Canarium Nut Value Chain Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extreme Ecological Specialization in a Rainforest Mammal, the Bornean
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233999; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 Extreme ecological specialization in a rainforest mammal, 5 the Bornean tufted ground squirrel, Rheithrosciurus macrotis 6 7 8 Andrew J. Marshall1*, Erik Meijaard2, and Mark Leighton3 9 10 1Department of Anthropology, Department of Ecology and Evolutionary Biology, Program in the 11 Environment, and School for Environment and Sustainability, 101 West Hall, 1085 S. University 12 Ave, Ann Arbor, Michigan, 48109 USA. 13 2Borneo Futures, Block C, Unit C8, Second Floor, Lot 51461, Kg Kota Batu, Mukim Kota Batu, 14 BA 2711, Brunei Darussalam. 15 3Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, U.S.A. 16 17 * Corresponding author 18 E-mail: [email protected] (AJM) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233999; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The endemic Bornean tufted ground squirrel, Rheithrosciurus macrotis, has attracted great 21 interest among biologists and the public recently. Nevertheless, we lack information on the most 22 basic aspects of its biology. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
The Monophyly of Bursera and Its Impact for Divergence Times of Burseraceae
TAXON 61 (2) • April 2012: 333–343 Becerra & al. • Monophyly of Bursera The monophyly of Bursera and its impact for divergence times of Burseraceae Judith X. Becerra,1 Kogi Noge,2 Sarai Olivier1 & D. Lawrence Venable3 1 Department of Biosphere 2, University of Arizona, Tucson, Arizona 85721, U.S.A. 2 Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan 3 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, U.S.A. Author for correspondence: Judith X. Becerra, [email protected] Abstract Bursera is one of the most diverse and abundant groups of trees and shrubs of the Mexican tropical dry forests. Its interaction with its specialist herbivores in the chrysomelid genus Blepharida, is one of the best-studied coevolutionary systems. Prior studies based on molecular phylogenies concluded that Bursera is a monophyletic genus. Recently, however, other molecular analyses have suggested that the genus might be paraphyletic, with the closely related Commiphora, nested within Bursera. If this is correct, then interpretations of coevolution results would have to be revised. Whether Bursera is or is not monophyletic also has implications for the age of Burseraceae, since previous dates were based on calibrations using Bursera fossils assuming that Bursera was paraphyletic. We performed a phylogenetic analysis of 76 species and varieties of Bursera, 51 species of Commiphora, and 13 outgroups using nuclear DNA data. We also reconstructed a phylogeny of the Burseraceae using 59 members of the family, 9 outgroups and nuclear and chloroplast sequence data. These analyses strongly confirm previous conclusions that this genus is monophyletic. -
Low Risk, Agroforestry, Tropical Tree, Shade-Tolerant, Bird Dispersed
Family: Burseraceae Taxon: Canarium indicum Synonym: Canarium amboinense Hochr. Common Name: canarium-nut Canarium commune L. galip Canarium mehenbethene Gaertn. galipnut Canarium moluccanum Blume Java-olive Questionaire : current 20090513 Assessor: Patti Clifford Designation: L Status: Assessor Approved Data Entry Person: Patti Clifford WRA Score -1 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable -
Origins and Assembly of Malesian Rainforests
ES50CH06_Kooyman ARjats.cls October 21, 2019 11:31 Annual Review of Ecology, Evolution, and Systematics Origins and Assembly of Malesian Rainforests Robert M. Kooyman,1,2 Robert J. Morley,3,4 Darren M. Crayn,5 Elizabeth M. Joyce,5 Maurizio Rossetto,2 J.W. Ferry Slik,6 Joeri S. Strijk,7,8,9 Ta o S u , 9,10 Jia-Yee S. Yap,2,11 and Peter Wilf12 1Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; email: [email protected] 2National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia 3Palynova UK, Littleport, Cambridgeshire CB6 1PY, United Kingdom 4Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 5Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia 6Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam 7State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530005, China 8Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, 06000 Luang Prabang, Lao PDR 9Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China 10Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar Access provided by 118.208.177.216 on 11/06/19. For personal use only. 11Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia 12Department of Geosciences, Pennsylvania State University, University Park, Annu. -
The Journal of Archaeology for Asia and the Pacific
