Angelis: Inductive Reasoning, Post-Offence Conduct and Intimate Femicide David M

Total Page:16

File Type:pdf, Size:1020Kb

Angelis: Inductive Reasoning, Post-Offence Conduct and Intimate Femicide David M 338 CRIMINAL REPORTS 99 C.R. (6th) Angelis: Inductive Reasoning, Post-Offence Conduct and Intimate Femicide David M. Tanovich* Every week in Canada, a woman is killed by a current or former intimate partner.1 It is a serious systemic problem. To put it in perspective, the number of women killed by their intimate partners in 2011 was roughly comparable to the number of gang-related homicides.2 Many, if not most, of these cases involve intimate femicide, a term used to give effect to the gendered nature of the crime. As Rosemary Gartner, Myrna Daw- son and Maria Crawford observe, “. intimate femicide is a phenome- non distinct in important ways both from the killing of men by their inti- mate partners and from non-lethal violence against women; and, hence, . it requires analysis in its own right.”3 They further observe that: . these killings reflect important dimensions of sexual stratifica- tion, such as power differences in intimate relations and the construc- tion of women as sexual objects generally, and as sexual property in *Faculty of Law, University of Windsor 1See Isabel Grant, “Intimate Femicide: A Study of Sentencing Trends For Men Who Kill Their Intimate Partners” (2010), 47 Alta L Rev 779 at 779 (“[a]pproximately 60 women in Canada are killed each year by their intimate (or former intimate) partners”) (emphasis added) [Grant, “Intimate Femicide”]. See further, Joanne Birenbaum and Isabel Grant, “Taking Threats Seriously: Section 264.1 and Threats as a Form of Domestic Violence” (2012), 59 CLQ 206 at 206–207 (“[in] Canada, a woman is killed by her intimate partner or former intimate partner every six days”) (emphasis added). 2There were 76 women killed by their current or former intimate partners and 95 gang-related homicides in 2011. See Statistics Canada, “Homicide in Canada, 2011” The Daily (December 4, 2012), online: <http://www.statcan.gc.ca/daily- quotidien/121204/dq121204a-eng.pdf>. According to the report, “[t]he rate of intimate partner homicides committed against females increased by 19% in 2011, the third increase in four years. However, the rate for male victims de- clined by almost 50%, reaching its lowest point since data collection began in 1961.” 3“Women Killing: Intimate Femicide in Ontario, 1974–1994” (1998) 26:3/4 Re- sources for Feminist Research 151 at 153. Angelis: Inductive Reasoning, Post-Offence Conduct and Intimate Femicide 339 particular contexts. Intimate femicide — indeed, probably most femi- cide — is not simply violence against a person who happens to be female. It is violence that occurs and takes particular forms because its target is a woman, a woman who has been intimately involved with her killer.4 Other researchers have pointed out that some of the contributing factors that lead to intimate femicide include “possessiveness, . the husband accusing the wife of sexual infidelity, . her decision to end the rela- tionship, and/or by his desire to control her . .”5 It is very likely that R. v. Angelis6 is a case of intimate femicide. The most cogent indicators were that the accused had discovered that his wife had been having a long-term affair and that she wanted out of the mar- riage to be with him.7 During a violent confrontation, the accused called his wife a “bitch” and then caused her death. The evidence suggested that she likely asphyxiated either as a result of the accused putting his hand over his wife’s mouth (as described by their eight-year-old daughter) or sitting on top of her until she stopped breathing.8 The jury rejected his claim of self-defence and convicted the accused of second degree mur- der. The Court of Appeal ordered a new trial. The court held that the trial judge had erred in not leaving provocation with the jury despite the fact that the accused disavowed reliance on it. The Court of Appeal also held that the trial judge erred in instructing the jury that it could infer intent from Angelis’ failure to attempt to save his wife once he discovered she was unconscious. It is the latter issue which is the focus of this comment. It begins with a discussion of the process of inductive reasoning which is used to assess the probative value of post-offence conduct in any given case. It then considers the Court of Appeal’s treatment of the accused’s post-offence conduct taking into account the leading precedent of R. v. White.9 The 4Ibid. at 166. 5See Geris Serran & Philip Firestone, “Intimate Partner Homicide: A Review of the Male Proprietariness and Self-Defense Theories” (2004), 9 Aggression and Violent Behavior 1 at 12. 62013 ONCA 70 (Ont. C.A.), reported above at p. 315 [Angelis]. 7Ibid., at para. 9. See further the discussion below at notes 39–40. 