Coleoptera: Staphylinidae: Staphylininae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
The First Fossil Rove Beetle from the Middle Eocene Kishenehn Formation
TJSP_A_1266402.3d (TJSP) (215£280mm) 28-12-2016 20:43 Queries are marked in the margins of the proofs, and you can also click the hyperlinks below. AUTHOR QUERIES General points: 1. Permissions: You have warranted that you have secured the necessary written permission from the appropriate copyright owner for the reproduction of any text, illustration, or other material in your article. Please see http://journalauthors.tandf.co.uk/ permissions/usingThirdPartyMaterial.asp. 2. Third-party content: If there is third-party content in your article, please check that the rightsholder details for re-use are shown correctly. 3. Affiliation: The corresponding author is responsible for ensuring that address and email details are correct for all the co-authors. Affiliations given in the article should be the affiliation at the time the research was conducted. Please see http://journalauthors. tandf.co.uk/preparation/writing.asp. 4. Funding: Was your research for this article funded by a funding agency? If so, please insert ‘This work was supported by <insert the name of the funding agency in full>’, followed by the grant number in square brackets ‘[grant number xxxx]’. 5. Supplemental data and underlying research materials: Do you wish to include the location of the underlying research materials (e.g. data, samples or models) for your article? If so, please insert this sentence before the reference section: ‘The underlying research materials for this article can be accessed at <full link>/ description of location [author to complete]’. If your article includes supplemental data, the link will also be provided in this paragraph. See <http://journalauthors.tandf.co.uk/preparation/multimedia.asp> for further explanation of supplemen- tal data and underlying research materials. -
Zootaxa, Staphylinidae
ZOOTAXA 1251 Staphylinidae (Insecta: Coleoptera) of the Biologia Centrali-Americana: Current status of the names JOSÉ LUIS NAVARRETE-HEREDIA, CECILIA GÓMEZ-RODRÍGUEZ & ALFRED F. NEWTON Magnolia Press Auckland, New Zealand JOSÉ LUIS NAVARRETE-HEREDIA, CECILIA GÓMEZ-RODRÍGUEZ & ALFRED F. NEWTON Staphylinidae (Insecta: Coleoptera) of the Biologia Centrali-Americana: Current status of the names (Zootaxa 1251) 70 pp.; 30 cm. 3 July 2006 ISBN 978-1-86977-016-7 (paperback) ISBN 978-1-86977-017-4 (Online edition) FIRST PUBLISHED IN 2006 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2006 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1251: 1–70 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1251 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Staphylinidae (Insecta: Coleoptera) of the Biologia Centrali-Americana: Current status of the names JOSÉ LUIS NAVARRETE-HEREDIA1, CECILIA GÓMEZ-RODRÍGUEZ1 & ALFRED F. NEWTON2 1Centro de Estudios en Zoología, CUCBA, Universidad de Guadalajara, Apdo. Postal 234, 45100, Zapopan, Jalisco, México. E-mail: [email protected] 2Zoology Department, Field Museum of Natural History, Roosevelt Road at Lake Shore Drive, Chicago, IL, 60605, USA. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands
Land 2014, 3, 693-718; doi:10.3390/land3030693 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Article Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments Thomas O. Crist 1,2,* and Valerie E. Peters 1 1 Institute for the Environment and Sustainability, Miami University, Oxford, OH 45056, USA; E-Mail: [email protected] 2 Department of Biology, Miami University, Oxford, OH 45056, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-513-529-6187; Fax: +1-513-529-5814. Received: 3 May 2014; in revised form: 23 June 2014 / Accepted: 30 June 2014 / Published: 14 July 2014 Abstract: The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover. -
Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae) Communities in German Forests
