Analysing Higher-Order Network Data Using Simplicial Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Analysing Higher-Order Network Data Using Simplicial Complexes Analysing higher-order network data using simplicial complexes 1,2* 3 3 3 1 Michael T. Schaub , Austin Benson , Rediet Abebe , Jon Kleinberg , Ali Jadbabaie 1 Institute for Data,Systems and Society, Massachusetts Institute of Technology 2 Department of Engineering Science, University of Oxford 3 Department of Computer Science, Cornell University * Email Address: [email protected] Funding: Marie Sklodowska-Curie grant agreement No 702410 (MTS), Google / Facebook Scholarship (RA), Simons Investigator Award (JK), Vannevar Bush Fellowship (AJ) We thank G. Lippner and P. Horn for earlier contributions, leading up to those reported here. Part I: Higher-order Link Prediction and simplicial closure Part II: Diffusion on simplicial complexes and simplicial PageRank 1. Motiviation: from networks to simplicial complexes 2. Link prediction and simplicial closure - synopsis 1. Motivation: Diffusion processes on graphs 2. Diffusion processes on simplicial complexes?! Graph-based diffusion Networks provide a powerful formalism for modeling complex systems, The traditional link prediction problem seeks to predict the appearance of Diffusion processes and random walks are at the core of many influential 1. State Space: nodes (no orientation) by representing the underlying set of pairwise interactions. But much of new links in a network. Here we adapt it to predict which (larger) sets of data-mining and machine learning techniques ranging from centrality 2. Spectral properties inherited from Laplacian the structure within these systems involves interactions that take place elements will have future interactions. We study the temporal evolution of measures and ranking (e.g., PageRank), to dimensionality reduction and Simplicial complex based diffusion? among more than two nodes at once — for example, communication 19 datasets, and use our higher-order formulation of link prediction to manifold learning (e.g., diffusion maps) 1. State Space: edges (orientation matters) 'positive' and 'negative' flows within a group rather than person-to-person, collaboration among a team assess the types of structural features that are most predictive of new 2. Spectral properties inherited from Laplacian rather than a pair of co-authors, or biological interaction between a set of multi-way interactions. molecules rather than just two. ... ... Problem: because of orientation of edges no interpretation in terms of probability Solution: consider lifting into higher order state space. time-stamped interactions simplicial complex graph based In higher order space: simplicial dynamics = diffusion! (sets) representation representation Schematic: diffusion process evolving over time Projection Lifting Schematic: temporal evolution leading to simplicial closure They are intimately related to the theory of harmonic functions and algebraic topology via graph Laplacians, and there exists a well developed theory relating topological properties of the graph to features Among our results, we find that different domains vary considerably in of the Laplacian / diffusion process. How does this theory extend to random walk (undirected graph) their distribution of higher-order structural parameters, and that the higher-order models such as simplicial complexes? higher-order link prediction problem exhibits some fundamental differences from traditional pairwise link prediction, with a greater role We refer to these type of simultaneous interactions on sets of more than for local rather than long-range information in predicting the appearance two nodes as higher-order interactions; they are ubiquitous, but the of new interactions. Hodge Laplacians by Algebraic Topology Random walk on lifted complex empirical study of them has lacked a general framework for evaluating Lifted simplicial complex Random walk higher-order models. lifted state-space Space of k-chains, Space of k-cochains Edge View Boundary / Co-boundary maps (correspond to incidence matrices) Datasets analysed / Example of a 'simplicial lifecycle' Transition types 19 datasets Example: lifecycle of triangular motifs in co-authorship networks (history) initial position self-loop Chain / Cochain Complex # non-closing initial position # simplices State-space (self-loops not shown) aligned transition initial position (lower adjacent) Hodge