8Angelis, supra note 6 at para. 20. 9[2011] 1 S.C.R. 433, 82 C.R. (6th) 11 (S.C.C.) [White]. 340 CRIMINAL REPORTS 99 C.R. (6th) piece concludes with a consideration of what the common law has taught us about the indicators of intimate femicide and how that was relevant in engaging in inductive reasoning in this case. The Nature of Inductive Reasoning Although rarely articulated or critically assessed, the law of evidence re- lies on the process of inductive reasoning as the fuel that runs its engine. When, for example, we determine the relevance and probative value of evidence, draw inferences from circumstantial evidence,10 or assess credibility,11 there is often an inferential gap that needs to be filled in order to rationally permit the decision maker or fact finder to do its job.12 To fill that inferential gap we often look to logic, common sense and experience to generate generalizations about human behaviour.13 We then draw a relevant conclusion based on the proven facts and the gener- alization. This process is known as inductive reasoning. In R. v. Munoz,14 one of the few decisions to explore inductive reason- ing, Justice Ducharme described the process as follows: While the jurisprudence is replete with references to the drawing of “reasonable inferences”, there is comparatively little discussion about the process involved in drawing inferences from accepted facts. It must be emphasized that this does not involve deductive reasoning which, assuming the premises are accepted, necessarily results in a valid conclusion. This is because the conclusion is inherent in the relationship between the premises. Rather the process of inference drawing involves inductive reasoning which derives conclusions based on the uniformity of prior human experience. The conclusion is not inherent in the offered evidence, or premises, but flows from 10See, for example, R. v. Quan, 2011 ONCJ 194 (Ont. C.J.). 11See, for example, R. v. Batte (2000), 34 C.R. (5th) 197, 145 C.C.C. (3d) 449 (Ont. C.A.) where Justice Doherty held (at para. 120) that “[j]uries are told to use their common sense and combined life experience in assessing credibility.” 12For example, as noted in R. v. Arcuri, [2001] 2 S.C.R. 828, 44 C.R. (5th) 213 (S.C.C.), “[w]ith circumstantial evidence, there is, by definition, an inferential gap between the evidence and the matter to be established . .” (at para. 23). 13See the discussion in Hill, Tanovich & Strezos, McWiliams Canadian Crimi- nal Law, 4th ed. (Toronto: Thomson Reuters, 2012) at 28-43–28-49. 14(2006), 38 C.R. (6th) 376, 205 C.C.C. (3d) 70 (Ont. S.C.J.). Angelis: Inductive Reasoning, Post-Offence Conduct and Intimate Femicide 341 an interpretation of that evidence derived from experience. Conse- quently, an inductive conclusion necessarily lacks the same degree of inescapable validity as a deductive conclusion. Therefore, if the premises, or the primary facts, are accepted, the inductive conclusion follows with some degree of probability, but not of necessity.15 Similarly, in R. v. McNair,16 it was further observed that: An inference involves the formation of a conclusion either from in- duction or deduction. In deductive logic an argument is valid if it is impossible for the premises to be true and the conclusion false. Deductive reasoning is “closed”. A conclusion is either valid or not valid. There is no room for compromise in Mr. Spock’s cold deduc- tive Vulcan logic. Inductive reasoning . relies for its operation on a level of apprecia- tion and understanding of the paradox inherent in the predictability and unpredictability of events. It goes from what is known to form conclusions about the unknown. The premises of the argument show some degree of inductive probability toward the conclusion but they do not entail the conclusion as in a deductive argument. Inductions are open. There are many conclusions that can reasonably be deter- mined from the same premises. ... Using [inductive reasoning] . reasonable people may reach different conclusions. There are no precise rules setting out what may be inferred by the process of induction from something else. Shared knowledge, experience or common sense come into play. Sometimes it “makes sense” to conclude with a practical degree of probability that a conclusion follows from certain premises. Some- times the distance from premises to conclusion is so great the degree of probability is minimal. The process of going from premises to conclusion, in this context at least, should not be based on intuition but on factors that can be articulated and related reasonably to the conclusion.17 The challenge for the adversarial process is to enhance the accuracy of inductive reasoning as much as is reasonably possible. This is why social context evidence is so important. Understanding the relevant social con- text ensures that the generalizations relied upon are reasonably reliable 15Ibid.
