Clustering via Information Access in a Network∗ Hannah C. Beilinson Nasanbayar Ulzii-Orshikh Ashkan Bashardoust Haverford College Haverford College University of Utah Haverford, PA Haverford, PA Salt Lake City, UT
[email protected] [email protected] [email protected] Sorelle A. Friedler Carlos E. Scheidegger Haverford College University of Arizona Haverford, PA Tucson, AZ
[email protected] [email protected] Suresh Venkatasubramanian University of Utah Salt Lake City, UT
[email protected] October 27, 2020 Abstract Information flow in a graph (say, a social network) has typically been modeled using standard influence propagation methods, with the goal of determining the most effective ways to spread information widely. More recently, researchers have begun to study the differing access to information of individuals within a network. This previous work suggests that information access is itself a potential aspect of privilege based on network position. While concerns about fairness usually focus on differences between demographic groups, characterizing network position may itself give rise to new groups for study. But how do we characterize position? Rather than using standard grouping methods for graph clustering, we design and explore a clustering that explicitly incorporates models of how information flows on a network. Our goal is to identify clusters of nodes that are similar based on their access to information across the network. We show, both formally and experimentally, that the resulting clustering method is a new approach to network clustering. Using a wide variety of datasets, our experiments show that the introduced clustering technique clusters individuals together who are similar based on an external information access measure.