The Ecology and Conservation of Bryophytes in Tasmanian Wet Eucalypt Forest

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology and Conservation of Bryophytes in Tasmanian Wet Eucalypt Forest The ecology and conservation of bryophytes in Tasmanian wet eucalypt forest Perpetua A. M. Turner B.Sc. (Hons) Submitted in fulfilment of the requirements of the degree of -. Doctor of Philosophy School of Geography and Environmental Studies University of Tasmania Hobart July 2003 Declaration This thesis contains no material that has been accepted for the award of any other degree or diploma in any tertiary institution and, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text. Perpetua A.M. Tumer (nee Blanks) l lthJuly 2003 Authority of Access This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Perpetua A.M. Tumer (nee Blanks) 1 lthJuly 2003 Abstract The aim of this study was to determine the factors that affect bryophyte richness and species composition in wet eucalypt forest, including old growth and forest disturbed by wildfire or silvicultural practice. Approximately one third of the total bryophyte flora for Tasmania was recorded in old growth mixed forest, with more livenvort than moss species found. Bryophyte species composition was significantly different between groups of sites of forest from the northwest, central and southern areas of the state. Mean annual temperature, altitude, rainfall of the driest month and aspect were most significant in predicting variation in bryophyte species composition. The use of vascular plants as surrogates for the conservation of bryophyte species was . examined. Vascular plant and fern species richness were significant but poor predictors of bryophyte species richness. A minimum set of 3 1 sites reserved all vascular species and a large percentage (82.9%) of bryophyte species at least once. Thus, reserves selected using vascular plants are likely to reserve a large proportion of bryophyte species. The reserve sets included more sites of regenerating forest than old growth forest indicating the importance for conservation of multi-aged wet eucalypt forest. Many species preferentially occurred on a substrate type within a particular forest age class. The bryophyte species composition on old growth Nothofagus cunninghamii and Atherosperma moschatum trees were significantly dissimilar to a large number of other substratetage class groups. Consistent with previous literature, bark type affected species composition. Comparisons of bryophytes in sites disturbed by wildfire and logging found four moss species occurred more frequently in logging than wildfire regeneration, whereas six of the seven bryophytes species that occurred more frequently after wildfire than logging disturbance were livenvorts. Overall, little difference in bryophyte and vascular species composition was found between logging and wildfire regeneration. When sites were separated into regions, bryophyte species composition differed between logging and wildfire only in the forests of central Tasmania, where Eucalyptus regnans is dominant. Successional stages of bryophytes species occurrence after disturbance were documented. Species occuning frequently in primary succession did not survive into later successional stages. Many species that established in post-primary successional forest persisted into late successional forest. Livenvort species dominated in late successional forest. The exclusive occurrence of the epiphytic mosses Neckera pennara and Calypropogon mnioides in regenerating forest is strongly associated with the presence of Pomaderris apetala and Acacia dealbata trees. Acknowledgements I am indebted to my supervisors. Jamie Kirkpatrick for his enthusiasm, support, encouragement and wisdom and Emma Pbaro, for her knowledge, experience, advice and for keeping me motivated. This PhD and &e move to Tasmania would not have been possible without assistance from an APA scholarship. Additional encouragement, advice and support from a number of people also facilitated the move. I thank Mark Burgman for initiating my Honours project based on bryophytes which introduced me to a fascinating new world of plants. I thank the late George A.M. Scott for his wisdom, time, patience and enthusiasm. Without his counsel I would not have seriously considered undertaking a PhD on bryophytes in Tasmania. Mick Brown and John Hickey provided valuable logistic and technical support and taught me a great deal about forest ecology. Their advice, enthusiasm and constant encouragement greatly contributed to the project. I thank Sue Jennings for the tremendous assistance and logistic support while in the field, and for her friendship. Leigh Edwards assited in finding relevant field sites. Keely Ough provided ecological advice and much reference material. Fieldwork would not have been possible without the assistance from Foreslry Tasmania staff and Paul Smart, Darren Turner, Emma Pharo, Steve Scott, Steve Davis, Craig Weston, Frank Bishop, Rod Evans, , Sandra Hetherington, Bill Tewson and Peter Ladaniwskyi. The patience and unbounded assistance given by Paul Smart is genuinely appreciated. I am indebted to two great friends, Anita Wild and Mark Poll and the 'children', Farmy, Sal and Mush. The support, encouragement, guidance given from Anita and Mark (and licks from the 'children'!) enabled me to achieve many goals. The amazing bryological network was always ready and willing to help at every turn. Advice and assistance were received predominantly with sampling methods and