies based on the experience of • 900+ Extractors
    [Show full text]
  • Contract Lab Program
    EXHIBIT D INTRODUCTION TO ORGANIC ANALYTICAL METHODS D-1/Introduction SOM02.0 (04/2013) THIS PAGE INTENTIONALLY LEFT BLANK SOM02.0 (04/2013) D-2/Introduction Exhibit D – Introduction to Organic Analytical Methods Table of Contents Section Page 1.0 INTRODUCTION......................................................... 5 2.0 ORGANIC METHODS FLOW CHART........................................... 5 3.0 GLASSWARE CLEANING................................................... 6 4.0 STANDARD STOCK SOLUTIONS............................................. 6 5.0 VERIFICATION OF AQUEOUS/WATER SAMPLE CONDITION....................... 6 6.0 SAMPLE CHARACTERIZATION.............................................. 6 7.0 SAMPLE MIXING........................................................ 7 8.0 SAMPLE DILUTIONS..................................................... 7 9.0 MANUAL INTEGRATIONS.................................................. 7 10.0 RAW DATA REQUIREMENTS................................................ 7 11.0 ANALYTICAL STANDARDS REQUIREMENTS.................................... 8 12.0 SAFETY............................................................... 9 13.0 POLLUTION PREVENTION................................................. 9 14.0 WASTE MANAGEMENT..................................................... 9 D-3/Introduction SOM02.0 (04/2013) THIS PAGE INTENTIONALLY LEFT BLANK SOM02.0 (04/2013) D-4/Introduction Exhibit D – Sections 1-2 1.0 INTRODUCTION The organic analytical service provides a contractual framework for laboratories. This framework applies
    [Show full text]
  • Air Stripping Process for Organic Solvent Removal Pharmaceutical Process Unit Development
    Sofia da Silva Santos Rebocho Monteiro BSC in Chemical and Biochemical Engineering Air Stripping Process for Organic Solvent Removal Pharmaceutical Process Unit Development Master dissertation for diploma obtainment in Chemical and Biochemical Engineering Advisor: Doutor Mike Ugwoke, TEVA Co-advisor: Doutor Kambiz Farbod , TEVA Co-advisor: Prof. Doutor Mário Fernando José Eusébio, FCT-UNL Júri: President: Prof. Doutor Manuel Luís de Magalhães Nunes da Ponte Examiner: Prof. Doutora Isabel Maria Rôla Coelhoso Member: Prof. Doutor Mário Fernando José Eusébio March 2018 i ii Sofia da Silva Santos Rebocho Monteiro BSC in Chemical and Biochemical Engineering Air Stripping Process for Organic Solvent Removal Pharmaceutical Process Unit Development Master dissertation for diploma obtainment in Chemical and Biochemical Engineering Advisor: Dr. Mike Ugwoke, TEVA Co-advisor: Dr. Kambiz Farbod, TEVA Co-advisor: Prof. Doctor Mário Fernando José Eusébio, UNL-FCT Júri: President: Prof. Doctor Manuel Luís de Magalhães Nunes da Ponte Examiner: Prof. Doctor Isabel Maria Rôla Coelhoso Member: Prof. Doctor Mário Fernando José Eusébio iii iv Copyright Air Stripping Process for Organic Solvent Removal - Pharmaceutical Process Unit Development Copyright © Sofia da Silva Santos Rebocho Monteiro, da Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa. A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distibuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.
    [Show full text]
  • ABSTRACT ROH, SANGCHUL. Design of Novel Functional
    ABSTRACT ROH, SANGCHUL. Design of Novel Functional Colloidal Suspensions and Gels by Interfacial Engineering of Multiphasic Systems. (Under the direction of Dr. Orlin D. Velev). Polymeric materials are pervasive in many industrial products because of their simple processability, low cost, low density, excellent mechanical properties and decreased environmental impact. The morphology and functionality of polymeric materials need to be engineered for their use in industrial products. This dissertation describes application of the colloids and interface phenomena in multiphase systems to manufacture a few new classes of polymeric materials with unique morphologies and functionalities. Three categories of multiphase systems have been studied: 1) miscible liquid-liquid pair with immiscible solid, 2) immiscible liquid-liquid pair with immiscible solid particles and 3) liquid mixture inclusion in an immiscible and crosslinkable liquid medium. Chapter 2 describes the fabrication of a new class of soft dendritic colloids (SDCs or dendricolloids) on the basis of a miscible liquid-liquid pair with immiscible solid multiphase system. The multiphasic system utilizes polymer precipitation in turbulently sheared nonsolvent medium. In the turbulent medium, the polymer solution is randomly stretched and further templated by phase separation induced by solvent-nonsolvent exchange at the interface. This results in soft dendritic colloids which are hierarchically structured, with a big branched corona of nanofibers spreading out in all directions. The biomimetic similarity of their structure to the gecko lizards’ setae renders SDCs with excellent adhesion and cohesion properties. In Chapter 3, we describe the use of a similar multiphase system for the fabrication of a new class of soft mesoporous polymer nanosheets (MPNs).
