(Selected Families) LEPIDOPTERA

Total Page:16

File Type:pdf, Size:1020Kb

(Selected Families) LEPIDOPTERA LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Zygaenoidea Zygaenidae - smokey moths and burnets; 1000 species • Small gray or black moths with translucent wings, often with reddish thorax and other bright markings; others are very colorful • Adults are day fliers • These moths are highly resistant to cyanide kill jars • North American larvae feed on grape or Virginia creeper; includes the grapeleaf skeletonizer, the larvae feed together in a row on the same leaf LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Zygaenoidea Megalopygidae - flannel moths; ca. 250 species • Limited to the New World and mostly tropical • Adults have a dense covering of scales interspaced with curly hairs - wooly or flannel appearance; usually brown, yellowish, white, some brightly colored; adult head small with reduced mouthparts • Larvae with accessory prolegs (on segments 2 and 7, in addition to normal complement on 3-6); prolegs sucker-like without crochets • Larvae also hairy, with very painful stinging hairs • Larvae feed on palms, guava, cacao, and ferns; in North America the common species feeds on Rubus and apple LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Zygaenoidea Limacodidae - slug caterpillar moths; 1000 species • Known primarily for their larvae, many of which have very painful stinging hairs or spines on the body; saddle-back caterpillar, monkey slug • The larvae move like slugs because the prolegs are short and the crochets absent and replaced by suckers; the thoracic legs are very small • Adults are robust and hairy, often with small heads; often brightly colored; distinct posture with the body supported by extended legs, and with the abdomen often pointing up • U of MN entomology graduate Dr. Mark Epstein is an expert in this and other zygaenoids Limacodidae LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Sesioidea Sesiidae - clearwing moths; 1200 species • Active, day flying moths, with transparent wings without scales except along veins; many brightly colored and resemble wasps; males and females dimorphic • Larvae bore in stems, canes, and twigs or under bark • Many economically important species, such as the peach tree borer, squash vine borer • Female sex pheromones have been synthesized to attract and trap males LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Sesioidea Castniidae - sun moths or butterfly moths; ca. 175 species • Broad winged, diurnal moths with clubbed antennae that look very much like butterflies • Forewings usually cryptic, hind wings brightly colored • Larvae feed internally on monocots such as bromeliads, palms, orchids, etc.; some occur in the soil where they feed in roots and other below ground parts of the plant • Found in tropical regions LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Cossoidea Cossidae - carpenter moths and leopard moths; ca. 700 species • Small to large, robust moths • Females may lay 1000s of eggs • Larvae initially disperse on silk threads, then settle and bore in woody branches and trunks of many different hosts; may cause serious damage to trees; may take 1-4 years to mature LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Tortricoidea Tortricidae - leaf roller moths; 7,000 species • Small to medium moths, with mottled brown, tan, gray coloration, some with metallic spots; wings broad and usually squared off at apex, held like a flattened roof giving moth an arrowhead shaped appearance • Females have large, flat oviscapts and lay flat scale-like eggs that they “fence in” with specialized scales to protect against ants • Larval feeding is diverse, usually within folded or rolled leaves, but also borers in roots, seeds, stems, flowers, under bark • Many economically important - coddling moth, a pest of apples, oriental fruit moth, a serious pest of peaches, spruce budworm, a serious outbreak species in northern forests, etc., etc. • Dr. William Miller, Professor Emeritus (deceased), U of MN Entomology was a world authority in the group Tortricidae LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Pterophoroidea Pterophoridae - plume moths; 130 species • Common moths with the wings divided into 2-3 deep slits, but this is not the condition in all species • Have a characteristic posture - long, slender body and legs with the wings closed and held out to the side • Larvae are borers in roots, stems, etc., but also feed externally • The larvae feed on range of host plants, one species even feeds on sundew (Drosera) and a few are minor pests (artichoke, grape) LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Alucitoidea Alucitidae - many plume moths; 130 species • This small family is noteworthy for the many deep divisions in both pairs of wings of most species; cosmopolitan, but only one Nearctic species (Alucita hexadactyla) • Larvae are borers in buds, flowers, fruits, shoots or make galls; feed on Caprifoliaceae, Bignoniaceae, and Rubiaceae (in the latter family one species