Time Travelling in Emergent Spacetime
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetry and Gravity
universe Article Making a Quantum Universe: Symmetry and Gravity Houri Ziaeepour 1,2 1 Institut UTINAM, CNRS UMR 6213, Observatoire de Besançon, Université de Franche Compté, 41 bis ave. de l’Observatoire, BP 1615, 25010 Besançon, France; [email protected] or [email protected] 2 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking GU5 6NT, UK Received: 05 September 2020; Accepted: 17 October 2020; Published: 23 October 2020 Abstract: So far, none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here, we outline the preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on three well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by two angular variables. We show that, in the absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference—observer—and another as clock, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. -
Opportunities for US-Israeli Collaborations in Computational Neuroscience
Opportunities for US-Israeli Collaborations in Computational Neuroscience Report of a Binational Workshop* Larry Abbott and Naftali Tishby Introduction Both Israel and the United States have played and continue to play leading roles in the rapidly developing field of computational neuroscience, and both countries have strong interests in fostering collaboration in emerging research areas. A workshop was convened by the US-Israel Binational Science Foundation and the US National Science Foundation to discuss opportunities to encourage and support interdisciplinary collaborations among scientists from the US and Israel, centered around computational neuroscience. Seven leading experts from Israel and six from the US (Appendix 2) met in Jerusalem on November 14, 2012, to evaluate and characterize such research opportunities, and to generate suggestions and ideas about how best to proceed. The participants were asked to characterize the potential scientific opportunities that could be expected from collaborations between the US and Israel in computational neuroscience, and to discuss associated opportunities for training, applications, and other broader impacts, as well as practical considerations for maximizing success. Computational Neuroscience in the United States and Israel The computational research communities in the United States and Israel have both contributed significantly to the foundations of and advances in applying mathematical analysis and computational approaches to the study of neural circuits and behavior. This shared intellectual commitment has led to productive collaborations between US and Israeli researchers, and strong ties between a number of institutions in Israel and the US. These scientific collaborations are built on over 30 years of visits and joint publications and the results have been extremely influential. -
Jhep09(2019)100
Published for SISSA by Springer Received: July 29, 2019 Accepted: September 5, 2019 Published: September 12, 2019 A link that matters: towards phenomenological tests of unimodular asymptotic safety JHEP09(2019)100 Gustavo P. de Brito,a;b Astrid Eichhornc;b and Antonio D. Pereirad;b aCentro Brasileiro de Pesquisas F´ısicas (CBPF), Rua Dr Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, Brazil, CEP 22290-180 bInstitute for Theoretical Physics, University of Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany cCP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark dInstituto de F´ısica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Litor^anea s/n, 24210-346, Niter´oi,RJ, Brazil E-mail: [email protected], [email protected], [email protected] Abstract: Constraining quantum gravity from observations is a challenge. We expand on the idea that the interplay of quantum gravity with matter could be key to meeting this challenge. Thus, we set out to confront different potential candidates for quantum gravity | unimodular asymptotic safety, Weyl-squared gravity and asymptotically safe gravity | with constraints arising from demanding an ultraviolet complete Standard Model. Specif- ically, we show that within approximations, demanding that quantum gravity solves the Landau-pole problems in Abelian gauge couplings and Yukawa couplings strongly con- strains the viable gravitational parameter space. In the case of Weyl-squared gravity with a dimensionless gravitational coupling, we also investigate whether the gravitational con- tribution to beta functions in the matter sector calculated from functional Renormalization Group techniques is universal, by studying the dependence on the regulator, metric field parameterization and choice of gauge. -
The Penrose and Hawking Singularity Theorems Revisited
Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook The Penrose and Hawking Singularity Theorems revisited Roland Steinbauer Faculty of Mathematics, University of Vienna Prague, October 2016 The Penrose and Hawking Singularity Theorems revisited 1 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Overview Long-term project on Lorentzian geometry and general relativity with metrics of low regularity jointly with `theoretical branch' (Vienna & U.K.): Melanie Graf, James Grant, G¨untherH¨ormann,Mike Kunzinger, Clemens S¨amann,James Vickers `exact solutions branch' (Vienna & Prague): Jiˇr´ıPodolsk´y,Clemens S¨amann,Robert Svarcˇ The Penrose and Hawking Singularity Theorems revisited 2 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 3 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Table of Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 4 / 27 Theorem (Pattern singularity theorem [Senovilla, 98]) In a spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness (iii) initial condition ; causal geodesics start focussing (i) energy condition ; focussing goes on ; focal point (ii) causality condition ; no focal points way out: one causal geodesic has to be incomplete, i.e., : (iv) Classical singularity thms. -
Summer 2017 Astron 9 Week 5 Final Version
RELATIVITY OF SPACE AND TIME IN POPULAR SCIENCE RICHARD ANANTUA PREDESTINATION (MON JUL 31) REVIEW OF JUL 24, 26 & 28 • Flying atomic clocks, muon decay, light bending around stars and gravitational waves provide experimental confirmation of relativity • In 1919, Einstein’s prediction for the deflection of starlight was confirmed by • The 1971 Hafele-Keating experiment confirmed • The 1977 CERN muon experiment confirmed • In 2016 LIGO confirmed the existence of REVIEW OF JUL 24, 26 & 28 • Flying atomic clocks, muon decay, light bending around stars and gravitational waves provide experimental confirmation of relativity • In 1919, Einstein’s prediction for the deflection of starlight was confirmed by Sir Arthur Eddington • The 1971 Hafele-Keating experiment confirmed motional and gravitational time dilation • The 1977 CERN muon experiment confirmed motional time dilation • In 2016 LIGO confirmed the existence of gravitational waves TIME TRAVEL IN RELATIVITY • Methods of time travel theoretically possible in relativity are • (Apparently) faster than light travel – window into the past? • Closed timelike curved • (Apparent) paradoxes with time travel • Kill your grandfather – past time travel may alter seemingly necessary conditions for the future time traveler to have started the journey • Predestination - apparent cause of past event is in the future SPECIAL RELATIVISTIC VELOCITY ADDITION • In special relativity, no object or information can travel faster than light, a fact reflected in the relativistic law of composition of velocities v &v vAB v = $% %' A !" v$%v%' (& * ) vBC B C • vAB is the (1D) velocity of A with respect to B • vBC is the (1D) velocity of B with respect to C POP QUIZ - FASTER THAN LIGHT TRAVEL • A spaceship traveling at v>c is returning from a moving planet (L0 away right before the journey). -
On the Axioms of Causal Set Theory
On the Axioms of Causal Set Theory Benjamin F. Dribus Louisiana State University [email protected] November 8, 2013 Abstract Causal set theory is a promising attempt to model fundamental spacetime structure in a discrete order-theoretic context via sets equipped with special binary relations, called causal sets. The el- ements of a causal set are taken to represent spacetime events, while its binary relation is taken to encode causal relations between pairs of events. Causal set theory was introduced in 1987 by Bombelli, Lee, Meyer, and Sorkin, motivated by results of Hawking and Malament relating the causal, conformal, and metric structures of relativistic spacetime, together with earlier work on discrete causal theory by Finkelstein, Myrheim, and 't Hooft. Sorkin has coined the phrase, \order plus number equals geometry," to summarize the causal set viewpoint regarding the roles of causal structure and discreteness in the emergence of spacetime geometry. This phrase represents a specific version of what I refer to as the causal metric hypothesis, which is the idea that the properties of the physical universe, and in particular, the metric properties of classical spacetime, arise from causal structure at the fundamental scale. Causal set theory may be expressed in terms of six axioms: the binary axiom, the measure axiom, countability, transitivity, interval finiteness, and irreflexivity. The first three axioms, which fix the physical interpretation of a causal set, and restrict its \size," appear in the literature either implic- itly, or as part of the preliminary definition of a causal set. The last three axioms, which encode the essential mathematical structure of a causal set, appear in the literature as the irreflexive formula- tion of causal set theory. -
Closed Timelike Curves Make Quantum and Classical Computing Equivalent