    [Show full text]
  • SFAM01.0 Exhibit D Introduction and General
    EXHIBIT D INTRODUCTION TO ANALYTICAL METHODS D-1/Introduction SFAM01.0 (05/2019) THIS PAGE INTENTIONALLY LEFT BLANK SFAM01.0 (05/2019) D-2/Introduction Exhibit D – Introduction to Analytical Methods Table of Contents Section Page 1.0 INTRODUCTION...........................................................5 2.0 METHODS FLOW CHARTS....................................................5 3.0 GLASSWARE CLEANING.....................................................7 4.0 STANDARD STOCK SOLUTIONS...............................................7 5.0 VERIFICATION OF SAMPLE CONDITION AND PRESERVATION......................8 6.0 SAMPLE CHARACTERIZATION................................................9 7.0 SAMPLE DILUTIONS......................................................10 8.0 DISSOLVED METALS......................................................10 9.0 REPLICATE INTEGRATIONS/EXPOSURES......................................10 10.0 RAW DATA REQUIREMENTS.................................................11 11.0 ANALYTICAL STANDARDS REQUIREMENTS.....................................11 12.0 SAFETY................................................................12 13.0 POLLUTION PREVENTION..................................................13 14.0 WASTE MANAGEMENT......................................................13 D-3/Introduction SFAM01.0 (05/2019) THIS PAGE INTENTIONALLY LEFT BLANK SFAM01.0 (05/2019) D-4/Introduction Exhibit D – Sections 1-2 1.0 INTRODUCTION This analytical service provides a contractual framework for laboratories. The framework applies the
    [Show full text]
  • Determinación De La Característica De Toxicidad Del Endosulfan Por Medio De La Técnica TCLP (Toxicity Characteristic Leaching Procedure)
    Universidad de La Salle Ciencia Unisalle Ingeniería Ambiental y Sanitaria Facultad de Ingeniería 1-1-2009 Determinación de la característica de toxicidad del endosulfan por medio de la técnica TCLP (toxicity characteristic leaching procedure) Lida Carolina Niño Salamánca Universidad de La Salle, Bogotá Natalia Torres Chisino Universidad de La Salle, Bogotá Follow this and additional works at: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria Citación recomendada Niño Salamánca, L. C., & Torres Chisino, N. (2009). Determinación de la característica de toxicidad del endosulfan por medio de la técnica TCLP (toxicity characteristic leaching procedure). Retrieved from https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/49 This Trabajo de grado - Pregrado is brought to you for free and open access by the Facultad de Ingeniería at Ciencia Unisalle. It has been accepted for inclusion in Ingeniería Ambiental y Sanitaria by an authorized administrator of Ciencia Unisalle. For more information, please contact [email protected]. DETERMINACIÓN DE LA CARACTERÍSTICA DE TOXICIDAD DEL ENDOSULFAN POR MEDIO DE LA TÉCNICA TCLP (TOXICITY CHARACTERISTIC LEACHING PROCEDURE) LIDA CAROLINA NIÑO SALAMANCA NATALIA TORRES CHISINO UNIVERSIDAD DE LA SALLÉ FACULTAD DE INGENIERÍA AMBIENTAL Y SANITARIA BOGOTÁ D.C. 2009 DETERMINACIÓN DE LA CARACTERÍSTICA DE TOXICIDAD DEL ENDOSULFAN POR MEDIO DE LA TÉCNICA TCLP (TOXICITY CHARACTERISTIC LEACHING PROCEDURE) LIDA CAROLINA NIÑO SALAMANCA NATALIA TORRES CHISINO Trabajo de grado presentado para optar al Título de
    [Show full text]
  • AC Electrokinetics and Electrohydrodynamics for the On
    AC Electrokinetics and Electrohydrodynamics for the On-chip Particle Manipulation and Fluid Handling Paresa Modarres Doctor of Philosophy Department of Biomedical Engineering McGill University Montreal, Canada A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy Copyright © Paresa Modarres, April 2020 ABSTRACT The ever-increasing developments and advancements in the field of microfabrication technology for the past two decades have encouraged many applications geared towards miniaturized bioanalytical systems capable of performing independent or concurrent on-chip operations including, pumping, mixing, sample enrichment, thermal cycling and sensing. Reduced reagent consumption, enhanced spatiotemporal control over reaction conditions, the increased surface to volume ratios and ease of process parallelization are some key advantages of miniaturized bioanalytical systems over their counterpart conventional macroscale methods. Enabling physical mechanisms for many on-chip operations often include various gravitational, acoustics, magnetic and electric phenomena. Electrically-induced actuation mechanisms are becoming the method of choice for many specialized applications whereby low power, small footprint and absence of moving parts are desired. Applications of electrically induced actuation mechanisms encompassing classical electrokinetics and electrohydrodynamic forces are the subject of this thesis. Multiple novel biochips were designed, fabricated and characterized for performing cell enrichment, micromixing and nanoparticle synthesis. First, the principle of alternating current (AC) dielectrophoresis (DEP) was utilized for the tunable sorting of synthetic particles and cells. Next, the concepts of AC electroosmosis (ACEO) and electrohydrodynamic were investigated for the micromixing of monophasic and biphasic liquid systems. For the first time, the ACEO-induced fluid actuation mechanism was utilized for devising a phase-controlled field-effect micromixer.
    [Show full text]