Supplementary Materials Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae) Communities in German Forests Sandra Weithmann1*, Jonas Kuppler1, Gregor Degasperi2, Sandra Steiger3, Manfred Ayasse1, Christian von Hoermann4 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany; [email protected] (J.K.), [email protected] (M.A.) 2 Richard-Wagnerstraße 9, 6020 Innsbruck, Austria; [email protected] (G.D.) 3 Department of Evolutionary Animal Ecology, University of Bayreuth, 95447 Bayreuth, Germany; [email protected] (S.S.) 4 Department of Conservation and Research, Bavarian Forest National Park, 94481 Grafenau, Germany; [email protected] (C.v.H.) * Correspondence: [email protected] (S.W.) The supplementary material is structured in sections Materials and methods and Results. 1 Materials and methods Table S1: Environmental variables included in the analyses undertaken on the BExIS platform (Biodiversity Exploratories Information System, https://www.bexis.uni-jena.de). Variable Variable Categories or description of unit Data source information type variable region categorial Schwäbische Alb (ALB), Hainich- - ID: 20826, version: 1.14.10, Dün (HAI), Schorfheide-Chorin owner: Nieschulze, Schulze, (SCH) Fischer, Ayasse, Weisser, Ostrowski, König-Ries SMI index continuous silvicultural management intensity - ID: 17746, version: 1.2.2; (SMI) index (from 0 to 1) owner: Schall & Ammer 0 = undisturbed 1 = -
Key to the British Genera of Subfamily Staphylininae
Key to the British genera of subfamily Staphylininae Parts translated from the German key by Arved Lompe, which is based on the keys by Lohse, Ganglbauer and Reitter and parts adapted from Joy (1932) References Lompe (2013) published at http://www.coleo-net.de/coleo/texte/staphylininae.htm#Xantholinini Joy N.H. (1932) A Practical Handbook of British Beetles, published by H. F. & G. Witherby Checklist of genera From the Checklist of Beetles of the British Isles, 2012 edition, edited by A. G. Duff. (available from www.coleopterist.org.uk/checklist.htm). Tribe STAPHYLININI Latreille, 1802 Subtribe STAPHYLININA Latreille, 1802 Subtribe PHILONTHINA Kirby, 1837 CREOPHILUS Leach, 1819 BISNIUS Stephens, 1829 DINOTHENARUS Thomson, C.G., 1858 CAFIUS Stephens, 1829 EMUS Leach, 1819 ERICHSONIUS Fauvel, 1874 OCYPUS Leach, 1819 GABRIUS Stephens, 1829 ONTHOLESTES Ganglbauer, 1895 GABRONTHUS Tottenham, 1955 PLATYDRACUS Thomson, C.G., 1858 NEOBISNIUS Ganglbauer, 1895 STAPHYLINUS Linnaeus, 1758 PHILONTHUS Stephens, 1829 TASGIUS Stephens, 1829 451 RABIGUS Mulsant & Rey, 1876 REMUS Holme, 1837 Tribe XANTHOLININI Erichson, 1839 GAUROPTERUS Thomson, C.G., 1860 Subtribe QUEDIINA Kraatz, 1857 GYROHYPNUS Leach, 1819 ACYLOPHORUS Nordmann, 1837 HYPNOGYRA Casey, 1906 ASTRAPAEUS Gravenhorst, 1802 LEPTACINUS Erichson, 1839 EURYPORUS Erichson, 1839 MEGALINUS Mulsant & Rey, 1877 HETEROTHOPS Stephens, 1829 NUDOBIUS Thomson, C.G., 1860 QUEDIUS Stephens, 1829 PHACOPHALLUS Coiffait, 1956 VELLEIUS Leach, 1819 XANTHOLINUS Dejean, 1821 Tribe OTHIINI Thomson, C.G., 1859 ATRECUS -
Green Roofs and Urban Biodiversity: Their Role As Invertebrate Habitat and the Effect of Design on Beetle Community
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 5-26-2016 Green Roofs and Urban Biodiversity: Their Role as Invertebrate Habitat and the Effect of Design on Beetle Community Sydney Marie Gonsalves Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Gonsalves, Sydney Marie, "Green Roofs and Urban Biodiversity: Their Role as Invertebrate Habitat and the Effect of Design on Beetle Community" (2016). Dissertations and Theses. Paper 2997. https://doi.org/10.15760/etd.2998 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Green Roofs and Urban Biodiversity: Their Role as Invertebrate Habitat and the Effect of Design on Beetle Community by Sydney Marie Gonsalves A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Science and Management Thesis Committee: Catherine E. de Rivera, Chair Amy A. Larson Olyssa S. Starry Portland State University 2016 © 2016 Sydney Marie Gonsalves Abstract With over half the world’s population now living in cities, urban areas represent one of earth’s few ecosystems that are increasing in extent, and are sites of altered biogeochemical cycles, habitat fragmentation, and changes in biodiversity. However, urban green spaces, including green roofs, can also provide important pools of biodiversity and contribute to regional gamma diversity, while novel species assemblages can enhance some ecosystem services. -