Laplacian (general) 150 - 2.5 Mio Nodes anti-aligned initial position 680 - 14 Mio time-stamped simplices Question: can we predict simplicial closure (triads, other higher order structures)? transition (upper adjacent) initial position Simplicial closure probability: triangular closure 3. Higher-order link prediction: brief results Oriented simplicial complexes and Hodge Laplacians by Example Closure Probability Comparison of configurations Define reference orientations of simplices Example Application: Personalized PageRank vectors for edge-flows (choose basis for computations) 2 • Many simplices remain open (counter triadic closure 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 10 PageRank (Graphs) 10 3 hypothesis) 4 Personalized PageRank (Graphs) (PageRank Matrix) 1 10 1 10 5 coauth-DBLP Personalized PageRank vectors measure importance of node w.r.t. its neighbors 10 6 (in terms of a diffusion: related to zero homology / connected components) coauth-MAG-Geology 10 6 10 5 10 4 10 3 10 2 Simplicial Personalized PageRank 1 coauth-MAG-History 1 1 music-rap-genius open wedge < open triangle Incidence matrices (node, edges, triangular faces, ...) tags-stack-overflow •Simple independent null model can reproduce some of tags-math-sx this behavior. 10 2 Simplicial personalized PageRank vectors measure importance of edges tags-ask-ubuntu 3 (in terms of edge-flows: related to first homology / cycle space) 1 10 1 threads-stack-overflow 1 10 4 Analyzed simplicial complex threads-math-sx 10 5 (all triangles filled in) threads-ask-ubuntu 10 5 10 4 10 3 10 2 1 Hodge Laplacian (1-Laplacian) 1 NDC-substances 2+ 'bulk edge' open triangle ≈ low induced flow NDC-classes 'cyclic edge' (+localized) open triangle high harmonic flow DAWN (stronger weights) • Closure prediction (not shown): simple local statistics congress-bills can perform well; however, no clear winner. Hodge Decomposition of edge-flows 2 congress-committees 10 em ail-Eu 10 3 References 1 1 email-Enron 1 10 4 [1] Benson, Austin R., et al. "Simplicial Closure and Higher-order Link Prediction." 5 arXiv preprint arXiv:1802.06916 (2018). contact-high-school 10 [2] Liben‐Nowell, David, and Jon Kleinberg. "The link‐prediction problem for social 'cut edge' 10 5 10 4 10 3 10 2 high gradient flow 2+ networks." journal of the Association for Information Science and Technology 58.7 contact-primary-school 2+ 2+ 2+ 2+ 2+ (+localized) 1 1 1 1 2+ (2007): 1019-1031. 1 1 1 1 1 2+ 2+ [3] Lü, Linyuan, and Tao Zhou. "Link prediction in complex networks: A survey." 1 2+ 2+ 2+ strong wedge vs open triangle Physica A: statistical mechanics and its applications 390.6 (2011): 1150-1170. Simplicial PageRank vectors 3-node configuration data dependent differentiate roles of edges.
Recommended publications
  • CHAPTER 6: Diversity in AI
    Artificial Intelligence Index Report 2021 CHAPTER 6: Diversity in AI Artificial Intelligence Index Report 2021 CHAPTER 6 PREVIEW 1 Artificial Intelligence CHAPTER 6: Index Report 2021 DIVERSITY IN AI CHAPTER 6: Chapter Preview Overview 3 New Computing PhDs in the Chapter Highlights 4 United States by Race/Ethnicity 11 CS Tenure-Track Faculty by Race/Ethnicity 12 6.1 GENDER DIVERSITY IN AI 5 Black in AI 12 Women in Academic AI Settings 5 Women in the AI Workforce 6 6.3 GENDER IDENTITY AND Women in Machine Learning Workshops 7 SEXUAL ORIENTATION IN AI 13 Workshop Participants 7 Queer in AI 13 Demographics Breakdown 8 Demographics Breakdown 13 Experience as Queer Practitioners 15 6.2 RACIAL AND ETHNIC DIVERSITY IN AI 10 APPENDIX 17 New AI PhDs in the United States by Race/Ethnicity 10 ACCESS THE PUBLIC DATA CHAPTER 6 PREVIEW 2 Artificial Intelligence CHAPTER 6: OVERVIEW Index Report 2021 DIVERSITY IN AI Overview While artificial intelligence (AI) systems have the potential to dramatically affect society, the people building AI systems are not representative of the people those systems are meant to serve. The AI workforce remains predominantly male and lacking in diversity in both academia and the industry, despite many years highlighting the disadvantages and risks this engenders. The lack of diversity in race and ethnicity, gender identity, and sexual orientation not only risks creating an uneven distribution of power in the workforce, but also, equally important, reinforces existing inequalities generated by AI systems, reduces the scope of individuals and organizations for whom these systems work, and contributes to unjust outcomes.
