Emerging Viral Diseases Why We Need to Worry About Bats, Camels, and Airplanes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of Natural HIV-1 Nef Alleles and Polymorphisms on SERINC3/5 Downregulation
Impact of natural HIV-1 Nef alleles and polymorphisms on SERINC3/5 downregulation by Steven W. Jin B.Sc., Simon Fraser University, 2016 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Master of Science Program Faculty of Health Sciences © Steven W. Jin 2019 SIMON FRASER UNIVERSITY Spring 2019 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Steven W. Jin Degree: Master of Science Title: Impact of natural HIV-1 Nef alleles and polymorphisms on SERINC3/5 downregulation Examining Committee: Chair: Kanna Hayashi Assistant Professor Mark Brockman Senior Supervisor Associate Professor Masahiro Niikura Supervisor Associate Professor Ralph Pantophlet Supervisor Associate Professor Lisa Craig Examiner Professor Department of Molecular Biology and Biochemistry Date Defended/Approved: April 25, 2019 ii Ethics Statement iii Abstract HIV-1 Nef is a multifunctional accessory protein required for efficient viral pathogenesis. It was recently identified that the serine incorporators (SERINC) 3 and 5 are host restriction factors that decrease the infectivity of HIV-1 when incorporated into newly formed virions. However, Nef counteracts these effects by downregulating SERINC from the cell surface. Currently, there lacks a comprehensive study investigating the impact of primary Nef alleles on SERINC downregulation, as most studies to date utilize lab- adapted or reference HIV strains. In this thesis, I characterized and compared SERINC downregulation from >400 Nef alleles isolated from patients with distinct clinical outcomes and subtypes. I found that primary Nef alleles displayed a dynamic range of SERINC downregulation abilities, thus allowing naturally-occurring polymorphisms that modulate this activity to be identified. -
MS Ritgerð Aðalbjörg Aðalbjörnsdóttir
The Vif protein of maedi-visna virus Protein interaction and new roles Aðalbjörg Aðalbjörnsdóttir Thesis for the degree of Master of Science University of Iceland Faculty of medicine School of Health Sciences Vif prótein mæði-visnuveiru Prótein tengsl og ný hlutverk Aðalbjörg Aðalbjörnsdóttir Ritgerð til meistaragráðu í Líf og læknavísindum Umsjónarkennari: Valgerður Andrésdóttir Meistaranámsnefnd: Stefán Ragnar Jónsson og Ólafur S. Andrésson Læknadeild Heilbrigðisvísindasvið Háskóla Íslands Júní 2016 The Vif protein of maedi-visna virus Protein interaction and new roles Aðalbjörg Aðalbjörnsdóttir Thesis for the degree of Master of Science Supervisor: Valgerður Andrésdóttir Masters committee: Stefán Ragnar Jónsson and Ólafur S. Andrésson Faculty of Medicine School of Health Sciences June 2016 Ritgerð þessi er til meistaragráðu í Líf og læknavísindum og er óheimilt að afrita ritgerðina á nokkurn hátt nema með leyfi rétthafa. © Aðalbjörg Aðalbjörnsdóttir 2016 Prentun: Háskólaprent Reykjavík, Ísland 2016 Ágrip Mæði-visnuveira (MVV) er lentiveira af ættkvísl retróveira. Hún veldur hæggengri lungnabólgu (mæði) og heilabólgu (visnu) í kindum. Aðalmarkfrumur veirunnar eru mónocytar/makrófagar. Veiran er náskyld HIV og hefur verið notuð sem módel fyrir HIV sýkingar. Stöðug vopnakapphlaup milli veira og fruma hafa leitt af sér fjölda sértækra aðferða í vörnum hýsilsfrumu gegn veirusýkingum. Fruman hefur þróað með sér innrænar varnir gegn ýmsum sýkingum. Þessar varnir geta verið mjög sérhæfðar og tjáning þeirra spilar stórt hlutverk í hvaða frumur er hægt að sýkja og hverjar ekki. Dæmi um slíkan frumubundinn þátt eru APOBEC3 próteinin. APOBEC3 próteinin eru fjölskylda cytósín deaminasa sem geta hindrað retróveirur og retróstökkla. Þetta gera þau með því að afaminera cýtósín í úrasil í einþátta DNA á meðan á víxlritun stendur og valda þar með G-A stökkbreytingum í forveirunni. -
718 HIV Disorders of the Brain; Pathology and Pathogenesis Luis
[Frontiers in Bioscience 11, 718-732, January 1, 2006] HIV disorders of the brain; pathology and pathogenesis Luis Del Valle and Sergio Piña-Oviedo Center for Neurovirology and Cancer Biology, Laboratory of Neuropathology and Molecular Pathology, Temple University, 1900 North 12th Street, Suite 240, Philadelphia, Pennsylvania 19122 USA TABLE OF CONTENTS 1. Abstract 2. AIDS-Encephalopathy 2.1. Definition 2.2. HIV-1 Structure 2.3. Histopathology 2.4. Clinical Manifestations 2.5. Physiopathology 3. Progressive Multifocal Leukoencephalopathy 3.1. Definition 3.2. JC Virus Biological Considerations 3.3. JC Virus Structure 3.4. Histopathology 3.5. Clinical Manifestations 3.6. Physiopathology 4. Cryptococcosis 5.1. Definition 5.2. Cryptococcus neoformans Structure 5.3. Histopathology 5.4. Clinical Manifestations 5.5. Physiopathology 5. Toxoplasmosis 5.1. Definition 5.2. Toxoplasma godii Structure 5.3. Histopathology 5.4. Clinical Manifestations 5.5. Physiopathology 6. Primary CNS Lymphomas 6.1. Definition 6.2. Histopathology 