The Parasite and Parasitism in Victorian Science and Literature

Total Page:16

File Type:pdf, Size:1020Kb

The Parasite and Parasitism in Victorian Science and Literature Title: The parasite and parasitism in victorian science and literature Author: Justyna Jajszczok Citation style: Jajszczok Justyna. (2017). The parasite and parasitism in victorian science and literature. Katowice: Uniwersytet Śląski University of Silesia Faculty of Philology Justyna Jajszczok The Parasite and Parasitism in Victorian Science and Literature Dissertation written under the supervision of Dr hab. Małgorzata Nitka Sosnowiec 2017 Uniwersytet Śląski Wydział Filologiczny Justyna Jajszczok Pasożyt i pasożytnictwo w wiktoriańskiej nauce i literaturze Praca doktorska napisana pod kierunkiem Dr hab. Małgorzaty Nitki Sosnowiec 2017 CONTENTS Introduction .............................................................................................................. 6 Readings of Parasites in Literature ........................................................................ 9 The Critic as Parasite. Methodology and Review of Literature ............................ 16 Chapter I Interactions between Literature and Science in the Nineteenth Century ... 28 Introduction ........................................................................................................ 28 The Ecology of Literature and Science Relations ................................................ 29 Literature and Science ........................................................................................ 33 Science in Literature ........................................................................................... 37 Literature in Science ........................................................................................... 43 George Eliot’s Middlemarch and G. H. Lewes’s Infusoria .................................. 55 Conclusion ......................................................................................................... 65 Chapter II The Paradoxicality of Parasites .............................................................. 67 Introduction ........................................................................................................ 67 Biological Parasitism .......................................................................................... 69 From Parasitos to Parasite and Back .................................................................. 76 Parasitoi in Middlemarch and Bleak House. Families and Paradoxes ................. 80 The Paradox of the Child Parasitos .................................................................... 86 Conclusion ......................................................................................................... 94 Chapter III Stories of Origin: From Within ............................................................. 98 4 Introduction ........................................................................................................ 98 The Trouble with Parasites ............................................................................... 100 Within and Without .......................................................................................... 105 From Within: Bodily Imbalance and Its Causes ................................................ 109 The Story of Imbalance in Bleak House ............................................................ 116 Literary Parasites: Contextual and Extratextual Approach ................................ 126 The Story of Disturbance in Middlemarch ........................................................ 129 Conclusion ....................................................................................................... 139 Chapter IV Stories of Origin: From Without ......................................................... 141 Introduction ...................................................................................................... 141 Invasion Literature ........................................................................................... 143 Bacteriology ..................................................................................................... 148 Tropical Medicine ............................................................................................ 153 Infection Literature ........................................................................................... 161 The Sign of the Four ......................................................................................... 167 Conclusion ....................................................................................................... 175 Chapter V Stories of Terror: The Hapless Host ..................................................... 178 Introduction ...................................................................................................... 178 The Beetle ........................................................................................................ 180 The Story of a Little Traveller .......................................................................... 186 The Story of an Impoverished Clerk ................................................................. 195 The Story of a Woman Who Became a Man ..................................................... 206 5 The Story of a Wasp and a Cockroach .............................................................. 212 The Story of a Barnacle and a Crab .................................................................. 217 Conclusion ....................................................................................................... 219 Chapter VI A Story is a Story is a Story: Science and Literature Convergence...... 224 Introduction ...................................................................................................... 224 The Case Study of the Red Queen .................................................................... 226 The Story is Only Just Beginning. Parasite Avoidance Theory .......................... 230 The Story of Strange and Familiar Parasites ..................................................... 245 The Story of Unhuman Parasites....................................................................... 248 The Story of Contaminated Objects .................................................................. 254 The Story of Change and Advancement ............................................................ 259 Conclusion ....................................................................................................... 262 Conclusions .......................................................................................................... 264 Bibliography ........................................................................................................ 