is a pest of coffee in Africa) LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Heteroneura - Pyraloidea Pyralidae (now with Crambidae as separate family) - snout and grass moths; 16,000 species • Perhaps the most diverse family of moths, with lots of new species • Adults have a pair of tympanal organs on the venter of 1st abdominal segment; their labial palps are long and project forward; forewing triangular, hind wing broad • Incredible diversity of larval habits - detritivores on fungi, dried plants and animal remains, herbivores on angiosperms, lichens, liverworts, ferns, predators on sternorrhynchans and other caterpillars, inquilines of social insects including the wax moth and mammals such as those that live in the fur of sloths, aquatic species are numerous and live in standing water as well as fast flowing streams; many species associated with grasses where they feed from silken webs at the base • Many economically important species - the meal moth, Indian meal moth, Mediterranean flour moth in stored grain; sugarcane borer, European corn borer; melon worm; grape leaf folder; pickleworm; etc. etc. Pyralidae LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Macrolepidoptera - Lasiocampoidea Lasiocampidae - tent caterpillars and lappet moths; 1,500 species • Small to very large moths with broad wings and stout hairy bodies • Larvae feed on great diversity of low growing plants, shrubs,and trees • Includes the tent caterpillars in the genus Malacosoma; larvae live gregariously in conspicuous silken tents; eastern tent caterpillar, M. americana; forest tent caterpillar, M. disstria • Dr. Fred Stehr, U of MN entomology graduate, studied Malacosoma taxonomy; edited most important book on immature insects LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Macrolepidoptera - Bombycoidea Bombycidae - Silkworm moths; 350 species • Includes most famously the silkworm moth, Bombyx mori, a native of Asia • Domesticated for 1000s of years; no longer exists in the wild • Larvae feed on mulberry • Spin silk cocoon prior to pupation made of a single thread of silk almost 1000 m long; 3000 cocoons per 1 lb silk • Sericulture practiced in China, Japan, Europe, and Brazil LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Macrolepidoptera - Bombycoidea Saturniidae - giant silkworm moths and royal moths; 1,500 species • Medium sized to very large, often spectacular moths, with thick bodies; wings often with tails, lobes, eye spots, clear windows, etc. • Adult antennae very plumose in males; mouthparts reduced in both sexes and adults do not feed • Female sex pheromones can be detected by males from long distance • Included luna, promethea, polyphemus, cecropia, imperial moth, royal walnut moth, io moth, buck moth, oak moths • Caterpillars large, colorful, with tubercles and spines; hickory horned devil of the royal moth; pupate in silken and leaf cocoons attached to branches or in ground without cocoon • Some also used to produce silk LEPIDOPTERA - butterflies and moths Diversity and Distribution (selected families) Macrolepidoptera - Bombycoidea Sphingidae - sphinx moths or hawk moths; 1,200 species • Medium sized to very large moths with long proboscises, sometimes longer than the length of the body • Forewings large and narrow, hind wings much smaller; very fast, strong, rapid wing beat fliers, often migratory • Attracted to large, very fragrant, white flowers that open at night; others are diurnal and may mimic bees and wasps; hover in front of flowers like hummingbirds • Larvae large and colorful with a spine-like projection (or a hard button- like structure) on the 8th abdominal segment - hence the common name “hornworms”; larvae often ectoparasitized by braconids • Pupate in the ground usually without a cocoon; the developing proboscis forms a pitcher-like handle off the body • Some economically important species such as the tomato hornworm, Manduca quinquemaculata, on tomato, tobacco, potato, and M. sexta on tobacco Superfamily Noctuoidea (6 families) Family Oenosandridae (4 genera, 8 species) Family Notodontidae (704 genera, 3,800 species) Family
Recommended publications
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • Moths Light a Way? by John Pickering, Tori Staples and Rebecca Walcott
    SOUTHERN LEPIDOPTERISTS NEWS VOLUME 38 NO4. (2016), PG. 331 SAVE ALL SPECIES – MOTHS LIGHT A WAY? BY JOHN PICKERING, TORI STAPLES AND REBECCA WALCOTT Abstract -- What would it take to save all species from snakes, and stinging insects, they pose no health risk. extinction? A new initiative, Save all species, plans to Moths are an exceedingly species-rich group, for which answer this question and provide the tools we need to do the diversity at a terrestrial site will typically exceed any so by 2050. Here we consider the merits and problems other taxon except for beetles. Because moth larvae are associated with inventorying moths to help decide which restricted in their diet to specific host taxa, differences in terrestrial areas to protect. We compare the the assemblages of