Recommended publications
  • 21 on Probability and Cosmology: Inference Beyond Data? Martin Sahl´Ena
    21 On Probability and Cosmology: Inference Beyond Data? Martin Sahl´ena Slightly expanded version of contribution to the book `The Philosophy of Cos- mology', Khalil Chamcham, Joseph Silk, John D. Barrow, Simon Saunders (eds.), Cambridge University Press, 2017. 21.1 Cosmological Model Inference with Finite Data In physical cosmology we are faced with an empirical context of gradually diminishing returns from new observations. This is true in a fundamental sense, since the amount of information we can expect to collect through as- tronomical observations is finite, owing to the fact that we occupy a particu- lar vantage point in the history and spatial extent of the Universe. Arguably, we may approach the observational limit in the foreseeable future, at least in relation to some scientific hypotheses (Ellis, 2014). There is no guaran- tee that the amount and types of information we are able to collect will be sufficient to statistically test all reasonable hypotheses that may be posed. There is under-determination both in principle and in practice (Zinkernagel, 2011; Butterfield, 2014; Ellis, 2014). These circumstances are not new, in- deed cosmology has had to contend with this problem throughout history. For example, Whitrow (1949) relates the same concerns, and points back to remarks by Blaise Pascal in the 17th century: \But if our view be arrested there let our imagination pass beyond; ... We may enlarge our conceptions beyond all imaginable space; we only produce atoms in comparison with the reality of things." Already with Thales, epistemological principles of unifor- mity and consistency have been used to structure the locally imaginable into something considered globally plausible.
    [Show full text]
  • Turns in the Evolution of the Problem of Induction*
    CARL G. HEMPEL TURNS IN THE EVOLUTION OF THE PROBLEM OF INDUCTION* 1. THE STANDARD CONCEPTION: INDUCTIVE "INFERENCE" Since the days of Hume's skeptical doubt, philosophical conceptions of the problem of induction and of ways in which it might be properly solved or dissolved have undergone a series of striking metamor- phoses. In my paper, I propose to examine some of those turnings, which seem to me to raise particularly important questions about the nature of empirical knowledge and especially scientific knowledge. Many, but by no means all, of the statements asserted by empirical science at a given time are accepted on the basis of previously established evidence sentences. Hume's skeptical doubt reflects the realization that most of those indirectly, or inferentially, accepted assertions rest on evidence that gives them no complete, no logically conclusive, support. This is, of course, the point of Hume's obser- vation that even if we have examined many occurrences of A and have found them all to be accompanied by B, it is quite conceivable, or logically possible, that some future occurrence of A might not be accompanied by B. Nor, we might add, does our evidence guarantee that past or present occurrences of A that we have not observed were- or are- accompanied by B, let alone that all occurrences ever of A are, without exception, accompanied by B. Yet, in our everyday pursuits as well as in scientific research we constantly rely on what I will call the method of inductive ac- ceptance, or MIA for short: we adopt beliefs, or expectations, about empirical matters on logically incomplete evidence, and we even base our actions on such beliefs- to the point of staking our lives on some of them.