270 List of Illustrations ............................................................................................... 289 Summary in English ............................................................................................. 290 Summary in Polish ............................................................................................... 292 6 INTRODUCTION The aim of this dissertation is to study the phenomena of the parasite and parasitism in Victorian science and literature in order to demonstrate the interconnectedness between these two disciplines in terms of their employment of analogous themes, rhetorical devices, concepts and narratives. The parasite here serves as a particular example of the larger trend of cross-inspiration between scientific and literary works. This interconnectedness is presented through ecological interactions and the evolution-derived concept of convergence, both of which are used specifically to signal the equivalent status of literary and scientific narratives in the nineteenth century. The present work approaches the topic of the parasite and parasitism from four planes: ecology customary practice (parasitical interaction) (parasitos) PARASITE PARASITISM biology literature (organism) (metaphor) theoretical functional contextual extratextual approach approach approach approach Figure 1 Four Planes of Approaches to the Parasite and Parasitism The planes presented above show four directions of study included in this work. The plane referred to as customary practice traces the origin of the term parasite to its first and still relevant meaning in which parasitos denoted a person “eating at the table of another,” i.e. someone taking advantage of other people’s broadly understood generosity. Parasitos gave 7 its name to all the other ‘parasites’ and ‘parasitisms’ discussed in this work. The reason why the term ‘customary practice’ is introduced is to distinguish it from the concept of social parasitism which is not explored here. The ecological plane examines parasitism, that is an interaction in which one species benefits while the other is harmed as one of the possible ways in which the relations between scientific and literary texts can be approached. On the biology plane ‘parasite’ is understood either as any organism using other organisms to their benefit (theoretical approach) or as an organism of specific pathology towards their hosts (functional approach); the former approach is closer to the zoological branch of parasitology while the latter – to medicine. Finally, the literature plane is explored on which certain characters of chosen Victorian works of fiction are read as parasites, either because this is how they are portrayed (contextual approach) or because their behaviours can be interpreted as analogous to those exhibited by biological parasites (extratextual approach). The titular science is being understood here
Recommended publications
  • Molecular Mechanisms Underlying Cockroach Host Manipulation by a Parasitoid Wasp
    Molecular Mechanisms Underlying Cockroach Host Manipulation by a Parasitoid Wasp Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Maayan Kaiser Paltin Submitted to the Senate of Ben-Gurion University of the Negev June 2018 Beer-Sheva Molecular Mechanisms Underlying Cockroach Host Manipulation by a Parasitoid Wasp Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Maayan Kaiser Paltin Submitted to the Senate of Ben-Gurion University of the Negev Approved by the advisor Approved by the Dean of the Kreitman School of Advanced Graduate Studies June 2018 Beer-Sheva This work was carried out under the supervision of Prof. Frederic Libersat In the Department of Life Sciences Faculty of Natural Sciences Research-Student's Affidavit when Submitting the Doctoral Thesis for Judgment I, Maayan Kaiser Paltin, whose signature appears below, hereby declare that: ___ I have written this Thesis by myself, except for the help and guidance offered by my Thesis Advisors. ___ The scientific materials included in this Thesis are products of my own research, culled from the period during which I was a research student. ___ This Thesis incorporates research materials produced in cooperation with others, excluding the technical help commonly received during experimental work. Therefore, I am attaching another affidavit stating the contributions made by myself and the other participants in this research, which has been approved by them and submitted with their approval. Date: _________________31/12/18 Student's name: ________________Maayan Kaiser Paltin Signature:______________ Affidavit stating the contributions to present work: The venom proteomics which is described at chapter 2, was performed in collaboration with Prof.
    [Show full text]
  • 106Th Annual Meeting of the German Zoological Society Abstracts
    September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416
    [Show full text]
  • Host Specificity of Sacculina Carcini, a Potential Biological Control Agent of the Introduced European Green Crab Carcinus Maena
    Biological Invasions (2005) 7: 895–912 Ó Springer 2005 DOI 10.1007/s10530-003-2981-0 Host specificity of Sacculina carcini, a potential biological control agent of the introduced European green crab Carcinus maenas in California Jeffrey H.R. Goddard1, Mark E. Torchin2, Armand M. Kuris2 & Kevin D. Lafferty3,2,* 1Marine Science Institute, 2Marine Science Institute and Department of Ecology, Evolution and Marine Biology, 3Western Ecological Research Center, US Geological Survey, Marine Science Institute, University of California, Santa Barbara, CA 93106, USA; *Author for correspondence (e-mail: laff[email protected]; fax: +1-805-893-8062) Received 3 July 2003; accepted in revised form 2 December 2003 Key words: biological control, Carcinus maenas, Hemigrapsus nudus, Hemigrapsus oregonensis, host response, host specificity, Pachygrapsus crassipes, Sacculina carcini Abstract The European green crab, Carcinus maenas, is an introduced marine predator established on the west coast of North America. We conducted laboratory experiments on the host specificity of a natural enemy of the green crab, the parasitic barnacle Sacculina carcini, to provide information on the safety of its use as a possible biological control agent. Four species of non-target, native California crabs (Hemi- grapsus oregonensis, H. nudus, Pachygrapsus crassipes and Cancer magister) were exposed to infective lar- vae of S. carcini. Settlement by S. carcini on the four native species ranged from 33 to 53%, compared to 79% for green crabs. Overall, cyprid larvae tended to settle in higher numbers on individual green crabs than on either C. magister or H. oregonensis. However, for C. magister this difference was signifi- cant for soft-shelled, but not hard-shelled individuals.