identification of difficult specimens. I am indebted to bryologists in Ausualia and New Zealand, in particular Dana Bergstrom, Elizabeth Brown, Judith Cumow, Paddy Dalton, Jean Jarman, Neils Klazenga, David Meagher, Pina Milne, Emma Pharo, Helen Ramsay, Rod Seppelt, Jessica Beever, Pat Brownsey, Alan Fife and David Glenny. Assitance was also gratefully received from John J. Engel (Lepidoziaceae and Geocalycaceae), Jan-Peter Frahm (Carnpylopus), Riclef Grolle (Lepidoziaceae, Lejeuneaceae), Bob Magill, Ray Tangney (Carnprochaete) and Kohsaku Yamada (Radula). The assistance and advice provided by David Meagher is greatly appreciated. I am also indebted to staff of the Tasmanian Herbarium, especially Lyn Cave. I am indebted to Leon Barmuta, Lee Belbin, Steve Candy, Richard Little, Peter Minchin and He~k Wahren for their advice and assitance with some analyses. Thanks to the staff and fellow 'Jamie' students of Geography and Environmental Studies. I thank Moya Kilpatrick and Pauline Harrowby for their assistance and patience. Denis Charlesworth carried out chemical analyses of soil samples. Kate Charlesworth helped find theses, articles and maps. David Somerville assisted with fieldwork equipment. Jamie Kirkpatrick, Emma Pharo, John Hickey, Stephen Bresnehan, Anita Wild, Ljiljana Sekuljica, Sapphire MCMullan-Fisherand Rod Seppelt canied out proof reading. Anita Wild prepared the maps for the chapters. Darren Turner assisted with formatting of this thesis. Thanks especially to Anita and Sapphire for spending time checking the whole thesis. To the Blanks family, I thank you for all your support and understanding. To Nell and Tess whose 'garden landscaping' and waggling tails never failed to bring a smile to my face when things seemed awry. Thanks also to the Turner family for your best wishes and support. And most of all I thank Darren, Thank-you for your understanding, love, patience, kindness and commitment, especially during the (many) stressful times. Without you, all this would not have been possible. Moss Gathering. Theodore Roethke To loosen with all ten fingers held wide and limber And lift up a patch, dark-green, the kind for lining cemetery baskets, Thick and cwhiony, like an old fashioned doo~t, The crumbling small hollow sticks on the underside mixed with roots, And wintergreen berries and kaves still stuck to the top, - That was moss gathering. But something always went out of me when I dug loose those carpets Of green, or plunged to my elbows in the spongy yellowish moss of the marshes And afterwards I always felt mean, jogging back over the logging road, As if I had broken the natural order of things in that swampland; Disturbed some rhythm, old and of vast importance. By pulling off the flesh from the living planet; As if I had committed, against the whole scheme of life, a desecration. Table of Contents Chapter One Introduction .....................................................................................................................l Bryophytes ..................................................................................................................... 1 Bryophytes in forest ecosystems ................................................................................... 1 Wet eucalypt and mixed forest .................................................................................. 1 Fire in wet eucalypt forests ....................................................................................... 2 Silvicultural practices in wet eucalypt forests ........................................................... 3 The effect of wildfire and logging practices on bryophytes ............................. ;........ 3 Bryophytes in old gowth mixed forest ..................................................................... 5 The importance of substrate in forests ...................................................................... 5 Conservation of bryophytes
Recommended publications
  • Blue Tier Reserve Background Report 2016File
    Background Report Blue Tier Reserve www.tasland.org.au Tasmanian Land Conservancy (2016). The Blue Tier Reserve Background Report. Tasmanian Land Conservancy, Tasmania Australia. Copyright ©Tasmanian Land Conservancy The views expressed in this report are those of the Tasmanian Land Conservancy and not the Federal Government, State Government or any other entity. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgment of the sources and no commercial usage or sale. Requests and enquires concerning reproduction and rights should be addressed to the Tasmanian Land Conservancy. Front Image: Myrtle rainforest on Blue Tier Reserve - Andy Townsend Contact Address Tasmanian Land Conservancy PO Box 2112, Lower Sandy Bay, 827 Sandy Bay Road, Sandy Bay TAS 7005 | p: 03 6225 1399 | www.tasland.org.au Contents Acknowledgements ................................................................................................................................. 1 Acronyms and Abbreviations .......................................................................................................... 2 Introduction ............................................................................................................................................ 3 Location and Access ................................................................................................................................ 4 Bioregional Values and Reserve Status ..................................................................................................