resident moth species could reflect scientifically-described moth fauna of the British Isles differences across sites in plants and other hosts. If which, with 2,441 species, is taxonomically complete, that’s true, we may be able to use moth inventories as with 11,806 described species from North America north efficient proxies to compare surrounding plant of Mexico, the fauna of which is not fully described. As communities. a percentage of the described moth fauna, there are fewer “macro” moths (Geometroidea, Drepanoidea, Inventorying moths presents challenges, notably, Noctuoidea, Bombycoidea, Lasiocampidae) in the sampling smaller species, describing thousands of British Isles (34.9%) than those known for the United species new to science, and identifying specimens States and Canada (46.1%). We present data on 1,254 accurately. Our experience is that we can identify 99% species for an intensively-studied site in Clarke County, of moths from digital images to species, species-groups, Georgia and consider whether species in the British Isles which contain species of similar appearance, or are generally smaller than ones in Georgia.
    [Show full text]
  • Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
    Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional.
    [Show full text]
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • A New Macrolepidopteran Moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican Amber
    ZooKeys 965: 73–84 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.965.54461 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber Weiting Zhang1,2, Chungkun Shih3,4, YuHong Shih5, Dong Ren3 1 Hebei GEO University, 136 Huaiandonglu, Shijiazhuang 050031, China 2 State Key Laboratory of Pal- aeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China 3 College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisan- huanbeilu, Haidian District, Beijing 100048, China 4 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA 5 Laboratorio Dominicano De Ambar Y Gemas, Santo Domingo, Dominican Republic Corresponding author: Weiting Zhang ([email protected]) Academic editor: Gunnar Brehm | Received 19 May 2020 | Accepted 12 August 2020 | Published 3 September 2020 http://zoobank.org/05E273DB-B590-42D1-8234-864A787BE6A0 Citation: Zhang W, Shih C, Shih YH, Ren D (2020) A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber. ZooKeys 965: 73–84. https://doi.org/10.3897/zookeys.965.54461 Abstract A new genus and species of fossil moth, Miogeometrida chunjenshihi Zhang, Shih & Shih, gen. et sp. nov., assigned to Geometridae, is described from Miocene Dominican amber dating from 15–20 Mya. The new genus is characterized by the forewing without a fovea, R1 not anastomosing with Sc, no areole formed by veins R1 and Rs, R1 and Rs1 completely coincident, M2 arising midway between M1 and M3, anal veins 1A and 2A fused for their entire lengths; and the hind wing with Rs running close to Sc + R1 and M2 absent.
    [Show full text]
  • 1 Moving on from the Insect Apocalypse Narrative
    Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation Manu E. Saunders1,2, Jasmine Janes1,3, James O’Hanlon1 1School of Environmental and Rural Science, University of New England Armidale NSW Australia 2UNE Business School, University of New England Armidale NSW Australia 3Biology Department, Vancouver Island University, Nanaimo, BC, Canada This is the author’s version of a manuscript published in BioScience. Please cite as: Saunders ME, Janes J, O’Hanlon J (2019) Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience https://doi.org/10.1093/biosci/biz143 1 Abstract Recent studies showing temporal changes in local and regional insect populations received exaggerated global media coverage. Confusing and inaccurate science communication on this important issue could have counter-productive effects on public support for insect conservation. The ‘insect apocalypse’ narrative is fuelled by a limited number of studies that are restricted geographically (predominantly UK, Europe, USA) and taxonomically (predominantly bees, macrolepidoptera, and ground beetles). Biases in sampling and analytical methods (e.g. categorical vs. continuous time series, different diversity metrics) limit the relevance of these studies as evidence of generalised global insect decline. Rather, the value of this research lies in highlighting important areas for priority investment. We summarise research, communication and policy priorities for evidence-based insect conservation, including key areas of knowledge to increase understanding of insect population dynamics. Importantly, we advocate for a balanced perspective in science communication to better serve both public and scientific interests. 2 Introduction Insects are the most diverse and abundant group of animals on Earth and are critical drivers of ecosystem function in terrestrial and aquatic systems; yet the majority of insect taxa are understudied, publicly misunderstood and face numerous environmental threats (Samways 2007; Cardoso et al.
