PDF, Low Resolution

Total Page:16

File Type:pdf, Size:1020Kb

PDF, Low Resolution Proceedings of Fourth International Symposium on Plant Signaling and Behavior Signaling on Plant International Symposium of Fourth Proceedings 4th International Symposium Proceedings 19–24 June 2016 St. Petersburg, RUSSIA 19–24 June 2016 Proceedings of Fourth International Symposium on Plant Signaling and Behavior St. Petersburg SINEL Co.Ltd. 2016 УДК 581.1(063) ББК 28.57я43 P71 Proceedings of Fourth International Symposium on Plant Signaling and Behavior / Project management: Vadim Demidchik, Olga Voitsekhovskaja, Elena Tyutereva, Gregory Pozhvanov.- Saint Petersburg: SINEL Co.Ltd., 2016.-208 p. ISBN 978-5-9908187-9-8 4th International Symposium on Plant Signaling and Behavior will be held from June 19 to June 24, 2016, at Komarov Botanical Institute of the Russian Academy of Sciences under the auspices of the Society of Plant Signaling and Behavior and the Russian Science Foundation. The scientific program includes plenary lectures by international speakers from Society of Plant Signaling and Behavior and Komarov Botanical Institute of the Russian Academy of Sciences. For early career and young scientists the School “Plant Stress Signaling” will be organized during the Symposium. УДК 581.1(063) ББК 28.57я43 Publisher: SINEL Co.Ltd. Design, typesetting, cover and map design: Gregory Pozhvanov Photographs on p. 10, 12–13: Kulgaviy V.Ya. and Tkachenko K.G. Illustrations and design at p. 30–40 (inset) are property of respective sponsoring companies Logotypes of BIN RAS, PSB, RSF are property of respective owners Map background: © MapBox, Inc. St. Petersburg Metro Map: © SUE St. Petersburg Metropoliten On the cover: Peter and Paul Fortress, St. Petersburg The 4th PSB2016 Symposium is supported by the Russian Science Foundation (Project #15-14-30008). © Pozhvanov G.A., photograph of Peter and Paul Fortress, 2015 © Kulgaviy V.Ya. and Tkachenko K.G., photographs on p. 10–13, 2016 © MapBox, Inc., map background at p. 15–19, 2016 © SUE St. Petersburg Metropoliten, St. Petersburg Metro Map, 2016 ISBN 978-5-9908187-9-8 4th International Symposium Proceedings St. Petersburg, Russia 19 – 24 June 2016 Contents Welcome Letters ........................................................................................................................ 7 Symposium Venue and City Center Map ............................................................................ 14 Symposium Programme ......................................................................................................... 21 Scientific Organising Committee ..................................................................................... 27 Local Organising Committee ............................................................................................ 28 Symposium Sponsors ............................................................................................................. 29 Scientific Sessions .................................................................................................................... 41 Plant Behavior and Ecology .............................................................................................. 42 Ion Channels, Transporters and Electrophysiology ...................................................... 55 Organelle, Cell-to-Cell and Long-Distance Signalling .................................................. 66 Stress-Induced Signalling .................................................................................................. 88 Programmed Cell Death and Autophagy ...................................................................... 109 Complex Adaptive and Neuron-Like Reactions .......................................................... 117 Phytohormone Signalling ................................................................................................ 134 Interactions with Bacteria and Fungi ............................................................................. 160 Response to Radiation and Gravity ................................................................................ 173 ROS, RNS and Neurotransmitter Signalling ................................................................. 180 Workshops and Satellite Sessions ................................................................................... 197 Author Index ......................................................................................................................... 199 Dear Colleagues, we are pleased to invite you to participate in the 4th International Symposium on Plant Signaling and Behavior. The symposium will be held from June 19 to June 23, 2016, at Komarov Botanical Institute of the Russian Academy of Sciences under the auspices of the Society of Plant Signaling and Behavior and the Russian Science Foundation. The plenary lectures will be given by leading scientists in diverse fields of plant signaling, ion transport, electro-physiology, photosynthesis, autophagy and programmed cell death. The symposium will provide an excellent opportunity for the synthesis of different views in the mutual attempt to develop concepts for the whole plant behavior and signal processing. Second half of June is the best time to visit the city of St. Petersburg, to enjoy its world- famous museums and to contemplate the great architecture of the city in the mystic twilight of the White Nights. The social program will include excursions to spectacular palaces and gardens of Saint Petersburg. We are looking forward to seeing you! On behalf of the organizing committees, Vadim Demidchik and Olga Voitsekhovskaja Welcome Letters On behalf of the Society for Plant Signaling and Behavior, we welcome you to the Fourth International Symposium of the Society and to Saint Petersburg, Russia. We are