Volume 58 Number 2 2019 for Asia and the Pacific The Journal of Archaeology ASIAN PERSPECTIVES Volume 58 . Number 2 . 2019 ASIAN PERSPECTIVES The Journal of Archaeology for Asia and the Pacific Volume 58 2019 Number 2 Editors8 Note 219 articles A Bioarchaeological Study of Trauma at Late Iron Age to Protohistoric Non Ban Jak, Northeast Thailand 220 Lucille T. PEDERSEN, Kate M. DOMETT, Nigel J. CHANG, Siân E. HALCROW, Hallie R. BUCKLEY, Charles F. W. HIGHAM, Dougald J. W. O’REILLY, and Louise SHEWAN Austronesian Expansions and the Role of Mainland New Guinea: A New Perspective 250 Glenn R. SUMMERHAYES Ritual, Landscapes of Exchange, and the Domestication of Canarium: A Seram Case Study 261 Roy ELLEN Conflict and Identity: The Ritual of Wall Construction in Early China 287 YANG Qian Last-Millennium Settlement on Yadua Island, Fiji: Insights into Conflict and Climate Change 316 Piérick C. M. MARTIN, Patrick D. NUNN, Niko TOKAINAVATU, Frank THOMAS, Javier LEON, and Neil TINDALE Household Ethnoarchaeology and Social Action in a Megalith-Building Society in West Sumba, Indonesia 331 Ron L. ADAMS On Craft Production and the Settlement Pattern of the Jinsha Site Cluster on the Chengdu Plain 366 Kuei-chen LIN book reviews World Heritage Craze in China: Universal Discourse, National Culture, and Local Memory 401 Reviewed by Magnus FISKESJÖ Archaeology and Buddhism in South Asia 404 Reviewed by Lars FOGELIN Yungang: Art, History, Archaeology, Liturgy 406 Reviewed by Denise Patry LEIDY Khao Sam Kaeo: An Early Port-City between the Indian Ocean and the South China Sea 409 Reviewed by Michèle H. -
Introduction Laevistrombus Canarium (Linnaeus 1758)
Journal of Sustainability Science and Management e-ISSN: 2672-7226 Volume 14 Number 1, February 2019 : 1-10 © Penerbit UMT EFFECTS OF TEMPERATURE ON FOOD CONSUMPTION OF JUVENILES DOG CONCH, Laevistrombus canarium (LINNAEUS, 1758) IN LABORATORY CONDITION WAN NURUL HUSNA WAN HASSAN1*, NURUL AMIN SM2, MAZLAN ABD GHAFFAR1,3,4 AND ZAIDI CHE COB1,3 1School of Environmental and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. 2Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. 3Marine Ecosystem Research Centre, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. 4Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia *Corresponding author: [email protected] Abstract: The dog conch, Laevistrombus canarium (Linnaeus, 1758) is one of the economically important marine molluscs that have high market value, particularly in the Southeast Asian region. This study investigates food consumption and assimilation by the juvenile conch at different temperature regimes (22, 26, 30 and 34°C). Live samples of the juvenile conch were collected on several occasions between December 2013 to May 2105 at Merambong shoal, Johor Straits, Malaysia. They were acclimatized for one week in stocking aquaria with well-aerated seawater at 30 PSU, 26°C and fed with commercial marine sinking pellets. Prior to experimentation, the gastric emptying levels of the samples were standardized by allowing them to feed until satiation, followed by 24 hrs starvation. All treatments were carried out in ten replicates of similar sized aquarium (20 x 15 x 15 cm) containing 4L of aerated seawater. The conch food consumption rate was significantly different (p<0.05) between different temperature regimes. -
Camera Trapping of Wildlife in the Newly Established Baleh National Park, Sarawak
Journal of Sustainability Science and Management eISSN: 2672-7226 Volume 14 Number 4, August 2019: 38-51 © Penerbit UMT CAMERA TRAPPING OF WILDLIFE IN THE NEWLY ESTABLISHED BALEH NATIONAL PARK, SARAWAK JAYASILAN MOHD-AZLAN*1, MELYNDA CHEOK KA YI1, BELINDA LIP2 AND JASON HON2 1Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia. 2World Wildlife Fund for Nature, 7th Floor, Bangunan Binamas, Lot 138, Section 54, Jalan Padungan, Kuching, Sarawak, Malaysia. *Corresponding author: [email protected] Abstract: The persistence of biodiversity in the Bornean rainforest depends on its ability to adapt to anthropogenic exploitation. The remaining forests in Sarawak are fragmented and isolated and their ability to support large sized mammals is of great concern. In view of this, camera trapping survey was conducted in the recently gazetted Baleh National Park to record the richness, activity pattern and distribution of medium-to-large sized mammals. A total of 15 infrared camera traps were set within the park. We identified at least 27 species of mammals, 12 birds and two reptiles. From the total mammalian species detected, four were listed as “totally protected” and 15 as “protected” under the Sarawak Wild Life Protection Ordinance 1998. Additionally, under the IUCN 2018 Red List criteria, one species was identified as “critically endangered” (Manis javanica), one as “endangered” (Catopuma badia), seven as “vulnerable” and four as “near threatened”. This study had identified the occurrence and distribution of some rare, endangered and threatened species. The presence of these species can be used to identify core conservation sites within Baleh National Park. -
Canarium Schweinfurthii Burseraceae Engl