    [Show full text]
  • Efficacy of Pheromones for Managing of the Mediterranean Flour Moth
    12th International Working Conference on Stored Product Protection (IWCSPP) in Berlin, Germany, October 7-11, 2018 HOSSEININAVEH, V., BANDANI, A.R., AZMAYESHFARD, P., HOSSEINKHANI, S. UND M. KAZZAZI, 2007. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515-522. ISHAAYA, I. UND R. HOROWITZ, 1995. Pyriproxyfen, a novel insect growth regulator for controlling whiteflies. Mechanism and resistance management. Pestic. Sci., 43: 227–232. ISHAAYA, I., BARAZANI, A., KONTSEDALOV, S. UND A.R. HOROWITZ, 2007. Insecticides with novel mode of action: Mechanism, selectivity and cross-resistance. Entomol. Res., 37: 148-152. IZAWA, Y., M. UCHIDA, T. SUGIMOTO AND T. ASAI, 1985. Inhibition of Chitin Biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens. Pestic. Biochem. Physiol., 24: 343-347. KLJAJIC, P. UND I. PERIC, 2007. Effectiveness of wheat-applied contact insecticide against Sitophilus granarius (L.) originating from different populations. J. Stored Prod. Res., 43: 523-529. KONNO, T., 1990. Buprofezin: A reliable IGR for the control of rice pests. Soci. Chem. Indus., 23: 212 - 214. KOSTYUKOVSKY, M. UND A. TROSTANETSKY, 2006. The effect of a new chitin synthesis inhibitor, novaluron, on various developmental stages ofTribolium castaneum (Herbst). J. Stored Prod. Res., 42: 136-148. KOSTYUKOVSKY, M., CHEN, B., ATSMI, S. UND E. SHAAYA, 2000. Biological activity of two juvenoids and two ecdysteroids against three stored product insects. Insect Biochem. Mol. Biol., 30: 891-897. LIANG, P., CUI, J.Z., YANG, X.Q. UND X.W. GAO, 2007. Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum.
    [Show full text]
  • Modular Structure, Sequence Diversification and Appropriate
    www.nature.com/scientificreports OPEN Modular structure, sequence diversifcation and appropriate nomenclature of seroins produced Received: 17 July 2018 Accepted: 14 February 2019 in the silk glands of Lepidoptera Published: xx xx xxxx Lucie Kucerova1, Michal Zurovec 1,2, Barbara Kludkiewicz1, Miluse Hradilova3, Hynek Strnad3 & Frantisek Sehnal1,2 Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identifed in studied lepidopteran species and their classifcation required detailed phylogenetic analysis based on complete and verifed cDNA sequences. We sequenced silk gland-specifc cDNA libraries from ten species and identifed 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is refected in proposed nomenclature. Te silk spun by caterpillars is a composite material based on two protein agglomerates that have been known for centuries as fbroin and sericin.