especially pleased to gather here during the summer solstice, where days are long and our discussions can be full and lingering. Our organizers have prepared several days of scientific sessions interspersed with social times and opportunities to see the sights of this fabulous city. New to this meeting is the inclusion of a School for Early Career and Young Scientists on “Plant Stress Signaling.” Members of this school will attend talks and posters, and spend a day following the meeting discussing findings in greater depth, guided by speakers from the sessions. Special thanks to the Russian Academy of Sciences and the Russian Science Foundation for providing this opportunity. Previous symposia of this Society have been held in Paris, New Delhi, and Vancouver, and under the name of the Society for Plant Neurobiology, in Italy, China, Slovakia, and Japan. We are excited to bring our research and scientific discussions to Russia, and to welcome travelers from other countries and continents to this spectacular venue. Our meetings are dynamic, presentations are wide-ranging, and conversations uncover new ideas, collaborations, and questions to pursue. The focus is scientific discovery of the basis for plant behavior: how do plants sense their environment, integrate sensory information and encode responses to optimize their existence? Research will be presented addressing: plant behavior and ecology, electrophysiology, cell death and autophagy, complex adaptive and neuron-like reactions, interaction with bacteria and fungi, response to radiation and gravity, and signaling at all levels by hormones, neurotransmitters, under normal and stress conditions. The results inform fields not only in plant biology and agriculture, but also more generally neurobiology and behavior, ecology and evolution, philosophy, communication, and social sciences especially in those fields related to food, economic and environmental issues. We hope that you enjoy the meeting, the formal presentations, informal exchanges, social times and spectacular field trips. Please let us know if we can help you make the most of your time here, Elizabeth Van Volkenburgh and František Baluška Russian Science Foundation Russian Science Foundation was established on the initiative of the President of the Russian Federation to support basic research and development of leading research teams in different fields of science. Legal status, powers, functions, proprietary rights and governance of the Foundation are determined by the Federal Law "On the Russian Science Foundation and Amendments to Certain Legislative Acts of the Russian Federation." To achieve its goals, the Foundation selects science and technology programs and projects that fall under certain propriety categories, and does so on a competitive basis. Among these priorities are basic research initiatives by research groups or individual scientists, or members of the higher education teaching staff; development of scientific organizations and institutions of higher education, creation of world-class departments and laboratories in scientific organizations and educational institutions, development of experimental facilities for scientific research. The governance structure of the Foundation is set up by the Federal Law: Supervisory Board, Management board and Director General. The Federal Law sets out a procedure for formation of these bodies as well as defines their authority. In order to provide the Foundation with the necessary expertise, the Federal law provides for creation of Review Panels acting as advisory bodies of the Foundation. Control over financial and economic activities of the Foundation is exercised by the Audit Committee of the Foundation. In accordance with the Federal Law, Russian Science Foundation submits the annual
Recommended publications
  • The Plant Immune System: Induction, Memory and De-Priming of Defense
    The plant immune system : induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors Kay Gully To cite this version: Kay Gully. The plant immune system : induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors. Agricultural sciences. Université d’Angers, 2019. English. NNT : 2019ANGE0001. tel-02419987 HAL Id: tel-02419987 https://tel.archives-ouvertes.fr/tel-02419987 Submitted on 19 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Table of contents 1. Abbreviations ................................................................................................................... iv 2. Summary ......................................................................................................................... viii 2.1. Résumé en français ......................................................................................................... x 3. General Introduction ........................................................................................................
    [Show full text]
  • Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents
    International Journal of Molecular Sciences Article Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents 1, 2,3, 1 2, Elena V. Eremeeva y , Tianyu Jiang y , Natalia P. Malikova , Minyong Li * and Eugene S. Vysotski 1,* 1 Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; [email protected] (E.V.E.); [email protected] (N.P.M.) 2 Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; [email protected] 3 State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China * Correspondence: [email protected] (M.L.); [email protected] (E.S.V.); Tel.: +86-531-8838-2076 (M.L.); +7-(391)-249-44-30 (E.S.V.); Fax: +86-531-8838-2076 (M.L.); +7-(391)-290-54-90 (E.S.V.) These authors contributed equally to this work. y Received: 23 June 2020; Accepted: 27 July 2020; Published: 30 July 2020 Abstract: Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial.