    [Show full text]
  • Clinical Cysticercosis: Diagnosis and Treatment 11 2
    WHO/FAO/OIE Guidelines for the surveillance, prevention and control of taeniosis/cysticercosis Editor: K.D. Murrell Associate Editors: P. Dorny A. Flisser S. Geerts N.C. Kyvsgaard D.P. McManus T.E. Nash Z.S. Pawlowski • Etiology • Taeniosis in humans • Cysticercosis in animals and humans • Biology and systematics • Epidemiology and geographical distribution • Diagnosis and treatment in humans • Detection in cattle and swine • Surveillance • Prevention • Control • Methods All OIE (World Organisation for Animal Health) publications are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any other medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the OIE. The designations and denominations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the OIE concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by the OIE in preference to others of a similar nature that are not mentioned. –––––––––– The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations, the World Health Organization or the World Organisation for Animal Health concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Influence of Infection by Sacculina Carcini (Cirripedia, Rhizocephala)
    Journal of Experimental Marine Biology and Ecology 446 (2013) 209–215 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Influence of infection by Sacculina carcini (Cirripedia, Rhizocephala) on consumption rate and prey size selection in the shore crab Carcinus maenas Martin H. Larsen a, Jens T. Høeg b, Kim N. Mouritsen a,⁎ a Department of Bioscience, Marine Ecology, University of Aarhus, Ole Worms Allé 1, DK-8000 Aarhus C, Denmark b Department of Biology, Marine Biology Section, University of Copenhagen, Universitetsparken 4, DK-2100 Copenhagen, Denmark article info abstract Article history: Parasites generally influence the feeding behavior of their host and may therefore indirectly impact ecosystem Received 26 March 2013 structure and functioning if the host plays an ecological key role. The ecologically important shore crab Received in revised form 30 May 2013 (Carcinus maenas) is commonly infected by the rhizocephalan parasite Sacculina carcini that aside from Accepted 31 May 2013 inflicting behavioral change, castration and ceased molting, also feminizes its male host morphologically. Available online xxxx The latter results in reduced cheliped size, and, together with the other parasite-induced effects, this may potentially impact host feeding behavior. In two separate laboratory experiments, we offered infected and Keywords: Community structure uninfected adult male crabs respectively ad libitum small, easy-to-handle blue mussels (Mytilus edulis) Feeding behavior (10–15 mm in shell-length), and a limited, size-structured prey population (15–45 mm in shell-length; Feminization seven size-classes, ten mussels per class) during 10–15 days.
    [Show full text]
  • Bangor University DOCTOR of PHILOSOPHY Aspects of The
    Bangor University DOCTOR OF PHILOSOPHY Aspects of the biology of Sacculina carcini (Crustacea: cirripeda: rhizocephala), with particular emphasis on the larval energy budget. Collis, Sarah Anne Award date: 1991 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 ASPECTSOF THE BIOLOGY OF SACCULINA CARCINI (CRUSTACEA: CIRRIPEDIA: RHIZOCEPHALA), WITH PARTICULAR EMPHASIS ON THE LARVAL ENERGY BUDGET 0 A thesis submitted to the University of Wales by SARAH ANNE COLLIS B. Sc. in candidature for the degree of Philosophiae Doctor e^ýt Yo,1 w4 "yLFýa YT 'a x'. ^ -""t "ý ý' 1i4" ': . ': T !E CONSUL t LIAiY '`. University College of North Wales, School of Ocean Sciences, Menai Bridge, Gwynedd. LL59 5EY. ý''ý September, 1991 Kentrogon's a crippled imp, uncanny, lacking kin, The ' stabbing seed 'a Cypris made by shrinking from her skin, - A Cyprus? Nay, a fiend that borrowed Cyprid feet and mask, To cast them off when he had plied his victim-hunting task.