Closed Timelike Curves Make Quantum and Classical Computing Equivalent Scott Aaronson∗ John Watrous† MIT University of Waterloo Abstract While closed timelike curves (CTCs) are not known to exist, studying their consequences has led to nontrivial insights in general relativity, quantum information, and other areas. In this paper we show that if CTCs existed, then quantum computers would be no more powerful than classical computers: both would have the (extremely large) power of the complexity class PSPACE, consisting of all problems solvable by a conventional computer using a polynomial amount of memory. This solves an open problem proposed by one of us in 2005, and gives an essentially complete understanding of computational complexity in the presence of CTCs. Following the work of Deutsch, we treat a CTC as simply a region of spacetime where a “causal consistency” condition is imposed, meaning that Nature has to produce a (probabilistic or quantum) fixed-point of some evolution operator. Our conclusion is then a consequence of the following theorem: given any quantum circuit (not necessarily unitary), a fixed-point of the circuit can be (implicitly) computed in polynomial space. This theorem might have independent applications in quantum information. 1 Introduction The possibility of closed timelike curves (CTCs) within general relativity and quantum gravity theories has been studied for almost a century [11, 15, 13]. A different line of research has sought to understand the implications of CTCs, supposing they existed, for quantum mechanics, computation, and information [9, 8, 5]. In this paper we contribute to the latter topic, by giving the first complete characterization of the computational power of CTCs. -
Closed Timelike Curves, Singularities and Causality: a Survey from Gödel to Chronological Protection
Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to Chronological Protection Jean-Pierre Luminet Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille , France; Centre de Physique Théorique de Marseille (France) Observatoire de Paris, LUTH (France) [email protected] Abstract: I give a historical survey of the discussions about the existence of closed timelike curves in general relativistic models of the universe, opening the physical possibility of time travel in the past, as first recognized by K. Gödel in his rotating universe model of 1949. I emphasize that journeying into the past is intimately linked to spacetime models devoid of timelike singularities. Since such singularities arise as an inevitable consequence of the equations of general relativity given physically reasonable assumptions, time travel in the past becomes possible only when one or another of these assumptions is violated. It is the case with wormhole-type solutions. S. Hawking and other authors have tried to save the paradoxical consequences of time travel in the past by advocating physical mechanisms of chronological protection; however, such mechanisms remain presently unknown, even when quantum fluctuations near horizons are taken into account. I close the survey by a brief and pedestrian discussion of Causal Dynamical Triangulations, an approach to quantum gravity in which causality plays a seminal role. Keywords: time travel; closed timelike curves; singularities; wormholes; Gödel’s universe; chronological protection; causal dynamical triangulations 1. Introduction In 1949, the mathematician and logician Kurt Gödel, who had previously demonstrated the incompleteness theorems that broke ground in logic, mathematics, and philosophy, became interested in the theory of general relativity of Albert Einstein, of which he became a close colleague at the Institute for Advanced Study at Princeton. -
Surya Ganguli: Innovator in Artificial Intelligence
Behind the Tech Kevin Scott Podcast EP-10: Surya Ganguli: Innovator in artificial intelligence SURYA GANGULI: (VOICEOVER) A lot of people, of course, listening to your podcast and out there in the world have become incredibly successful based on the rise of digital technology. But I think we need to think about digital technology now as a suboptimal legacy technology. To achieve energy efficient artificial intelligence, we've really got to take cues from biology. [MUSIC] KEVIN SCOTT: Hi, everyone. Welcome to Behind the Tech. I'm your host, Kevin Scott, Chief Technology Officer for Microsoft. In this podcast, we're going to get behind the tech. We'll talk with some of the people who have made our modern tech world possible and understand what motivated them to create what they did. So join me to maybe learn a little bit about the history of computing and get a few behind- the-scenes insights into what's happening today. Stick around. [MUSIC] CHRISTINA WARREN: Hello, and welcome to the show. I'm Christina Warren, Senior Cloud Advocate at Microsoft. KEVIN SCOTT: And I'm Kevin Scott. CHRISTINA WARREN: Today, we're excited to have with us Surya Ganguli. KEVIN SCOTT: Yeah, Surya is a professor at Stanford working at the intersection of a bunch of different, super interesting fields. So, he's a physicist. He's a neuroscientist. He is actually quite familiar with modern psychology, and he's a computer scientist. And so, he's applying all of this interest that he has across all of these different fields, trying to make sure that we're building better and more interesting biologically and psychologically inspired machine learning systems in AI. -