Canarium schweinfurthii Engl. Burseraceae white mahogany, African canarium LOCAL NAMES English (purple canary tree,incense tree,gum resin tree,bush candle tree,African elemi); French (elemier d’Afrique,elemi de Moahum,elemi d’ouganda); Luganda (muwafu); Swahili (mpafu,mbani); Trade name (white mahogany,African canarium) BOTANIC DESCRIPTION Canarium schweinfurthii is a large forest tree with its crown reaching to the upper canopy of the forest, with a long clean, straight and cylindrical bole exceeding 50 m. Diameter above the heavy root swellings can be up to 4.5 m. Bark thick, on young tree fairly smooth, becoming increasingly scaly and fissured with age. The slash is reddish or light brown with turpentine like odour, exuding a heavy, sticky oleoresin that colours to sulphur yellow and becomes solid. Leaves are pinnate, clustered at the end of the branches, and may be 15- 65 cm long, with 8-12 pairs of leaflets, mostly opposite, oblong, cordate at base, 5-20 cm long and 3-6 cm broad, with 12-24 main lateral nerves on each side of the mid-rib, prominent and pubescent beneath. The lower leaflets are bigger than the upper ones. The lower part of the petiole is winged on the upper side. The creamy white unisexual flowers about 1 cm long grow in inflorescences that stand in the axils of the leaves and may be up to 28 cm long. The fruit is a small drupe, bluish-purple, glabrous, 3-4 cm long and 1-2 cm thick. The calyx is persistent and remains attached to the fruit. The fruit contains a hard spindle-shaped, trigonous stone that eventually splits releasing 3 seeds. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
Canarium L. : a Phytochemical and Pharmacological Review
R.Mogana et al. / Journal of Pharmacy Research 2011,4(8),2482-2489 Review Article Available online through ISSN: 0974-6943 http://jprsolutions.info Canarium L. : A Phytochemical and Pharmacological Review R.Mogana1* and C.Wiart2 1School of Pharmacy, Faculty of Science, University of Nottingham(Malaysia Campus), Jln Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia 2School of Biomedical Science, Faculty of Science, University of Nottingham(Malaysia Campus), Jln Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia Received on: 17-05-2011; Revised on: 12-06-2011; Accepted on:16-07-2011 ABSTRACT The genus Canarium L. consists of 75 species of aromatic trees which are found in the rainforests of tropical Asia, Africa and the Pacific. The medicinal uses, botany, chemical constituents and pharmacological activities are now reviewed. Various compounds are tabulated according to their classes their structures are given. Traditionally Canarium L. species have been used to treat a broad array of illnesses. Pharmacological actions for Canarium L. as discussed in this review include antimicrobial, antioxidant, anti-inflammatory, hepatoprotective and antitumor activity. Keywords: Canarium L., Burseraceae, antibacterial, antioxidant, pharmacology, secondary metabolites INTRODUCTION Canarium L. belongs to the family of Burseraceae Kunth. in the order Sapindales the bark of Canarium luzonicum Miq. or Canarium commune L. which has Juss. ex Bercht. & J. Pearl. This family consists of 18 genera and about 700 been used in the form of an ointment as a stomach stimulant and as an expec- species of tropical trees[1]. The word Canarium L. derives from the Malay torant [8]. The barks of Canarium indicum L. has been used for chest pains name ‘kanari’[2]. -
Canarium Ovatum Engl
Canarium ovatum Engl. Burseraceae pili, Kedongdong LOCAL NAMES English (pilinut,Philippine nut,canarium melioides); Filipino (pili- pilauai,pili,pilaui,liputi,basiad,anangi); Trade name (pili,Kedongdong) BOTANIC DESCRIPTION Canarium ovatum is an attractive, symmetrically shaped evergreen tree, up to 20 m tall and 50 cm in diameter. Stipules persistent, deltoid to lingulate, 5-20 x 3-10 mm. Leaves 2-4-jugate, imparipinnate, spirally arranged, about 40 cm long; Roadside tree (Rafael T. Cadiz) leaflets ovate to elliptic, 4-24 x 2-12 cm, stiff, coriaceous, entire, base oblique, rounded to subcordate, apex abruptly acuminate, 8-12 pairs of nerves. Inflorescence axillary, close together at the ends of branches, narrowly thyrsoid, 3-12 cm long, few flowers; flowers trimerous, unisexual, subsessile, pubescent, up to 12 mm long, calyx cupular, 7 mm long in male, 8-9 mm in female flowers; petals 2 x 1 cm; stamens 6, slightly adnate to the disk and sterile in female flowers; pistil absent in male flowers, 7 mm long in female. Canarium ovatum Flower (Rafael T. Cadiz) Fruit drupaceous, ovoid to ellipsoid, 3.5-6.25 x 2-2.75 cm, acute, triangular in cross-section; exocarp thin, glabrous, shiny, turning from light green to purplish-black; mesocarp fibrous, fleshy, thick and greenish-yellow in colour; endocarp (shell) elongated, stony, trigonous, pointed at base, blunt or obtuse at apex, tawny to dirty brown, sterile cells strongly reduced. Seed with 1 brown papery seed coat. Much of the kernel weight is made up of the cotyledons, which are about 4.1-16.6% of the whole fruit.