    [Show full text]
  • Halloween Horrors: the Dark Side of Mother Nature by Francie Mcgowan
    Halloween Horrors: The Dark Side of Mother Nature by Francie McGowan As Halloween approaches, monsters, bats and bugs will loom in the darkness of a moonless night in October to scare us. Mother Nature also has some macabre critters of the bug and insect variety that are every bit as eerie and unsettling as any Halloween costume or horror film. [Spoiler alert: do no read this article while eating or you may get sick.] To start with a seemingly pious bug, the praying mantis (order Mantodea), is actually a deadly eater and mater. With her long forelegs she captures her prey and eats them alive while holding them in a death grip. While she is mating, she bites the head of the male clean off and continues chomping the rest of the poor victim until he dies. She then saunters off well fed and fertile. The Japanese giant hornet (Vespa mandarinia japonica) is so big that, in flight, it resembles a small bird. It stings or sprays its victims - including humans - with a flesh-dissolving acid. It usually aims for the eyes. Embedded in this acid is a pheromone that attracts the other hornets in the hive to the victim and they attack en masse. Thirty of these hornets can attack a honey bee hive and kill thirty thousand of them in a matter of a few hours. Another creature to throw the most stalwart person into a state of arachnophobia (fear of spiders) or entomophobia (fear of insects) is the cockroach wasp (Ampulex compressa). They live in Asia and in Africa.
    [Show full text]
  • Children: Especially at Risk with Pests
    MAY/JUNE 2014 We accept Pest Mastercard & Visa Patrol CALL TOLL FREE 1-888-744-8989 News Children: Especially at Risk with Pests hile pests affect everyone's health Children are also exposed to fewer germs than Wif they are not controlled, some of especially at risk to pest- adults, their reactions are often us are especially vulnerable to pest stings, induced allergies. Studies more severe. The disease pest transmitted diseases, and pest- have shown that in some organisms pests carry cause caused allergies. This includes our inner city areas, cock- everything from Lyme disease, children, as well as the elderly, and our roaches are the #1 cause of encephalitis and hantavirus, to pets. This article will focus on our children. allergies among children. common diarrhea. Children and infants are especially at An even bigger problem Children, because of their risk to pests because they are always is that children are more small size, are also more at risk moving around and exploring, often close susceptible to the many diseases pests from stinging insects—everything from to the ground or on the ground, causing carry. Dr. Jerome Goddard, a medical bees, hornets, and yellowjackets, to fire them to naturally have more encounters entomologist and author of The ants and bites from poisonous spiders. with pests. Physicians Guide to Arthropods of The same amount of venom from these Rats bite about 45,000 people Medical Importance, points out that insects in a small child can cause a much annually in this country. The vast children are more vulnerable to diseases more serious reaction than in an adult.
    [Show full text]
  • Synchronism of Naupliar Development of Sacculina Carcini Thompson
    Trédez et al. Helgol Mar Res (2016) 70:26 DOI 10.1186/s10152-016-0479-2 Helgoland Marine Research ORIGINAL ARTICLE Open Access Synchronism of naupliar development of Sacculina carcini Thompson, 1836 (Pancrustacea, Rhizocephala) revealed by precise monitoring Fabien Trédez, Nicolas Rabet, Laure Bellec and Fabienne Audebert* Abstract Sacculina carcini is member of a highly-specialized group of parasitic cirripeds (Rhizocephala) that use crabs (Carcinus maenas) as hosts to carry out the reproductive phase of their life cycle. We describe the naupliar development of S. carcini Thompson, 1836 from a very precise monitoring of three different broods from three specimens. Nauplii were sampled every 4 h, from the release of the larvae until the cypris stage. Larval development, from naupliar instar 1 to the cypris stage, lasts 108 h at 18 °C. A rigorous sampling allowed us to describe an additional intermediate naupliar instar, not described previously. Naupliar instars are renumbered from 1 to 5. Nauplius 1 (N1) larvae hatch in the interna; N2 are released from the interna and last between 12 and 16 h; N3 appear between 12 and 16 h after release; N4 appear between 28 and 32 h; and N5 appear between 44 and 48 h. The cypris stage appears between 108 and 112 h. The redescribed morphologies allowed us to identify new characters. Antennular setation discriminates nau- pliar instars 3, 4 and 5. Telson and furca morphologies discriminate all naupliar instars. Furthermore, we demonstrate that the speed of larval development is similar within a single brood and between broods from different specimens, suggesting synchronization of larval development.