    [Show full text]
  • A Taxonomic Revision of Hymenophyllaceae
    BLUMEA 51: 221–280 Published on 27 July 2006 http://dx.doi.org/10.3767/000651906X622210 A TAXONOMIC REVISION OF HYMENOPHYLLACEAE ATSUSHI EBIHARA1, 2, JEAN-YVES DUBUISSON3, KUNIO IWATSUKI4, SABINE HENNEQUIN3 & MOTOMI ITO1 SUMMARY A new classification of Hymenophyllaceae, consisting of nine genera (Hymenophyllum, Didymoglos- sum, Crepidomanes, Polyphlebium, Vandenboschia, Abrodictyum, Trichomanes, Cephalomanes and Callistopteris) is proposed. Every genus, subgenus and section chiefly corresponds to the mono- phyletic group elucidated in molecular phylogenetic analyses based on chloroplast sequences. Brief descriptions and keys to the higher taxa are given, and their representative members are enumerated, including some new combinations. Key words: filmy ferns, Hymenophyllaceae, Hymenophyllum, Trichomanes. INTRODUCTION The Hymenophyllaceae, or ‘filmy ferns’, is the largest basal family of leptosporangiate ferns and comprises around 600 species (Iwatsuki, 1990). Members are easily distin- guished by their usually single-cell-thick laminae, and the monophyly of the family has not been questioned. The intrafamilial classification of the family, on the other hand, is highly controversial – several fundamentally different classifications are used by indi- vidual researchers and/or areas. Traditionally, only two genera – Hymenophyllum with bivalved involucres and Trichomanes with tubular involucres – have been recognized in this family. This scheme was expanded by Morton (1968) who hierarchically placed many subgenera, sections and subsections under
    [Show full text]
  • Paropsisterna Selmani
    Plant Pest Factsheet Tasmanian Eucalyptus Beetle Paropsisterna selmani Figure 1. Adult Tasmanian Eucalyptus beetle, pre -hibernation, London © ZooTaxa, Paula French Background In 2007, an exotic leaf beetle was found damaging cultivated Eucalyptus species in County Kerry, Republic of Ireland. The same beetle had been previously found damaging Eucalyptus plantations in Tasmania, Australia, and in 2012 a single adult was photographed in a garden in London. The beetle was tentatively identified as Paropsisterna gloriosa (Blackburn) (Coleoptera: Chrysomelidae) but subsequently described in 2013 as a new species P. selmani Reid & de Little. In June 2015 larvae of P. selmani were found causing severe defoliation to Eucalyptus plants at a public garden in Surrey; and in August 2015 a single adult was found in West Sussex. Geographical Distribution Paropsisterna selmani appears to be native to Tasmania, Australia, and has been introduced to the Republic of Ireland where it occurs widely in the south. Paropsisterna selmani has been found in three localities in South East England and is likely to become established in the UK. Host Plants Paropsisterna selmani feeds exclusively on Eucalyptus species (Myrtaceae), preferentially on glaucous-foliaged eucalypt species of the subgenus Symphyomyrtus, particularly the plantation tree E. nitens. Other hosts include: Eucalyptus brookeriana, E. dalrympleana, E. rubida, E. glaucesens, E. globulus, E. gunnii, E. johnstonii, E. moorei, E. nicholii, E. parvula, E. pauciflora ssp. niphophila, E. perriniana, E. pulverulenta, E. vernicosa and E. viminalis. Description Adult P. selmani are hemispherical (Figs. 1 and 4), oval (Figs. 2-3), and about 9 mm in length with the females being slightly larger than the males.