    [Show full text]
  • Interpretations of Probability First Published Mon Oct 21, 2002; Substantive Revision Mon Dec 19, 2011
    Open access to the Encyclopedia has been made possible, in part, with a financial contribution from the Australian National University Library. We gratefully acknowledge this support. Interpretations of Probability First published Mon Oct 21, 2002; substantive revision Mon Dec 19, 2011 ‘Interpreting probability’ is a commonly used but misleading characterization of a worthy enterprise. The so-called ‘interpretations of probability’ would be better called ‘analyses of various concepts of probability’, and ‘interpreting probability’ is the task of providing such analyses. Or perhaps better still, if our goal is to transform inexact concepts of probability familiar to ordinary folk into exact ones suitable for philosophical and scientific theorizing, then the task may be one of ‘explication’ in the sense of Carnap (1950). Normally, we speak of interpreting a formal system , that is, attaching familiar meanings to the primitive terms in its axioms and theorems, usually with an eye to turning them into true statements about some subject of interest. However, there is no single formal system that is ‘probability’, but rather a host of such systems. To be sure, Kolmogorov's axiomatization, which we will present shortly, has achieved the status of orthodoxy, and it is typically what philosophers have in mind when they think of ‘probability theory’. Nevertheless, several of the leading ‘interpretations of probability’ fail to satisfy all of Kolmogorov's axioms, yet they have not lost their title for that. Moreover, various other quantities that have nothing to do with probability do satisfy Kolmogorov's axioms, and thus are interpretations of it in a strict sense: normalized mass, length, area, volume, and other quantities that fall under the scope of measure theory, the abstract mathematical theory that generalizes such quantities.
    [Show full text]
  • Probability Disassembled John D
    Brit. J. Phil. Sci. 58 (2007), 141–171 Probability Disassembled John D. Norton ABSTRACT While there is no universal logic of induction, the probability calculus succeeds as a logic of induction in many contexts through its use of several notions concerning inductive inference. They include Addition, through which low probabilities represent disbelief as opposed to ignorance; and Bayes property, which commits the calculus to a ‘refute and rescale’ dynamics for incorporating new evidence. These notions are independent and it is urged that they be employed selectively according to needs of the problem at hand. It is shown that neither is adapted to inductive inference concerning some indeterministic systems. 1 Introduction 2 Failure of demonstrations of universality 2.1 Working backwards 2.2 The surface logic 3 Framework 3.1 The properties 3.2 Boundaries 3.2.1 Universal comparability 3.2.2 Transitivity 3.2.3 Monotonicity 4 Addition 4.1 The property: disbelief versus ignorance 4.2 Boundaries 5 Bayes property 5.1 The property 5.2 Bayes’ theorem 5.3 Boundaries 5.3.1 Dogmatism of the priors 5.3.2 Impossibility of prior ignorance 5.3.3 Accommodation of virtues 6 Real values 7 Sufficiency and independence The Author (2007). Published by Oxford University Press on behalf of British Society for the Philosophy of Science. All rights reserved. doi:10.1093/bjps/axm009 For Permissions, please email: [email protected] Advance Access published on May 23, 2007 142 John D. Norton 8 Illustrations 8.1 All properties retained 8.2 Bayes property only retained 8.3 Induction without additivity and Bayes property 9 Conclusion 1 Introduction No single idea about induction1 has been more fertile than the idea that inductive inferences may conform to the probability calculus.