    [Show full text]
  • Discovery and Protein Engineering of Baeyer-Villiger Monooxygenases
    Discovery and Protein Engineering of Baeyer-Villiger monooxygenases Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Andy Beier geboren am 11.10.1988 in Parchim Greifswald, den 02.08.2017 I Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Marko Mihovilovic Tag der Promotion: 24.10.2017 II We need to learn to want what we have, not to have what we want, in order to get stable and steady happiness. - The Dalai Lama - III List of abbreviations % Percent MPS Methyl phenyl sulfide % (v/v) % volume per volume MPSO Methyl phenyl sulfoxide % (w/v) % weight per volume MPSO2 Methyl phenyl sulfone °C Degrees Celsius MTS Methyl p-tolyl sulfide µM µmol/L MTSO Methyl p-tolyl sulfoxide aa Amino acids MTSO2 Methyl p-tolyl sulfone + AGE Agarose gel electrophoresis NAD Nicotinamide adenine dinucleotide, oxidized aq. dest. Distilled water NADH Nicotinamide adenine dinucleotide, reduced + BLAST Basic Local Alignment Search NADP Nicotinamide adenine dinucleotide Tool phosphate, oxidized bp Base pair(s) NADPH Nicotinamide adenine dinucleotide phosphate, reduced BVMO Baeyer-Villiger monooxyge- OD600 Optical density at 600 nm nase CHMO Cyclohexanone monooxyge- PAGE Polyacrylamide gel electrophoresis nase Da Dalton PAMO Phenylacetone monooxygenase DMF Dimethyl formamide PCR Polymerase chain reaction DMSO Dimethyl sulfoxide PDB Protein Data Bank DMSO2 Dimethyl sulfone rpm Revolutions per minute DNA Desoxyribonucleic acid rv Reverse dNTP Desoxynucleoside triphosphate SDS Sodium dodecyl sulfate E. coli Escherichia coli SOC Super Optimal broth with Catabolite repression ee Enantiomeric excess TAE TRIS-Acetate-EDTA FAD Flavin adenine dinucleotide TB Terrific broth Fig.
    [Show full text]
  • Cloning of Firefly Luciferase Cdna and the Expression of Active
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 7870-7873, December 1985 Biochemistry Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli (bioluminescence/Photinus pyralis/antibody screening/expression vector/recombinant DNA) JEFFREY R. DE WET*, KEITH V. WOODt, DONALD R. HELINSKI*, AND MARLENE DELUCAt Departments of *Biology and tChemistry, University of California, San Diego, La Jolla, CA 92093 Communicated by W. D. McElroy, July 26, 1985 ABSTRACT A cDNA library was constructed from firefly library was screened with anti-P. pyralis luciferase antibody, (Photinuspyralis) lantern poly(A)I RNA, using the Escherichia using a chromogenic detection technique (8), and several coli expression vector Xgtll. The library was screened with cDNA clones were isolated and characterized. These clones anti-P. pyralis luciferase (Photinus luciferin:oxygen 4-oxidore- were found to be homologous to the mRNA that encodes ductase, EC 1.13.12.7) antibody, and several cDNA clones luciferase. The largest luciferase cDNA clone that was expressing luciferase antigens were isolated. One clone, ALucl, isolated was able to direct the synthesis of active luciferase contained 1.5 kilobase pairs of cDNA that hybridized to a 1.9- in E. coli. to 2.0-kilobase band on a nitrocellulose blot of electrophoreti- cally fractionated lantern RNA. Hybridization of the cloned MATERIALS AND METHODS cDNA to lantern poly(A)I RNA selected an RNA that directed the in vitro synthesis of a single polypeptide. This polypeptide Enzymes and Strains. Restriction endonucleases and E. coli comigrated with luciferase on NaDodSO4/PAGE and produced DNA polymerase I were purchased from New England bioluminescence upon the addition of luciferin and ATP.
    [Show full text]
  • Bioluminescence Is Produced by a Firefly-Like Luciferase but an Entirely
    www.nature.com/scientificreports OPEN New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a Received: 8 November 2017 Accepted: 1 February 2018 frefy-like luciferase but an entirely Published: xx xx xxxx new luciferin Oliver C. Watkins1,2, Miriam L. Sharpe 1, Nigel B. Perry 2 & Kurt L. Krause 1 The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the frefy. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purifed luciferase enzyme is in the same protein family as frefy luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely diferent to that of the frefy and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confrmed by chemical synthesis and bioluminescence assays. These fndings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally diferent luciferins. Glowworms are found in New Zealand and Australia, and are a major tourist attraction at sites located across both countries. In contrast to luminescent beetles such as the frefy (Coleoptera), whose bioluminescence has been well characterised (reviewed by ref.1), the molecular details of glowworm bioluminescence have remained elusive. Tese glowworms are the larvae of fungus gnats of the genus Arachnocampa, with eight species endemic to Australia and a single species found only in New Zealand2.