    [Show full text]
  • Inventorization of Marchantiophyta in Barail Wildlife Sanctuary, Assam, India with Special Reference to Their Microhabitat
    Marchantiophyta in Barail Wildlife Sanctuary, Assam, India 1 Inventorization of Marchantiophyta in Barail Wildlife Sanctuary, Assam, India with special reference to their microhabitat Sudipa Das1, 2 and G.D.Sharma1, 3 1Department of Life Science & Bioinformatics, Assam University, Silchar 788 011. Assam, India. 2Corresponding Author’s E-mail: [email protected] 3Present Address: Bilaspur University, Bilaspur, Chhattisgarh 495 009. India. Abstract: Das, S. & Sharma, G. D. (2013): Inventorization of Marchantiophyta in Barail Wildlife Sanctuary, Assam, India with special reference to their microhabitat. Barail Wildlife Sanctuary (BWS) lies amidst the tropical forests of the state Assam, India between the coordinates 24o58' – 25o5' North latitudes and 92o46' – 92o52' East longitudes. It covers an area of about 326.24 sq. km. with the altitude ranging from 100 – 1850 m. An ongoing study on the group Marchantiophyta (liverworts, bryophyta) of BWS reveals the presence of 42 species belonging to 24 genera and 14 families. Among these, one genus (Conocephalum Hill) and 13 species are recorded as new for the state of Assam, eight species have been found which are endemic to India, seven species are recorded as rare and one species, Heteroscyphus pandei S.C. Srivast. & Abha Srivast. as threatened within the study area. Out of 24 genera identified, 46% have been found growing purely as terrestrials, 25% as purely epiphytes and 29% have been found to grow both as terrestrials as well as epiphytes. Among these, a diverse and interesting range of microhabitats have also been observed for each taxon. It has been found that genera having vast range of microhabitats comprise large percentage of the total liverwort flora of BWS.
    [Show full text]
  • Multigene Evidence Reveals the Systematic Position of Pleurocladopsis Simulans (C
    Polish Botanical Journal 58(2): 467–474, 2013 DOI: 10.2478/pbj-2013-0060 MULTIGENE EVIDENCE REVEALS THE SYSTEMATIC POSITION OF PLEUROCLADOPSIS SIMULANS (C. MASSAL.) R. M. SCHUST. WITHIN SCHISTOCHILA DUMORT., SCHISTOCHILACEAE XIAOLAN HE & YU SUN Abstract. The monotypic Pleurocladopsis, endemic to Chile, was established by Schuster in 1964 based on an earlier poorly known species Cephalozia (?) simulans C. Massal. The phylogenetic position of Pleurocladopsis simulans had been consid- ered uncertain until it was placed in the family Schistochilaceae on account of the gynoecial and sporophytic characters. It has been assumed that Pleurocladopsis represents the starting point of evolution in Schistochilaceae. In the present study, the phylogenetic position and taxonomic status of Pleurocladopsis simulans are inferred from phylogenetic analysis of three chloroplast DNA sequence data. The result suggests that the genus was established solely based on the autapomorphic char- acters, thus obscuring its actual phylogenetic relationship with Schistochila and that these characters are later derived rather than ancestral. The result also confirms that the gynoecial and sporophytic characters are important in taxonomy, but they may be not sufficient at the infrafamilial level and at other lower taxonomic levels. In accordance with the results of the present study, Pleurocladopsis is synonymised with Schistochila, and the new combination Schistochila simulans (C. Massal.) Xiao L. He & Yu Sun is made. Key words: autapomorphy, Chile, DNA sequence, endemics, liverwort, molecular phylogeny, morphology, Pleurocladopsis simulans, Schistochila, Schistochilaceae, systematics, taxonomy Xiaolan He & Yu Sun, Botanical Museum, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FIN-00014 Helsinki, Finland; e-mail: [email protected] INTRODUCTION The genus Pleurocladopsis R.