    [Show full text]
  • Critical Thinking
    Critical Thinking Mark Storey Bellevue College Copyright (c) 2013 Mark Storey Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is found at http://www.gnu.org/copyleft/fdl.txt. 1 Contents Part 1 Chapter 1: Thinking Critically about the Logic of Arguments .. 3 Chapter 2: Deduction and Induction ………… ………………. 10 Chapter 3: Evaluating Deductive Arguments ……………...…. 16 Chapter 4: Evaluating Inductive Arguments …………..……… 24 Chapter 5: Deductive Soundness and Inductive Cogency ….…. 29 Chapter 6: The Counterexample Method ……………………... 33 Part 2 Chapter 7: Fallacies ………………….………….……………. 43 Chapter 8: Arguments from Analogy ………………………… 75 Part 3 Chapter 9: Categorical Patterns….…….………….…………… 86 Chapter 10: Propositional Patterns……..….…………...……… 116 Part 4 Chapter 11: Causal Arguments....……..………….………....…. 143 Chapter 12: Hypotheses.….………………………………….… 159 Chapter 13: Definitions and Analyses...…………………...…... 179 Chapter 14: Probability………………………………….………199 2 Chapter 1: Thinking Critically about the Logic of Arguments Logic and critical thinking together make up the systematic study of reasoning, and reasoning is what we do when we draw a conclusion on the basis of other claims. In other words, reasoning is used when you infer one claim on the basis of another. For example, if you see a great deal of snow falling from the sky outside your bedroom window one morning, you can reasonably conclude that it’s probably cold outside. Or, if you see a man smiling broadly, you can reasonably conclude that he is at least somewhat happy.
    [Show full text]
  • Explication of Inductive Probability
    J Philos Logic (2010) 39:593–616 DOI 10.1007/s10992-010-9144-4 Explication of Inductive Probability Patrick Maher Received: 1 September 2009 / Accepted: 15 March 2010 / Published online: 20 August 2010 © Springer Science+Business Media B.V. 2010 Abstract Inductive probability is the logical concept of probability in ordinary language. It is vague but it can be explicated by defining a clear and precise concept that can serve some of the same purposes. This paper presents a general method for doing such an explication and then a particular explication due to Carnap. Common criticisms of Carnap’s inductive logic are examined; it is shown that most of them are spurious and the others are not fundamental. Keywords Inductive probability · Explication · Carnap 1 Introduction The word “probability” in ordinary English has two senses, which I call induc- tive probability and physical probability. I will begin by briefly reviewing the main features of these concepts; for a more extensive discussion see [27, 28]. The arguments of inductive probability are two propositions and we speak of the probability of proposition Hgivenproposition E; I will abbreviate this as ip(H|E). For example, if E is that a coin is either two-headed or two- tailed and is about to be tossed, while H is that the coin will land heads, then plausibly ip(H|E) = 1/2. By contrast, the arguments of physical probability are an experiment type and an outcome type, and we speak of the probability of an experiment of type X having an outcome of type O; I will abbreviate this as ppX (O).
    [Show full text]
  • The Algorithmic Revolution in the Social Sciences: Mathematical Economics, Game Theory and Statistics
    The Algorithmic Revolution in the Social Sciences: Mathematical Economics, Game Theory and Statistics K. Vela Velupillai Department of Economics University of Trento Via Inama 5 381 00 Trento Italy August 9, 2009 Prepared for an Invited Lecture to be given at the Workshop on Information Theoretic Methods in Science and Engineering (WITMSE), August 17-19, 2009, Tampere, Finland. I am most grateful to Jorma Rissanen and Ioan Tabus for inviting me, an economist, to give a talk at an event with experts and specialists who are pioneers in information theory. 1 Abstract The digital and information technology revolutions are based on algorith- mic mathematics in many of their alternative forms. Algorithmic mathemat- ics per se is not necessarily underpinned by the digital or the discrete only; analogue traditions of algorithmic mathematics have a noble pedigree, even in economics. Constructive mathematics of any variety, computability theory and non-standard analysis are intrinsically algorithmic at their foundations. Eco- nomic theory, game theory and mathematical …nance theory, at many of their frontiers, appear to have embraced the digital and information technology revo- lutions via strong adherences to experimental, behavioural and so-called compu- tational aspects of their domains –without, however, adapting the mathemati- cal formalisms of their theoretical structures. Recent advances in mathematical economics, game theory, probability theory and statistics suggest that an al- gorithmic revolution in the social sciences is in the making. In this paper I try to trace the origins of the emergence of this ‘revolution’ and suggest, via examples in mathematical economics, game theory and the foundations of sta- tistics, where the common elements are and how they may de…ne new frontiers of research and visions.