6.3. Clinical Manifestations 6.4. Physiopathology 7. Acknowledgments 8. References 1. ABSTRACT Infection with HIV-1 has spread exponentially in still present in approximately 70 to 90% of patients and recent years to reach alarming proportions. It is estimated can be the result of HIV itself or of opportunistic than more than 33 million adults and 1.3 million children infections. Here we briefly review the pathology and are infected worldwide. Approximately 16,000 new cases pathophysiology of AIDS-Encephalopathy, of some of are diagnosed every day and almost 3 million people die the significant opportunistic infections affecting the every year from AIDS, making it the fourth leading brain in the context of AIDS, including Progressive cause of death in the world. -
UC Merced UC Merced Undergraduate Research Journal
UC Merced UC Merced Undergraduate Research Journal Title Antiviral Drugs Targeting Host Proteins an Efficient Strategy Permalink https://escholarship.org/uc/item/66f5b4m0 Journal UC Merced Undergraduate Research Journal, 9(2) Author Karmonphet, Arrada Publication Date 2017 DOI 10.5070/M492034789 Undergraduate eScholarship.org Powered by the California Digital Library University of California Antiviral Drugs Targeting Host Proteins an Efficient Strategy Arrada Karmonphet University of California, Merced Keywords: Proteins, Viruses, Drugs 1 Abstract Viruses have the ability to spread rapidly because the proteins and enzymes from the host cell help in the development of viruses. Although there are many vaccines that can prevent some viruses from infecting the body, the antiviral drugs today have not been effective in combating viruses from the start of spreading. This is due to the fact that the processes inside a virus are still being studied. However, host proteins proved to be valuable factors responsible for viral replication and spreading. It was found that certain functions such as capsid formation of the virus utilized a biochemical pathway that involved host proteins and some proteins of the host cell were evolutionarily conserved. When the important host proteins were altered, or removed the viruses weren’t able to replicate as effectively. It was concluded that targeting the host proteins had a significant effect in viral replication. This approach can stop viral replication from the start, create less viral resistance, and help find new antiviral drugs that work for many different types of viruses. This review will analyze five research articles about protein interactions in viruses and how monitoring the proteins and biochemical pathways can lead to the discovery of druggable targets during development. -
Influenza Pandemics and Vaccine Efficacy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Leading Edge Essay Peering into the Crystal Ball: Influenza Pandemics and Vaccine Efficacy Matthew S. Miller1,* and Peter Palese1,2,* 1Department of Microbiology 2Department of Medicine Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA *Correspondence: [email protected] (M.S.M.), [email protected] (P.P.) http://dx.doi.org/10.1016/j.cell.2014.03.023 The looming threat of a new influenza virus pandemic has fueled ambitious efforts to devise more predictive parameters for assessing the risks associated with emergent virus strains. At the same time, a comprehensive understanding of critical factors that can accurately predict the outcome of vaccination is sorely needed in order to improve the effectiveness of influenza virus vaccines. Will new studies aimed at identifying adaptations required for virus transmissibility and systems-level analyses of influenza virus vaccine responses provide an improved framework for predictive models of viral adaptation and vaccine efficacy? Introduction sure to evade the pre-existing immunity ‘‘Follow the Leader’’ The development of effective vaccines afforded by vaccines. This has necessi- The most challenging issue facing IAV has altered the course of modern civiliza- tated painstaking efforts to identify and vaccinologists has always been the ne- tion by alleviating the scourges of target conserved epitopes of these vi- cessity to predict the antigenic character- humankind’s most devastating patho- ruses (Julien et al., 2012). (2) There is istics of vaccine strains months in gens. -
Picture As Pdf Download