    [Show full text]
  • Vegetation Benchmarks Rainforest and Related Scrub
    Vegetation Benchmarks Rainforest and related scrub Eucryphia lucida Vegetation Condition Benchmarks version 1 Rainforest and Related Scrub RPW Athrotaxis cupressoides open woodland: Sphagnum peatland facies Community Description: Athrotaxis cupressoides (5–8 m) forms small woodland patches or appears as copses and scattered small trees. On the Central Plateau (and other dolerite areas such as Mount Field), broad poorly– drained valleys and small glacial depressions may contain scattered A. cupressoides trees and copses over Sphagnum cristatum bogs. In the treeless gaps, Sphagnum cristatum is usually overgrown by a combination of any of Richea scoparia, R. gunnii, Baloskion australe, Epacris gunnii and Gleichenia alpina. This is one of three benchmarks available for assessing the condition of RPW. This is the appropriate benchmark to use in assessing the condition of the Sphagnum facies of the listed Athrotaxis cupressoides open woodland community (Schedule 3A, Nature Conservation Act 2002). Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 10% - - - Large Trees - 6 20 5 Organic Litter 10% - Logs ≥ 10 - 2 Large Logs ≥ 10 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Immature tree IT 1 1 Medium shrub/small shrub S 3 30 Medium sedge/rush/sagg/lily MSR 2 10 Ground fern GF 1 1 Mosses and Lichens ML 1 70 Total 5 8 Last reviewed – 2 November 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RPW Athrotaxis cupressoides open woodland: Sphagnum facies Species lists: Canopy Tree Species Common Name Notes Athrotaxis cupressoides pencil pine Present as a sparse canopy Typical Understorey Species * Common Name LF Code Epacris gunnii coral heath S Richea scoparia scoparia S Richea gunnii bog candleheath S Astelia alpina pineapple grass MSR Baloskion australe southern cordrush MSR Gleichenia alpina dwarf coralfern GF Sphagnum cristatum sphagnum ML *This list is provided as a guide only.
    [Show full text]
  • Keys for the Determination of Families of Pleurocarpous Mosses of Africa
    Keys for the determination of families of pleurocarpous mosses of Africa E. Petit Extracted from: Cléfs pour la determination des familles et des genres des mousses pleurocarpes (Musci) d'AfriqueBull. Jard. Bot. Nat. Belg. 48: 135-181 (1978) Translated by M.J.Wigginton, 36 Big Green, Warmington, Peterborough, PE and C.R. Stevenson, 111 Wootton Road, King's Lynn, Norfolk, PE The identification of tropical African mosses is fraught with difficulty, not least because of the sparseness of recent taxonomic literature. Even the determination of specimens to family or genus can be problematical. The paper by Petit (1978) is a valiant attempt to provide workable keys (and short descriptions) to all the families and genera of African pleurocarpous mosses, and remains the only such comprehensive treatment. Whilst the shortcomings of any such keys apply, the keys have nonetheless proved to be of assistance in placing specimens in taxonomic groups. However, for the non-French reader, the use of the keys can be a tedious business, necessitating frequent recourse to dictionaries and grammars. Members of the BBS have made collections in a number of tropical African countries in recent years, including on the BBS expedition to Malawi and privately to Madagascar, Tanzania and Zaire. This provided the impetus for making a translation of Petit's keys. Neither of us is an expert linguist, and doubtless in places, some of the subtleties of the language have escaped us. A rather free translation has sometimes proved necessary in order to give the sense of the text. Magill's Glossarium Polyglottum Bryologicae has been valuable in assisting with technical terms.
    [Show full text]
  • Tracing History
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911 Tracing History Phylogenetic, Taxonomic, and Biogeographic Research in the Colchicum Family BY ANNIKA VINNERSTEN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, EBC, Uppsala, Friday, December 12, 2003 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Vinnersten, A. 2003. Tracing History. Phylogenetic, Taxonomic and Biogeographic Research in the Colchicum Family. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911. 33 pp. Uppsala. ISBN 91-554-5814-9 This thesis concerns the history and the intrafamilial delimitations of the plant family Colchicaceae. A phylogeny of 73 taxa representing all genera of Colchicaceae, except the monotypic Kuntheria, is presented. The molecular analysis based on three plastid regions—the rps16 intron, the atpB- rbcL intergenic spacer, and the trnL-F region—reveal the intrafamilial classification to be in need of revision. The two tribes Iphigenieae and Uvularieae are demonstrated to be paraphyletic. The well-known genus Colchicum is shown to be nested within Androcymbium, Onixotis constitutes a grade between Neodregea and Wurmbea, and Gloriosa is intermixed with species of Littonia. Two new tribes are described, Burchardieae and Tripladenieae, and the two tribes Colchiceae and Uvularieae are emended, leaving four tribes in the family. At generic level new combinations are made in Wurmbea and Gloriosa in order to render them monophyletic. The genus Androcymbium is paraphyletic in relation to Colchicum and the latter genus is therefore expanded.