    [Show full text]
  • Four Results of Jon Kleinberg a Talk for St.Petersburg Mathematical Society
    Four Results of Jon Kleinberg A Talk for St.Petersburg Mathematical Society Yury Lifshits Steklov Institute of Mathematics at St.Petersburg May 2007 1 / 43 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 / 43 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 2 / 43 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 2 / 43 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 2 / 43 Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams 2 / 43 Part I History of Nevanlinna Prize Career of Jon Kleinberg 3 / 43 Nevanlinna Prize The Rolf Nevanlinna Prize is awarded once every 4 years at the International Congress of Mathematicians, for outstanding contributions in Mathematical Aspects of Information Sciences including: 1 All mathematical aspects of computer science, including complexity theory, logic of programming languages, analysis of algorithms, cryptography, computer vision, pattern recognition, information processing and modelling of intelligence.
    [Show full text]
  • Speaker Suan Gregurick
    NIH’s Strategic Vision for Data Science: Enabling a FAIR-Data Ecosystem Susan Gregurick, Ph.D. Associate Director for Data Science Office of Data Science Strategy February 10, 2020 Chronic Obstructive Pulmonary Disease is a significant cause of death in the US, genetic and Genetic & dietary data are available that could be used to dietary effects in further understand their effects on the disease Separate studies have been Challenges COPD done to collect genomic and dietary data for subjects with Obtaining access to all the COPD. relevant datasets so they can be analyzed Researchers know that many of the same subjects participated Understanding consent for in the two studies. each study to ensure that data usage limitations are respected Linking these datasets together would allow them to examine Connecting data from the the combined effects of same subject across genetics and diet using the different datasets so that the subjects present in both studies. genetic and dietary data from However, different identifiers the same subjects can be were used to identify the linked and studied subjects in the different studies. Icon made by Roundicons from www.flaticon.com DOC research requires datasets from a wide variety Dental, Oral and of sources, combining dental record systems with clinical and research datasets, with unique Craniofacial challenges of facial data (DOC) Research Advances in facial imaging Challenges have lead to rich sources of imaging and Joining dental and quantitative data for the clinical health records in craniofacial region. In order to integrate datasets addition, research in from these two parts of the model organisms can health system support DOC research in humans.
    [Show full text]
  • Navigability of Small World Networks
    Navigability of Small World Networks Pierre Fraigniaud CNRS and University Paris Sud http://www.lri.fr/~pierre Introduction Interaction Networks • Communication networks – Internet – Ad hoc and sensor networks • Societal networks – The Web – P2P networks (the unstructured ones) • Social network – Acquaintance – Mail exchanges • Biology (Interactome network), linguistics, etc. Dec. 19, 2006 HiPC'06 3 Common statistical properties • Low density • “Small world” properties: – Average distance between two nodes is small, typically O(log n) – The probability p that two distinct neighbors u1 and u2 of a same node v are neighbors is large. p = clustering coefficient • “Scale free” properties: – Heavy tailed probability distributions (e.g., of the degrees) Dec. 19, 2006 HiPC'06 4 Gaussian vs. Heavy tail Example : human sizes Example : salaries µ Dec. 19, 2006 HiPC'06 5 Power law loglog ppk prob{prob{ X=kX=k }} ≈≈ kk-α loglog kk Dec. 19, 2006 HiPC'06 6 Random graphs vs. Interaction networks • Random graphs: prob{e exists} ≈ log(n)/n – low clustering coefficient – Gaussian distribution of the degrees • Interaction networks – High clustering coefficient – Heavy tailed distribution of the degrees Dec. 19, 2006 HiPC'06 7 New problematic • Why these networks share these properties? • What model for – Performance analysis of these networks – Algorithm design for these networks • Impact of the measures? • This lecture addresses navigability Dec. 19, 2006 HiPC'06 8 Navigability Milgram Experiment • Source person s (e.g., in Wichita) • Target person t (e.g., in Cambridge) – Name, professional occupation, city of living, etc. • Letter transmitted via a chain of individuals related on a personal basis • Result: “six degrees of separation” Dec.