Light Rays, Singularities, and All That
Light Rays, Singularities, and All That Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem. The article is based on lectures at the 2018 summer program Prospects in Theoretical Physics at the Institute for Advanced Study, and also at the 2020 New Zealand Mathematical Research Institute summer school in Nelson, New Zealand. Contents 1 Introduction 3 2 Causal Paths 4 3 Globally Hyperbolic Spacetimes 11 3.1 Definition . 11 3.2 Some Properties of Globally Hyperbolic Spacetimes . 15 3.3 More On Compactness . 18 3.4 Cauchy Horizons . 21 3.5 Causality Conditions . 23 3.6 Maximal Extensions . 24 4 Geodesics and Focal Points 25 4.1 The Riemannian Case . 25 4.2 Lorentz Signature Analog . 28 4.3 Raychaudhuri’s Equation . 31 4.4 Hawking’s Big Bang Singularity Theorem . 35 5 Null Geodesics and Penrose’s Theorem 37 5.1 Promptness . 37 5.2 Promptness And Focal Points . 40 5.3 More On The Boundary Of The Future . 46 1 5.4 The Null Raychaudhuri Equation . 47 5.5 Trapped Surfaces . 52 5.6 Penrose’s Theorem . 54 6 Black Holes 58 6.1 Cosmic Censorship . 58 6.2 The Black Hole Region . 60 6.3 The Horizon And Its Generators . 63 7 Some Additional Topics 66 7.1 Topological Censorship . 67 7.2 The Averaged Null Energy Condition . -
Problem Set 4 (Causal Structure)
\Singularities, Black Holes, Thermodynamics in Relativistic Spacetimes": Problem Set 4 (causal structure) 1. Wald (1984): ch. 8, problems 1{2 2. Prove or give a counter-example: there is a spacetime with two points simultaneously con- nectable by a timelike geodesic, a null geodesic and a spacelike geodesic. 3. Prove or give a counter-example: if two points are causally related, there is a spacelike curve connecting them. 4. Prove or give a counter-example: any two points of a spacetime can be joined by a spacelike curve. (Hint: there are three cases to consider, first that the temporal futures of the two points intesect, second that their temporal pasts do, and third that neither their temporal futures nor their temporal pasts intersect; recall that the manifold must be connected.) 5. Prove or give a counter-example: every flat Lorentzian metric is temporally orientable. 6. Prove or give a counter-example: if the temporal futures of two points do not intersect, then neither do their temporal pasts. 7. Prove or give a counter-example: for a point p in a spacetime, the temporal past of the temporal future of the temporal past of the temporal future. of p is the entire spacetime. (Hint: if two points can be joined by a spacelike curve, then they can be joined by a curve consisting of some finite number of null geodesic segments glued together; recall that the manifold is connected.) 8. Prove or give a counter-example: if the temporal past of p contains the entire temporal future of q, then there is a closed timelike curve through p. -
Theoretical Computer Science Causal Set Topology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 405 (2008) 188–197 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Causal set topology Sumati Surya Raman Research Institute, Bangalore, India article info a b s t r a c t Keywords: The Causal Set Theory (CST) approach to quantum gravity is motivated by the observation Space–time that, associated with any causal spacetime (M, g) is a poset (M, ≺), with the order relation Causality ≺ corresponding to the spacetime causal relation. Spacetime in CST is assumed to have a Topology Posets fundamental atomicity or discreteness, and is replaced by a locally finite poset, the causal Quantum gravity set. In order to obtain a well defined continuum approximation, the causal set must possess the requisite intrinsic topological and geometric properties that characterise a continuum spacetime in the large. The study of causal set topology is thus dictated by the nature of the continuum approximation. We review the status of causal set topology and present some new results relating poset and spacetime topologies. The hope is that in the process, some of the ideas and questions arising from CST will be made accessible to the larger community of computer scientists and mathematicians working on posets. © 2008 Published by Elsevier B.V. 1. The spacetime poset and causal sets In Einstein’s theory of gravity, space and time are merged into a single entity represented by a pseudo-Riemannian or Lorentzian geometry g of signature − + ++ on a differentiable four dimensional manifold M.