    [Show full text]
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • Introduction Methods Results
    Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant.
    [Show full text]
  • Two Hundred Years in the Dark: a Type for the Moss Encalypta Crispata
    Two hundred years in the dark: A type for the moss Encalypta crispata Michelle J. Price Abstract PRICE, M.J. (2018). Two hundred years in the dark: A type for the moss Encalypta crispata. Candollea 73: 249 – 255. In English, English abstract. DOI: http://dx.doi.org/10.15553/c2018v732a9 The historically important Hedwig-Schwägrichen collection in G contains type material linked with the moss names of Johannes Hedwig. These originate from species that he described as new to science, or that were ascribed to him when his 1801 publication Species muscorum frondosorum was designated as the starting point for moss names (excepting Sphagnaceae). A small number of the Hedwig type specimens have not been found within the G holdings, amongst which was Ptychomitrium crispatum (Hedw.) A. Jaeger (Ptychomitriaceae). This species was newly described by Hedwig in his 1801 work, under the name Encalypta crispata Hedw., based on material from the Cape of Good Hope in South Africa that was collected by the Swedish naturalist Carl Peter Thunberg. The specimen used by Hedwig to describe this species was recently found in one of the original Hedwig herbarium storage cases, amongst a set of reference material that had not been accessioned into the herbarium. After more than two-hundred years in obscurity, the newly rediscovered holotype material of Ptychomitrium crispatum is discussed herein. A description and illustration of Ptychomitrium crispatum is given, based on the type and other material from South Africa. Keywords PTYCHOMITRIACEAE – Ptychomitrium – Mosses – Hedwig-Schwägrichen herbarium – Nomenclature – Typification – Taxonomy Address of the author: Conservatoire et Jardin botaniques de la Ville de Genève, C.P.
    [Show full text]
  • The Alstroemeriaceae in Peru and Neighbouring Areas Alstroemeriaceae En Perú Y Áreas Vecinas Anton Hofreiter1 and Eric F
    Rev. peru. biol. 13(1): 005 - 069 (octubre 2006) ALSTROEMERIACEAE IN PERU © Facultad de Ciencias Biológicas UNMSM Versión Online ISSN 1727-9933 ARTÍCULO DE REVISIÓN The Alstroemeriaceae in Peru and neighbouring areas Alstroemeriaceae en Perú y áreas vecinas Anton Hofreiter1 and Eric F. Rodríguez2 1 Ludwig-Maximilians- Abstract Universität, Department Biologie I, Bereich Biodi- The family Alstroemeriaceae with special emphasis in Peru is revised using versitätsforschung, morphological and distributional data. Species in this family were reinvestigated on Abteilung Systematische the basis of all types, material housed in several herbaria and five field trips, each of Botanik, Menzingerstraße which lasted several weeks, were undertaken to South America to study the plants in 67, D-80638 München, Germany. the field. The taxonomic and collection history of the genus is described and for each species the typical growth forms and their variability, habitat preferences and general Anton Hofreiter e-mail: [email protected] distribution are discussed. A key to determine the species of Peru in English and Spanish is provided. The study area comprise five geographic units recognised: 2 Herbarium Truxillense Amotape-Huancabamba-region (Ecuador, Peru), Cordillera Occidental (Peru), Cordi- (HUT), Universidad Nacio- nal de Trujillo, Jr. San Mar- llera Central (Peru), Cordillera Oriental (Bolivia, Peru) and the Altiplano (Bolivia, Peru). tín 392, Trujillo, Perú, The family as here circumscribed comprises two species of Alstroemeria and 68 Eric F. Rodríguez e-mail: species of Bomarea, of these 68 species 43 species are members of subgenus [email protected] Bomarea, 9 species of subgenus Sphaerine and 16 of the subgenus Wichuraea. The fourth and last subgenus into Bomarea genus denominated Baccata cannot be found in the area of this study.
    [Show full text]