    [Show full text]
  • Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives
    H OH metabolites OH Review Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives Motseoa M. Lephatsi 1 , Vanessa Meyer 2 , Lizelle A. Piater 1 , Ian A. Dubery 1 and Fidele Tugizimana 1,3,* 1 Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; [email protected] (M.M.L.); [email protected] (L.A.P.); [email protected] (I.A.D.) 2 School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa; [email protected] 3 International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa * Correspondence: [email protected]; Tel.: +27-011-559-7784 Abstract: In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as Citation: Lephatsi, M.M.; Meyer, V.; metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for Piater, L.A.; Dubery, I.A.; Tugizimana, the identification of molecular targets responsible for improved growth and crop quality.
    [Show full text]
  • Muscle Regeneration Controlled by a Designated DNA Dioxygenase
    Wang et al. Cell Death and Disease (2021) 12:535 https://doi.org/10.1038/s41419-021-03817-2 Cell Death & Disease ARTICLE Open Access Muscle regeneration controlled by a designated DNA dioxygenase Hongye Wang1, Yile Huang2,MingYu3,YangYu1, Sheng Li4, Huating Wang2,5,HaoSun2,5,BingLi 3, Guoliang Xu6,7 andPingHu4,8,9 Abstract Tet dioxygenases are responsible for the active DNA demethylation. The functions of Tet proteins in muscle regeneration have not been well characterized. Here we find that Tet2, but not Tet1 and Tet3, is specifically required for muscle regeneration in vivo. Loss of Tet2 leads to severe muscle regeneration defects. Further analysis indicates that Tet2 regulates myoblast differentiation and fusion. Tet2 activates transcription of the key differentiation modulator Myogenin (MyoG) by actively demethylating its enhancer region. Re-expressing of MyoG in Tet2 KO myoblasts rescues the differentiation and fusion defects. Further mechanistic analysis reveals that Tet2 enhances MyoD binding by demethylating the flanking CpG sites of E boxes to facilitate the recruitment of active histone modifications and increase chromatin accessibility and activate its transcription. These findings shed new lights on DNA methylation and pioneer transcription factor activity regulation. Introduction Ten-Eleven Translocation (Tet) family of DNA dioxy- 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Skeletal muscles can regenerate due to the existence of genases catalyze the active DNA demethylation and play muscle stem cells (MuSCs)1,2. The normally quiescent critical roles in embryonic development, neural regen- MuSCs are activated after muscle injury and further dif- eration, oncogenesis, aging, and many other important – ferentiate to support muscle regeneration3,4.
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • Segregation of an MSH1 Rnai Transgene Produces Heritable Non-Genetic Memory in Association with Methylome Reprogramming
    ARTICLE https://doi.org/10.1038/s41467-020-16036-8 OPEN Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming Xiaodong Yang 1,4, Robersy Sanchez 1,4, Hardik Kundariya 1,2,4, Tom Maher1, Isaac Dopp1, ✉ Rosemary Schwegel1, Kamaldeep Virdi 2, Michael J. Axtell3 & Sally A. Mackenzie 1 fi MSH1 1234567890():,; MSH1 is a plant-speci c protein. RNAi suppression of results in phenotype variability for developmental and stress response pathways. Segregation of the RNAi transgene pro- duces non-genetic msh1 ‘memory’ with multi-generational inheritance. First-generation memory versus non-memory comparison, and six-generation inheritance studies, identifies gene-associated, heritable methylation repatterning. Genome-wide methylome analysis integrated with RNAseq and network-based enrichment studies identifies altered circadian clock networks, and phytohormone and stress response pathways that intersect with circa- dian control. A total of 373 differentially methylated loci comprising these networks are sufficient to discriminate memory from nonmemory full sibs. Methylation inhibitor 5- azacytidine diminishes the differences between memory and wild type for growth, gene expression and methylation patterning. The msh1 reprogramming is dependent on functional HISTONE DEACETYLASE 6 and methyltransferase MET1, and transition to memory requires the RNA-directed DNA methylation pathway. This system of phenotypic plasticity may serve as a potent model for defining accelerated plant adaptation during environmental change. 1 Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, USA. 2 Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA. 3 Department of Biology, The Pennsylvania State University, University Park, PA, USA.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Trichome morphology and development in the genus Antirrhinum Ying Tan Doctor of Philosophy Institute of Molecular Plant Sciences School of Biological Sciences The University of Edinburgh 2018 Declaration I declare that this thesis has been composed solely by myself and that it has not been submitted, in whole or in part, in any previous application for a degree. Except where stated otherwise by reference or acknowledgment, the work presented is entirely my own. ___________________ ___________________ Ying Tan Date I Acknowledgments Many people helped and supported me during my study. First, I would like to express my deepest gratitude to my supervisor, Professor Andrew Hudson. He has supported me since my PhD application and always provides his valuable direction and advice. Other members of Prof. Hudson’s research group, especially Erica de Leau and Matthew Barnbrook, taught me lots of experiment skills.