    [Show full text]
  • I. Statistical and Inductive Probability Ii. Inductive Logic and Science
    I. STATISTICAL AND INDUCTIVE PROBABILITY II. INDUCTIVE LOGIC AND SCIENCE BY RUDOLF CARNAP UNIVERSITY OF CALIFORNIA AT LOS ANGELES THE GALOIS INSTITUTE OF MATHEMATICS AND ART BROOKLYN, NEW YORK STATISTICAL AND INDUCTIVE PROBABILITY By Rudolf Carnap If you ask a scientist whether the term ‘probability’ as used in science has always the same meaning, you will find a curious situation. Practically everyone will say that there is only one scientific meaning; but when you ask that it be stated, two different answers will come forth. The majority will refer to the concept of probability used in mathematical statistics and its scientific applications. However, there is a minority of those who regard a certain non-statistical concept as the only scientific concept of probability. Since either side holds that its concept is the only correct one, neither seems willing to relinquish the term ‘probability’. Finally, there are a few people—and among them this author—who believe that an unbiased examination must come to the conclusion that both concepts are necessary for science, though in different contexts. I will now explain both concepts—distinguishing them as ‘statistical probability’ and ‘inductive probability’—and indicate their different functions in science. We shall see, incidentally, that the inductive concept, now advocated by a heretic minority, is not a new invention of the 20th century, but was the prevailing one in an earlier period and only forgotten later on. The statistical concept of probability is well known to all those who apply in their scientific work the customary methods of mathematical statistics. In this field, exact methods for calculations employing statistical probability are developed and rules for its application are given.
    [Show full text]
  • Category-Based Induction from Similarity of Neural Activation Matthew J. Weber & Daniel Osherson
    Category-based induction from similarity of neural activation Matthew J. Weber & Daniel Osherson Cognitive, Affective, & Behavioral Neuroscience ISSN 1530-7026 Cogn Affect Behav Neurosci DOI 10.3758/s13415-013-0221-3 1 23 Your article is protected by copyright and all rights are held exclusively by Psychonomic Society, Inc.. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Cogn Affect Behav Neurosci DOI 10.3758/s13415-013-0221-3 Category-based induction from similarity of neural activation Matthew J. Weber & Daniel Osherson # Psychonomic Society, Inc. 2013 Abstract The idea that similarity might be an engine of The project inductive inference dates back at least as far as David Hume. However, Hume’s thesis is difficult to test without begging the David Hume (1748) is well-known for having emphasized the question, since judgments of similarity may be infected by role of similarity in inductive inference. The following re- inferential processes. We present a one-parameter model of marks are often cited: category-based induction that generates predictions about ar- bitrary statements of conditional probability over a predicate In reality, all arguments from experience are founded on and a set of items.
    [Show full text]
  • An Outline of a Theory of Semantic Information
    I / Documrent Boom, baW ROOM 36-41Lin; b - /0/17 Research Laboratory of EleBtronicl assachusatts Inatituto of echnology /1% -/c2co -/ A. o/',ic7 AN OUTLINE OF A THEORY OF SEMANTIC INFORMATION RUDOLF CARNAP YEHOSHUA BAR-HILLEL c~~aPa& 4--S Ar TECHNICAL REPORT NO. 247 OCTOBER 27, 1952 RESEARCH LABORATORY OF ELECTRONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS The research reported in this document was made possible through support extended the Massachusetts Institute of Tech- nology, Research Laboratory of Electronics, jointly by the Army Signal Corps, the Navy Department (Office of Naval Research) and the Air Force (Air Materiel Command), under Signal Corps Contract No. DA36-039 sc-100, Project No. 8-102B-0; Depart- ment of the Army Project No. 3-99-10-022; and in part by a grant from the Rockefeller Foundation. _ I __ MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS Technical Report No. 247 October 27, 1952 AN OUTLINE OF A THEORY OF SEMANTIC INFORMATION Rudolf Carnap University of Chicago Yehoshua Bar-Hillel Abstract In distinction to current Theory of Communication which treats amount of informa- tion as a measure of the statistical rarity of a message, a Theory of Semantic Informa- tion is outlined, in which the concept of information carried by a sentence within a given language system is treated as synonymous with the content of this sentence, norma- lized in a certain way, and the concept of amount of semantic information is explicated by various measures of this content, all based on logical probability functions ranging over the contents. Absolute and relative measures are distinguished, so are D-functions suitable for contexts where deductive reasoning alone is relevant and I-functions suitable for contexts where inductive reasoning is adequate.