Criteria for the Selection of Local Wildlife Sites in Berkshire, Buckinghamshire and Oxfordshire
Criteria for the Selection of Local Wildlife Sites in Berkshire, Buckinghamshire and Oxfordshire Version Date Authors Notes 4.0 January 2009 MHa, MCH, PB, MD, AMcV Edits and updates from wider consultation group 5.0 May 2009 MHa, MCH, PB, MD, AMcV, GDB, RM Additional edits and corrections 6.0 November 2009 Mha, GH, AF, GDB, RM Additional edits and corrections This document was prepared by Buckinghamshire and Milton Keynes Environmental Records Centre (BMERC) and Thames Valley Environmental Records Centre (TVERC) and commissioned by the Oxfordshire and Berkshire Local Authorities and by Buckinghamshire County Council Contents 1.0 Introduction..............................................................................................4 2.0 Selection Criteria for Local Wildlife Sites .....................................................6 3.0 Where does a Local Wildlife Site start and finish? Drawing the line............. 17 4.0 UKBAP Habitat descriptions ………………………………………………………………….19 4.1 Lowland Calcareous Grassland………………………………………………………… 20 4.2 Lowland Dry Acid Grassland................................................................ 23 4.3 Lowland Meadows.............................................................................. 26 4.4 Lowland heathland............................................................................. 29 4.5 Eutrophic Standing Water ................................................................... 32 4.6. Mesotrophic Lakes ............................................................................ 35 4.7 -
Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J
EENY115 Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J. Howard Frank and Michael C. Thomas2 Introduction body form is much broader and the elytra almost cover (Scaphidiinae) or do cover (Scydmaenidae) the abdomen. Rove beetles are often abundant in habitats with large In most, the antennae are simple and typically have 11 numbers of fly larvae—especially decaying fruit, decaying antennomeres (“segments”), but in some (Pselaphinae) the seaweed, compost, carrion, and dung—where some are antennae are clubbed or (Micropeplinae) have a greatly important predators of maggots and others prey on mites or enlarged apical segment, or (some Aleocharinae) have 10 nematodes. Because they are abundant in decaying plants or (some Pselaphinae) even fewer antennomeres. Antennae and fruits, plant inspectors encounter them but often do are geniculate (“elbowed”) in a few members of Pselaphinae, not recognize them as beetles. This article is intended as Osoriinae, Oxytelinae, Paederinae, and Staphylininae. an introduction to the Florida representatives of this large, diverse, and important family of beetles. Characterization Adults range from less than 1 mm to 40 mm long (none here is to the level of subfamily (at least 18 subfamilies is more than about 20 mm in Florida), although almost occur in Florida) because characterization to the level all are less than about 7 mm long. Adults of some other of genus (or species) would be too complicated for a families also have short elytra, but in these (e.g., various publication of this kind. The best popular North American Histeridae; Limulodes and other Ptiliidae; Nicrophorus, identification guide to beetles (White 1983), likewise family Silphidae; Trypherus, family Cantharidae; Conotelus, characterizes Staphylinidae only to the level of subfamily family Nitidulidae; Rhipidius, family Rhipiphoridae; Meloe, (and its classification is outdated, and it does not provide family Meloidae; and Inopeplus, family Salpingidae) the references to the literature). -