SUPPLEMENT Pandemic vaccines: promises and pitfalls Robert Booy, Lorena E Brown, Gary S Grohmann and C Raina MacIntyre he threat of another influenza pandemic has galvanised ABSTRACT governments, industry, the World Health Organization, • Prototype vaccines against influenza A/H5N1 may be poorly academia and others to address this global threat. Many T immunogenic, and two or more doses may be required to issues are being addressed, and here we focus on key questions induce levels of neutralising antibody that are deemed to be related to vaccination: protective. The actual levels of antibody required to protect • Can an effective vaccine be produced? against a highly pathogenic virus that potentially can spread • What dosage will be required? beyond the large airways is unknown. • Could enough of it be made in time? • How will it be produced? • The global capacity for vaccine manufacture in eggs or tissue culture is considerable, but the number of doses that can • HowThe can Medical safety Journalbe optimised? of Australia ISSN: 0025- theoretically be produced in a pandemic context will only be Vaccination729X 20 isNovember one of the 2006 key 185 components 10 62-65 of Australia’s pandemic sufficient for a small fraction of the world’s population, even plan: ©Thecontracts Medical with influenzaJournal ofvaccine Australia manufacturers 2006 have been drawnwww.mja.com.au up to guarantee supply, and funding provided to accelerate less if a high antigen content is required. researchSupplement on influenza vaccines relevant to a pandemic. A vaccine • The safety of new pandemic vaccines should be addressed in would ideally achieve disease prevention, and, at the very least, an internationally coordinated way. -
Assessment of the Interaction Between the Human
VARIATIONS IN THE V3 CROWN OF HIV-1 ENVELOPE IMPACT AFFINITY FOR CCR5 AND AFFECT ENTRY AND REPLICATIVE FITNESS By MICHAEL ANDREW LOBRITZ Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation advisor: Eric J. Arts, Ph.D. Department of Molecular Biology and Microbiology CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Chapter 1: Introduction........................................................................................................................16 1.A. HIV and AIDS..............................................................................................17 1.B. Retroviruses: Structure, Organization, and Replication...............................20 1.B.1. HIV-1 Genome...............................................................................20 1.B.2. HIV-1 Particle................................................................................23 -
Autophagy and Mammalian Viruses: Roles in Immune Response, Viral Replication, and Beyond
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 Autophagy and mammalian viruses: roles in immune response, viral replication, and beyond Paul, P ; Münz, C Abstract: Autophagy is an important cellular catabolic process conserved from yeast to man. Double- membrane vesicles deliver their cargo to the lysosome for degradation. Hence, autophagy is one of the key mechanisms mammalian cells deploy to rid themselves of intracellular pathogens including viruses. How- ever, autophagy serves many more functions during viral infection. First, it regulates the immune response through selective degradation of immune components, thus preventing possibly harmful overactivation and inflammation. Additionally, it delivers virus-derived antigens to antigen-loading compartments for presentation to T lymphocytes. Second, it might take an active part in the viral life cycle by, eg, facili- tating its release from cells. Lastly, in the constant arms race between host and virus, autophagy is often hijacked by viruses and manipulated to their own advantage. In this review, we will highlight key steps during viral infection in which autophagy plays a role. We have selected some exemplary viruses and will describe the molecular mechanisms behind their intricate relationship with the autophagic machinery, a result of host–pathogen coevolution. DOI: https://doi.org/10.1016/bs.aivir.2016.02.002 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-131236 Book Section Accepted Version The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. -
Role of Reverse Transcriptase and APOBEC3G in Survival of Human
& My gy co lo lo ro g i y V Soni et al., Virol Mycol 2013, 3:1 Virology & Mycology DOI: 10.4172/2161-0517.1000125 ISSN: 2161-0517 Review Article Open Access Role of Reverse Transcriptase and APOBEC3G in Survival of Human Immune Deficiency Virus -1 Genome Raj Kumar Soni*, Amol Kanampalliwar and Archana Tiwari School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University), Madhya Pradesh, India Abstract Development of an effective vaccine against HIV-1 is a major challenge for scientists at present. Rapid mutation and replication of the virus in patients contribute to the evolution of the virus, which makes it unconquerable. Hence a deep understanding of critical elements related to HIV-1 is necessary. Errors introduced during DNA synthesis by reverse transcriptase are the primary source of genetic variation within retroviral populations. Numerous current studies have shown that apolipo protein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) proteins mediated sub- lethal mutagenesis of HIV-1 proviral DNA contributes in viral fitness by accelerating human immunodeficiency virus-1 evolution. This results in the loss of the immunity and development of resistance against anti-viral drugs. This review focuses on the latest biological, biochemical, and structural studies in an attempt to discuss current ideas related to mutations initiated by reverse transcriptase and APOBEC3G. It also describes their effect on immunological diversity and retroviral restriction, and their overall effect on the viral genome respectively. A new procedure for eradication of HIV-1 has also been proposed based on the previous studies and proven facts. Keywords: HIV-1; Reverse transcriptase; Recombination; defined. -