    [Show full text]
  • THE INTELLIGENT PLANT Scientists Debate a New Way of Understanding Flora
    Michael Pollan: How Smart Are Plants? : The New Yorker Page 1 of 21 A REPORTER AT LARGE THE INTELLIGENT PLANT Scientists debate a new way of understanding flora. by Michael Pollan DECEMBER 23, 2013 •Print •More Share Close ◦ ◦ Reddit ◦ Linked In ◦ Email ◦ ◦ StumbleUpon n 1973, a book claiming that plants were sentient Ibeings that feel emotions, prefer classical music to rock and roll, and can respond to the unspoken thoughts of humans hundreds of miles away landed on the New York Times best-seller list for nonfiction. “The Secret Life of Plants,” by Peter Tompkins and Christopher Bird, presented a beguiling mashup of legitimate plant science, quack experiments, and mystical nature worship that captured the public imagination at a time when New Age thinking was seeping into the mainstream. The most memorable passages described the experiments of a former C.I.A. polygraph expert named Cleve Backster, who, in Plants have electrical and chemical 1966, on a whim, hooked up a galvanometer to the signalling systems, may possess memory, and exhibit brainy behavior in the absence of leaf of a dracaena, a houseplant that he kept in his brains. Construction by Stephen Doyle. office. To his astonishment, Backster found that simply by imagining the dracaena being set on fire he could make it rouse the needle of the http://www.newyorker.com/reporting/2013/12/23/131223fa_fact_pollan?printable=true&... 09/01/2014 Michael Pollan: How Smart Are Plants? : The New Yorker Page 2 of 21 polygraph machine, registering a surge of electrical activity suggesting that the plant felt stress. “Could the plant have been reading his mind?” the authors ask.
    [Show full text]
  • Functions and Applications of Nmos
    Functions and applications of NMOs Willem Dijkman (1606212), June 20 2009 Assisted by drs. Anette Riebel and prof. dr. ir. Marco W. Fraaije Abstract The hydroxylation of amino groups is performed by different types of enzymes. Some of these types are metal dependent whereas others need a flavin cofactor. These flavoproteins (NMOs, for N-hydroxylating monooxygenases) can be assigned to subclass B of the external flavoproteins, an enzyme class consisting of enzymes with a broad range of monooxygenating activity. NMOs are mostly found in the biosynthesis of siderophores of different bacteria. Recently a NMO has been identified in the biosynthesis of a kutzneride. NMOs have a narrow substrate range, making them less applicable in industry. NMOs in siderophore biosynthesis can however be targeted to slow down bacterial growth. Contents enzymes which perform these monooxygenations often contain metal Introduction 1 atoms. Different types of enzymes are Classification of flavoproteins 2 known. P450 enzymes as well as non-heme 2 The catalytic cycle of flavins 3 monooxygenases contain iron and copper- N-hydroxylation in nature 4 dependent enzymes also perform Characteristics of NMOs 4 monooxygenations. Not all enzymes depend - NMOs in siderophore synthesis 5 on a (metallic) cofactor for their activity: - A NMO in kutzneride synthesis 7 flavin-dependent monooxygenases make use - N-hydroxylation in valanimycin synthesis 7 of a flavin group instead of a metal ion and Recombinant NMOs 8 recently enzymes without any cofactor have 3,4 Pharmaceutical applications 8 shown monooxygenase activity . Industrial applications 9 In this article one type of monooxygenation Conclusion 10 will be described, focusing on one group of Literature 10 monooxygenating enzymes.
    [Show full text]