Discerning Beetles, an Entomo-Archaeological Study of Coleopteranfaunas in Relation to Place and Time
Discerning beetles, an entomo-archaeological study of coleopteranfaunas in relation to place and time Katherine Jane Grove A thesis submitted to the Faculty of Science for the degree of Doctor of Philosophy. Departmentof Archaeology and Prehistory, University of Sheffield, Northgate House, West Street, Sheffield S 14ET March 2001 Discerning beetles,an entomo-archaeologicalstudy of coleopteran faunasin relation to place and time CONTENTS VOLUME 1- Text ABSTRACT i ACKNOWLEDGEMENTS ii LIST OF CONTENTS iii VOLUME 2- Illustrative material and bibliography LIST OF FIGURES i LIST OF TABLES iv LIST OF PLATES v APPENDIX 156 BIBLIOGRAPHY 157 ABSTRACT This work initially examinesthe origins and methods of entomo-archaeologicalstudies and reviews the current stateof this discipline. Original work is presentedon coleopteranfaunas, mainly from medieval pits, recovered and analysed from sites in Winchester, Southampton and Chichester. The faunas resemble those recovered from deposits of similar provenancefrom other sites. They also contain the earliest records of some species in Britain and the earliest medieval occurrencesof others which, were common in Roman Britain, but missing from the Saxonurban record. A modem analogue of a medieval cesspit was set up in order to investigate the coleopteranfaunas, which develop in that environment. Further experimental work was carried out using a choice chamber, to determine the preferred pabulum of certain speciesofAphodius dung beetles. The findings are placed in a wider context as a representative sample of all work, carried out on Roman and post-Roman coleopteran thanatocoenoses,were included in the following investigations. Methods of standardising data from different sourcesare discussed. The distribution of synanthropic species through time was studied, with special emphasis on Tipnus unicolor and Cryptolestesferrugineus. -
(Coleoptera: Staphylinidae). Classificazione, Filogenesi E Revisione Tassonomica
Onychium, 13: 107-115 Published 20 April 2017 ISSN: 1224-2669 www.onychium.it http://dx.doi.org/10.5281/zenodo.439728 http://zoobank.org/urn:lsid:zoobank.org:pub:6B9D2F9A-452C-4E37-85F7-ACD46791ABBA New data on the Palaearctic Xantholinini. 12. New species, new designations and new records (Coleoptera: Staphylinidae) 275th contribution to the knowledge of the Staphylinidae Arnaldo BORDONI Museo di Storia Naturale dell’Università degli Studi di Firenze, sezione di Zoologia “La Specola”, via Romana 17, I-50125 Florence, Italy. E-mail: [email protected] Abstract. Species of Xantholinini from the Palaearctic Region are listed. Some of these are common but the records expand the known distribution of the taxa; other species are less common and new records for the named countries are given: Gauropterus bucharicus Bernhauer, 1905 (Turkmenistan), Nudobius umbratus (Motschulsky, 1869) (Czechia), Gyrohypnus ochripennis (Eppelsheim, 1892) (Central Russia), Xantholinus elegans (Olivier, 1795) (Aosta Valley, Italy), Xantholinus gridellii Coiffait, 1956 (Jordan), and Phacophallus flavipennis (Kraatz, 1859) (Pakistan: see Distribution of the species); lectotype and paralectotypes are designated for Xantholinus laniger Fauvel, 1899. A new species (Xantholinus chalusianus sp. n.) from Iran is described and figured. Furthermore the following nomenclature act is made: Xantholinus postfactus nom. nov. for X. apterus Bordoni, 2016, nom. preocc. by X. apterus Bernhauer, 1939. Riassunto. Nuovi dati sugli Xantholinini paleartici. 12. Nuova specie,