    [Show full text]
  • New Records of Microlepidoptera in Alberta, Canada
    Volume 59 2005 Number 2 Journal of the Lepidopterists’ Society 59(2), 2005, 61-82 NEW RECORDS OF MICROLEPIDOPTERA IN ALBERTA, CANADA GREGORY R. POHL Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 - 122 St., Edmonton, Alberta, Canada T6H 3S5 email: [email protected] CHARLES D. BIRD Box 22, Erskine, Alberta, Canada T0C 1G0 email: [email protected] JEAN-FRANÇOIS LANDRY Agriculture & Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, Canada K1A 0C6 email: [email protected] AND GARY G. ANWEILER E.H. Strickland Entomology Museum, University of Alberta, Edmonton, Alberta, Canada, T6G 2H1 email: [email protected] ABSTRACT. Fifty-seven species of microlepidoptera are reported as new for the Province of Alberta, based primarily on speci- mens in the Northern Forestry Research Collection of the Canadian Forest Service, the University of Alberta Strickland Museum, the Canadian National Collection of Insects, Arachnids, and Nematodes, and the personal collections of the first two authors. These new records are in the families Eriocraniidae, Prodoxidae, Tineidae, Psychidae, Gracillariidae, Ypsolophidae, Plutellidae, Acrolepi- idae, Glyphipterigidae, Elachistidae, Glyphidoceridae, Coleophoridae, Gelechiidae, Xyloryctidae, Sesiidae, Tortricidae, Schrecken- steiniidae, Epermeniidae, Pyralidae, and Crambidae. These records represent the first published report of the families Eriocrani- idae and Glyphidoceridae in Alberta, of Acrolepiidae in western Canada, and of Schreckensteiniidae in Canada. Tetragma gei, Tegeticula
    [Show full text]
  • Any Reader Who Knew the British Butterflies in The
    VOLUME 50, NUMBER 2 ]53 Any reade r who knew the British butterflies in the 1950s and before will have memories of rich localities, of pastures, woods and downland from which once common species have long vanished, even if the land seems superficially to have survved. This book misses no opportunity for optimism, however: a few expanding ranges, of the Essex Skipper (Thymelicl1s lineola), the Speckled Wood (Pararge aegeria), and perhaps the White Admiral (Ladoga camilla), are recorded, together with current conservation efforts to keep now highly restricted and threatened species on the British l.'st. To read this book in conjunction with South or Frohawk reveals the general and rapid decline of a fauna, for long relatively stable, for which the blame lies almost entirely with habitat change and degradation, in their richly varied aspects. The illustrations, by Richard Lewington, have neve r, ill my vi.cw, been surpassed. Each butterfly is shown by an upperside (of both sexes where appreciably dimorphic) in "set" position, and by an underside in "perching" pose. British lepidopterists have for long paid much attention to aberrations, and many very remarkable examples of these variants are shown. Other figures, illustrating the butterflies at rest or nectaring are particularly striking through Lewington's use of black and white pencil for the plart or other perching site, against which the beauty of the painted butterflies is seen to best advantage. The effect achieved, for example, by a mating pair of Black Hairstreaks (Strymonidia pruni) on a penciled blackthorn twig, of a male Purple Hairstreak (Ql1ercl1sia quercus) basking on a an oak twig, or the once widespread but now endange red High Brown Fritillary (Argyrmis adippe) perching on a bramble, selected for the title page, is brilliant.
    [Show full text]
  • Indian Meal Moth Plodia Interpunctella
    Indian Meal Moth Plodia interpunctella Description QUICK SCAN Adults: Up to 13 mm (0.5 inches) long with wings that have copper brown tips. The part of the wings closest to the head is off white. SIZE / LENGTH Eggs: Oval, ivory in color and 2 mm (0.08 inches) long Adult 0.5 inch (13 mm) Larvae: Creamy white, brown head capsule. Coloration varies from Eggs 0.08 inch (2 mm) cream to light pink color, sometimes pale green. Pupae: Pupal cases are whitish with a yellow to brownish colored pupa COLOR RANGE inside. Adult Long wings with copper tips Larvae Creamy white, brown head Life Cycle Adult moths live for 10-14 days. Mated females can lay 200-400 eggs LIFE CYCLE singly or in groups. Eggs hatch in 3-5 days in warmer months and up to 7 days in cooler months. Larvae feed and become mature in 21 days Adults Live 10-14 days or as long as 30 days depending on food quality, temperature and Eggs Hatch 3-7 days humidity. Larvae will wander and pupation will occur away from infested materials. Adults emerge from the pupae in 7 to 10 days depending on temperature. FEEDING HABITS Damage and Detection Larvae Prefer: woolens, furs, and materials made with hair and Granular frass the size of ground pepper can be found in, on food feathers. materials such as nuts, dried fruits, cereals and processed foods containing nuts or seeds and made from wheat, rice or corn. The use of pheromone traps and inspections can determine location and degree of INFESTATION SIGNS infestation.
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]