    [Show full text]
  • A Participatory Approach Towards AI for Social Good Elizabeth Bondi,∗1 Lily Xu,∗1 Diana Acosta-Navas,2 Jackson A
    Envisioning Communities: A Participatory Approach Towards AI for Social Good Elizabeth Bondi,∗1 Lily Xu,∗1 Diana Acosta-Navas,2 Jackson A. Killian1 {ebondi,lily_xu,jkillian}@g.harvard.edu,[email protected] 1John A. Paulson School of Engineering and Applied Sciences, Harvard University 2Department of Philosophy, Harvard University ABSTRACT Research in artificial intelligence (AI) for social good presupposes some definition of social good, but potential definitions have been PACT seldom suggested and never agreed upon. The normative ques- tion of what AI for social good research should be “for” is not concept thoughtfully elaborated, or is frequently addressed with a utilitar- capabilities approach ian outlook that prioritizes the needs of the majority over those who have been historically marginalized, brushing aside realities of injustice and inequity. We argue that AI for social good ought to be realization assessed by the communities that the AI system will impact, using participatory approach as a guide the capabilities approach, a framework to measure the ability of different policies to improve human welfare equity. Fur- thermore, we lay out how AI research has the potential to catalyze social progress by expanding and equalizing capabilities. We show Figure 1: The framework we propose, Participatory Ap- how the capabilities approach aligns with a participatory approach proach to enable Capabilities in communiTies (PACT), for the design and implementation of AI for social good research melds the capabilities approach (see Figure 3) with a partici- in a framework we introduce called PACT, in which community patory approach (see Figures 4 and 5) to center the needs of members affected should be brought in as partners and their input communities in AI research projects.
    [Show full text]
  • Understanding Innovations and Conventions and Their Diffusion Process in Online Social Media
    UNDERSTANDING INNOVATIONS AND CONVENTIONS AND THEIR DIFFUSION PROCESS IN ONLINE SOCIAL MEDIA A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Rahmtin Rotabi December 2017 c 2017 Rahmtin Rotabi ALL RIGHTS RESERVED UNDERSTANDING INNOVATIONS AND CONVENTIONS AND THEIR DIFFUSION PROCESS IN ONLINE SOCIAL MEDIA Rahmtin Rotabi, Ph.D. Cornell University 2017 This thesis investigates innovations, trends, conventions and practices in online social media. Tackling these problems will give more insight into how their users use these online platforms with the hope that the results can be generalized to the offline world. Every major step in human history was accompanied by an innovation, from the time that mankind invented and mastered the production of fire, to the invention of the World Wide Web. The societal process of adopting innovations has been a case that has fas- cinated many researchers throughout the past century. Prior to the existence of online social networks, economists and sociologists were able to study these phenomena on small groups of people through microeconomics and microsociology. However, the data gathered from these online communities help us to take one step further, initiating stud- ies on macroeconomic and macrosociologal problemsin addition to the previous two areas. Work in this thesis sheds light on the properties of both innovators and laggards, the expansion and adaptation of innovation, competition among innovations with the same purpose, and the eventual crowding out of competitor innovations in the target society. Lastly, we look at the bigger picture by studying the entire diffusion process as a whole, abstracting out a great deal of details.
    [Show full text]
  • CS Cornell 40Th Anniversary Booklet
    Contents Welcome from the CS Chair .................................................................................3 Symposium program .............................................................................................4 Meet the speakers ..................................................................................................5 The Cornell environment The Cornell CS ambience ..............................................................................6 Faculty of Computing and Information Science ............................................8 Information Science Program ........................................................................9 College of Engineering ................................................................................10 College of Arts & Sciences ..........................................................................11 Selected articles Mission-critical distributed systems ............................................................ 12 Language-based security ............................................................................. 14 A grand challenge in computer networking .................................................16 Data mining, today and tomorrow ...............................................................18 Grid computing and Web services ...............................................................20 The science of networks .............................................................................. 22 Search engines that learn from experience ..................................................24
    [Show full text]
  • David C. Parkes John A