To Reduce HIV-1 Infectivity Facilitates Its Encapsidation Into the Virions GANP Interacts with APOBEC3G
GANP Interacts with APOBEC3G and Facilitates Its Encapsidation into the Virions To Reduce HIV-1 Infectivity This information is current as Kazuhiko Maeda, Sarah Ameen Almofty, Shailendra Kumar of September 23, 2021. Singh, Mohammed Mansour Abbas Eid, Mayuko Shimoda, Terumasa Ikeda, Atsushi Koito, Phuong Pham, Myron F. Goodman and Nobuo Sakaguchi J Immunol 2013; 191:6030-6039; Prepublished online 6 November 2013; Downloaded from doi: 10.4049/jimmunol.1302057 http://www.jimmunol.org/content/191/12/6030 Supplementary http://www.jimmunol.org/content/suppl/2013/11/06/jimmunol.130205 http://www.jimmunol.org/ Material 7.DC1 References This article cites 52 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/191/12/6030.full#ref-list-1 Why The JI? Submit online. by guest on September 23, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology GANP Interacts with APOBEC3G and Facilitates Its Encapsidation into the Virions To Reduce HIV-1 Infectivity Kazuhiko Maeda,*,1 Sarah Ameen Almofty,*,1 Shailendra Kumar Singh,* Mohammed Mansour Abbas Eid,* Mayuko Shimoda,* Terumasa Ikeda,†,2 Atsushi Koito,† Phuong Pham,‡ Myron F. -
Nitrogen-Based Heterocyclic Compounds: a Promising Class of Antiviral Agents Against Chikungunya Virus
life Review Nitrogen-Based Heterocyclic Compounds: A Promising Class of Antiviral Agents against Chikungunya Virus Andreza C. Santana 1,† , Ronaldo C. Silva Filho 1,† , José C. J. M. D. S. Menezes 2,3,*,‡ , Diego Allonso 4,*,‡ and Vinícius R. Campos 1,*,‡ 1 Departamento de Química Orgânica, Campus do Valonguinho, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil; [email protected] (A.C.S.); [email protected] (R.C.S.F.) 2 Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan 3 Research & Development, Esteem Industries Pvt. Ltd., Bicholim, Goa 403 529, India 4 Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil * Correspondence: [email protected] (J.C.J.M.D.S.M.); [email protected] (D.A.); [email protected] (V.R.C.) † These authors equally contributed to this article. ‡ These authors equally contributed to this work and are co-senior authors. Abstract: Arboviruses, in general, are a global threat due to their morbidity and mortality, which results in an important social and economic impact. Chikungunya virus (CHIKV), one of the most relevant arbovirus currently known, is a re-emergent virus that causes a disease named chikungunya fever, characterized by a severe arthralgia (joint pains) that can persist for several months or years in some individuals. Until now, no vaccine or specific antiviral drug is commercially available. Nitrogen heterocyclic scaffolds are found in medications, such as aristeromycin, favipiravir, fluorouracil, 6-azauridine, thioguanine, pyrimethamine, among others. -
Evolution and HIV
Evolution and HIV Why do we care? 1. HIV is an emerging/emergent virus. 2. HIV rapidly evolves to become drug resistant and to evade the immune system. 3. HIV is deadly. 4. HIV is responsible for 5% of all deaths worldwide (more than car accidents, malaria, war and homicides). The natural history of the HIV/AIDS epidemic Past major disease epidemics: "Spanish" influenza of 1918 50-100 million people died in a few months. Black Death (plague) – between 1346-1350 28 million people died, amounting to ~30% of Europe's population. New World smallpox epidemic – ca. 1520 Decimated 25% of Native American populations on two continents. Today, HIV/AIDS is a serious epidemic on the same level as these prior epidemics. 70 million have been infected, while one-half of those have died. WHO estimates that by 2020, nearly 90 million will have died. 90% of infected people live in developing nations Worldwide prevalence of HIV-1 infections What is HIV? HIV (human immunodeficiency virus) is a lentivirus that can lead to acquired immunodeficiency syndrome (AIDS), a condition in humans in which the immune system begins to fail, leading to life-threatening, opportunistic infections. The HIV infection process A virus is not alive HIV (and all other viruses) is obligated to use the cellular machinery of host macrophages and T-cells for reproduction, killing the host cell in the process. HIV is transmitted from person to person when bodily fluids carry the virus to the bloodstream or mucus membrane of another person. Sexual activity IV needle sharing Transfusion of contaminated blood Childbirth Breastfeeding 1.