    [Show full text]
  • Imaging Findings in Neurocysticercosis
    Document downloaded from http://www.elsevier.es, day 09/07/2015. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Radiología. 2013;55(2):130---141 www.elsevier.es/rx UPDATE IN RADIOLOGY ଝ Imaging findings in neurocysticercosis ∗ S. Sarria Estrada , L. Frascheri Verzelli, S. Siurana Montilva, C. Auger Acosta, A. Rovira Canellas˜ Unitat de Ressonància Magnètica (IDI), Servei de Radiologia, Hospital Universitari Vall d’Hebron, Barcelona, Spain Received 2 September 2011; accepted 23 November 2011 KEYWORDS Abstract Neurocysticercosis, caused by the larvae of Taenia solium, is the parasitic infec- Taenia solium; tion that most commonly involves the central nervous system in humans. Neurocysticercosis is Cysticercosis; endemic in practically all developing countries, and owing to globalization and immigration it Neurocysticercosis; is becoming more common in developed countries like those in western Europe. Computed The most common clinical manifestations are epilepsy, focal neurologic signs, and intracranial tomography; hypertension. Magnetic resonance The imaging findings depend on the larval stage of Taenia solium, on the number and loca- imaging tion of the parasites (parenchymal, subarachnoid, or intraventricular), as well as on the host’s immune response (edema, gliosis, and arachnoiditis) and on the development of secondary lesions (arteritis, infarcts, or hydrocephalus). The diagnosis of this parasitosis must be established on the basis of the clinical and radiologi- cal findings, especially in the appropriate epidemiological context, with the help of serological tests. © 2011 SERAM. Published by Elsevier España, S.L. All rights reserved. PALABRAS CLAVE Neurocisticercosis. Hallazgos radiológicos Taenia solium; Cisticercosis; Resumen La neurocisticercosis es una parasitosis humana causada por las larvas de la Taenia Neurocisticercosis; solium, que es la que con mayor frecuencia afecta el sistema nervioso central.
    [Show full text]
  • Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
    Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored.
    [Show full text]
  • External Morphology of Sacculina Leptodiae
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 25(1): 331 – 349 (2021) www.ejabf.journals.ekb.eg External morphology of Sacculina leptodiae (Sacculinidae: Rhizocephala) parasitizing the xanthid crab, Leptodius exaratus (Xanthidae: Brachyura) from the coasts of the Red Sea, Gulfs of Suez and Aqaba, Egypt Ahmed M.Hassan1, Awaad A.M. El-Sayed2*, Mohamed A. Amer2 and Maged M.A. Fouda3&4 1; Private Researcher in SAMCO Company, Egypt. 2; Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. 3; Zoology Department, Faculty of Science, Al-Azhar University, Asyut Branch, Egypt. 4; Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia. *Corresponding Author: [email protected] ARTICLE INFO ABSTRACT Article History: A total of 41 externae (35 single and 3 double) of the parasitic sacculind, Received: Jan. 6, 2021 Sacculina leptodiae (Sacculindae: Rhizocephala) were investigated during Accepted: Jan. 18, 2021 this study. They were obtained from 38 individuals (23 males and 15 Online: Jan. 22, 2021 females) of the xanthid crab, Leptodius exaratus (Xanthidae: Brachyura) _______________ collected from the Egyptian coasts of the Red Sea and Gulfs of Suez and Aqaba. The rate of infection represented 5.50% of all populations (691 Keywords: individuals, 400 males and 291 females) and was slightly higher in males Rhizocephala, (5.75 %) than in females (5.15 %). The single 35 externae represented 92.11 Scculina, %, compared with only 3 individuals have double externae represented 7.89 Leptodius exaratus, %. The externae of this parasite were extruded on the abdomens of infected Red Sea, crabs, each was attaching with its interna (rootlets) in the internal body Gulf of Suez, cavity of the host via a very short stalk or peduncle.
    [Show full text]