    David C. Parkes John A. Paulson School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138, USA www.eecs.harvard.edu/~parkes December 2020 Citizenship: USA and UK Date of Birth: July 20, 1973 Education University of Oxford Oxford, U.K. Engineering and Computing Science, M.Eng (first class), 1995 University of Pennsylvania Philadelphia, PA Computer and Information Science, Ph.D., 2001 Advisor: Professor Lyle H. Ungar. Thesis: Iterative Combinatorial Auctions: Achieving Economic and Computational Efficiency Appointments George F. Colony Professor of Computer Science, 7/12-present Cambridge, MA Harvard University Co-Director, Data Science Initiative, 3/17-present Cambridge, MA Harvard University Area Dean for Computer Science, 7/13-6/17 Cambridge, MA Harvard University Harvard College Professor, 7/12-6/17 Cambridge, MA Harvard University Gordon McKay Professor of Computer Science, 7/08-6/12 Cambridge, MA Harvard University John L. Loeb Associate Professor of the Natural Sciences, 7/05-6/08 Cambridge, MA and Associate Professor of Computer Science Harvard University Assistant Professor of Computer Science, 7/01-6/05 Cambridge, MA Harvard University Lecturer of Operations and Information Management, Spring 2001 Philadelphia, PA The Wharton School, University of Pennsylvania Research Intern, Summer 2000 Hawthorne, NY IBM T.J.Watson Research Center Research Intern, Summer 1997 Palo Alto, CA Xerox Palo Alto Research Center 1 Other Appointments Member, 2019- Amsterdam, Netherlands Scientific Advisory Committee, CWI Member, 2019- Cambridge, MA Senior Common Room (SCR) of Lowell House Member, 2019- Berlin, Germany Scientific Advisory Board, Max Planck Inst. Human Dev. Co-chair, 9/17- Cambridge, MA FAS Data Science Masters Co-chair, 9/17- Cambridge, MA Harvard Business Analytics Certificate Program Co-director, 9/17- Cambridge, MA Laboratory for Innovation Science, Harvard University Affiliated Faculty, 4/14- Cambridge, MA Institute for Quantitative Social Science International Fellow, 4/14-12/18 Zurich, Switzerland Center Eng.
    [Show full text]
  • Director's Update
    Director’s Update Francis S. Collins, M.D., Ph.D. Director, National Institutes of Health Council of Councils Meeting September 6, 2019 Changes in Leadership . Retirements – Paul A. Sieving, M.D., Ph.D., Director of the National Eye Institute Paul Sieving (7/29/19) Linda Birnbaum – Linda S. Birnbaum, Ph.D., D.A.B.T., A.T.S., Director of the National Institute of Environmental Health Sciences (10/3/19) . New Hires – Noni Byrnes, Ph.D., Director, Center for Scientific Review (2/27/19) Noni Byrnes – Debara L. Tucci, M.D., M.S., M.B.A., Director, National Institute on Deafness and Other Communication Disorders (9/3/19) Debara Tucci . New Positions – Tara A. Schwetz, Ph.D., Associate Deputy Director, NIH (1/7/19) Tara Schwetz 2019 Inaugural Inductees Topics for Today . NIH HEAL (Helping to End Addiction Long-termSM) Initiative – HEALing Communities Study . Artificial Intelligence: ACD WG Update . Human Genome Editing – Exciting Promise for Cures, Need for Moratorium on Germline . Addressing Foreign Influence on Research … and Harassment in the Research Workplace NIH HEAL InitiativeSM . Trans-NIH research initiative to: – Improve prevention and treatment strategies for opioid misuse and addiction – Enhance pain management . Goals are scientific solutions to the opioid crisis . Coordinating with the HHS Secretary, Surgeon General, federal partners, local government officials and communities www.nih.gov/heal-initiative NIH HEAL Initiative: At a Glance . $500M/year – Will spend $930M in FY2019 . 12 NIH Institute and Centers leading 26 HEAL research projects – Over 20 collaborating Institutes, Centers, and Offices – From prevention research, basic and translational research, clinical trials, to implementation science – Multiple projects integrating research into new settings .
    [Show full text]
  • Graduate Student Highlights
    Graduate Student Highlights October 2019 – December 2019 Graduate School News Reception Celebrates 200+ NSF GRFP Recipients New and current awardees of the NSF GRFP gathered for a reception on Oct. 17. This year’s group of new recipients consists of 51 students, adding to the more than 200 NSF GRFP recipients already on campus. To help students prepare applications, the Graduate School hosts a variety of programming to support successful application writing. Read the full story Becoming Better Mentors Through Workshop Series In preparation for faculty careers, many graduate students and postdoctoral scholars seek out opportunities to develop their teaching, mentoring, and communication skills. The Building Mentoring Skills for an Academic Career workshop series prepares participants for not only their future endeavors, but assists them in being effective mentors in their current roles as well. Read the full story Students Present Research Around the World As part of a suite of structures to support graduate students, Conference Travel Grants offer financial assistance to help students present their research around the world. Four students reflect on their experiences presenting and networking at conferences both at home and abroad. Read the full story New Group Supports First-Generation and Low-Income Students Coming to Cornell as first-generation graduates, three doctoral students founded the First Generation and Low Income Graduate Student Association (FiGLI), realizing there was a need to be met. Taylor Brown, Rachel King, and Felicia New are working with new FiGLI members to plan events, workshops, speakers, and outreach to support members and students belonging to these communities. Read the full story Carriage House to Student Center: The Big Red Barn Over the Years Before becoming the Graduate and Professional Student Center, the Big Red Barn was a carriage house and stable, a shelter for large animals, a cafeteria, an alumni center, and a storage facility.