    [Show full text]
  • Salmon and Van Fraassen on the Existence of Unobservable Entities: a Matter of Interpretation of Probability
    Foundations of Science (2006) 11: 221–247 © Springer 2006 DOI 10.1007/s10699-004-6247-9 FEDERICA RUSSO SALMON AND VAN FRAASSEN ON THE EXISTENCE OF UNOBSERVABLE ENTITIES: A MATTER OF INTERPRETATION OF PROBABILITY ABSTRACT. A careful analysis of Salmon’s Theoretical Realism and van Fraassen’s Constructive Empiricism shows that both share a common ori- gin: the requirement of literal construal of theories inherited by the Standard View. However, despite this common starting point, Salmon and van Fraas- sen strongly disagree on the existence of unobservable entities. I argue that their different ontological commitment towards the existence of unobserv- ables traces back to their different views on the interpretation of probabil- ity via different conceptions of induction. In fact, inferences to statements claiming the existence of unobservable entities are inferences to probabilistic statements, whence the crucial importance of the interpretation of probability. KEY WORDS: induction, interpretation of probability, Salmon W.C., scien- tific realism., van Fraassen B.C 1. INTRODUCTION According to the Standard View, theories are to be construed as axiomatic calculi in which theoretical terms are given a par- tial observational interpretation by means of correspondence rules. The underlying conception is a strict bifurcation of the non-logical terms of the theory into an observational and a theo- retical vocabulary. Indeed, the requirement of a literal construal is at the basis of both of Salmon’s Statement Empiricism and van Fraassen’s Constructive Empiricism. In fact, Statement Empir- icism requires every statement in the theory to be true or false, and Constructive Empiricism aims at giving a literally true story of what the observable phenomena are.
    [Show full text]
  • Popper's Falsification and Corroboration from the Statistical
    1 Popper’s falsification and corroboration from the statistical perspectives Youngjo Lee and Yudi Pawitan Seoul National University and Karolinska Institutet Emails: [email protected] and [email protected] The role of probability appears unchallenged as the key measure of uncertainty, used among other things for practical induction in the empirical sciences. Yet, Popper was emphatic in his rejection of inductive probability and of the logical probability of hypotheses; furthermore, for him, the degree of corroboration cannot be a probability. Instead he proposed a deductive method of testing. In many ways this dialectic tension has many parallels in statistics, with the Bayesians on logico-inductive side vs the non-Bayesians or the frequentists on the other side. Simplistically Popper seems to be on the frequentist side, but recent synthesis on the non-Bayesian side might direct the Popperian views to a more nuanced destination. Logical probability seems perfectly suited to measure partial evidence or support, so what can we use if we are to reject it? For the past 100 years, statisticians have also developed a related concept called likelihood, which has played a central role in statistical modelling and inference. Remarkably, this Fisherian concept of uncertainty is largely unknown or at least severely under-appreciated in non-statistical literature. As a measure of corroboration, the likelihood satisfies the Popperian requirement that it is not a probability. Our aim is to introduce the likelihood and its recent extension via a discussion of two well-known logical fallacies in order to highlight that its lack of recognition may have led to unnecessary confusion in our discourse about falsification and corroboration of hypotheses.
    [Show full text]