    [Show full text]
  • Report of the ACD Working Group Ad Hoc Virtual Meeting on AI/ML
    Report of the ACD Working Group Ad Hoc Virtual Meeting on AI/ML Electronic Medical Records for Research Purposes Special Meeting of the Advisory Committee to the Director (ACD) May 6, 2021 Lawrence A. Tabak, DDS, PhD Principal Deputy Director, NIH Department of Health and Human Services 1 DecemBer 2019 – ACD Artificial Intelligence WG 2 DecemBer 2019 – ACD Artificial Intelligence Report The opportunity is huge • including to drive discontinuous change We need new data generation projects • NOT Business-as-usual The single Best way to attract the right people is with the right data • “Show me the data” The time to invest in ethics is now • Before we dig a deeper hole 3 ACD AI/ML Electronic Medical Records for Research Purposes EXTERNAL MEMBERS Rediet Abebe, Ph.D. Barbara Engelhardt, Ph.D. Ryan Luginbuhl, M.D. Assistant Professor of Computer Science Associate Professor, Department of Principal, Life Sciences Division University of California, Berkeley Computer Science MITRE Corporation Princeton University Atul Butte, M.D., Ph.D. Brad Malin, Ph.D. Professor, Pediatrics David Glazer Accenture Professor Biomedical Informatics, Priscilla Chan and Mark ZuckerBerg Distinguished Engineering Verily Biostatistics, and Computer Science Professor VanderBilt University University of California, San Francisco Jianying Hu, Ph.D. IBM Fellow; GloBal Science Leader Jimeng Sun, M.Phil., Ph.D. Kate Crawford, Ph.D. AI for Healthcare Health Innovation Professor Senior Principal Researcher at Microsoft Research Director, Center for Computational Health Computer Science Department and Carle's Illinois Labs – New York City College of Medicine Visiting Chair of AI and Justice at the École Dina Katabi, Ph.D.
    [Show full text]
  • Elliot Anshelevich
    ELLIOT ANSHELEVICH [email protected] Department of Computer Science Office: (607) 255-5578 Cornell University Cell: (607) 262-6170 Upson Hall 5139 Fax: (607) 255-4428 Ithaca, NY 14853 http://www.cs.cornell.edu/people/eanshel Research Interests My interests center on the design and analysis of algorithms. I am especially inter- ested in algorithms for large decentralized networks, including networks involving strategic agents. In particular, I am interested in: • Strategic agents in networks, and influencing their behavior • Network design problems • Distributed load balancing algorithms • Local and decentralized routing algorithms • Influence and information propagation in both social and computer networks Education Cornell University, Ithaca, New York, 2000-2005 Ph.D. Computer Science, expected May 2005 Thesis title: Design and Management of Networks with Strategic Agents Advisor: Jon Kleinberg Master of Science, May 2004 Rice University, Houston, Texas, 1996-2000 B.S. Computer Science, May 2000 Double major in Computer Science and Mathematics magna cum laude Professional and Research Experience Lucent Technologies, Murray Hill, New Jersey Summer 2004 Conducted research on game theoretic network design with Gordon Wilfong and Bruce Shepherd. We study the peering and customer-provider relationships be- tween Autonomous Systems in the Internet, and analyze them using algorithmic game theory. This research is still ongoing and we expect to submit our results for publication in Spring 2005. Lucent Technologies, Murray Hill, New Jersey Summer 2003 Conducted research as an intern on optical network design at Bell Labs. This re- search was done together with Lisa Zhang. We addressed the problem of designing a cheap optical network that satisfies all user demands.
    [Show full text]