Lenstree: Browsing and Navigating Large Hierarchical Information

Total Page:16

File Type:pdf, Size:1020Kb

Lenstree: Browsing and Navigating Large Hierarchical Information Reviewers Eric Allender Michel Goemans Alexander Rabinovich Noga Alon Leslie Goldberg Prabhakar Raghavan Kevin Atteson Oded Goldreich Ran Raz Hagit Attiya Michael Goodrich Nick Reingold Yonatan Aumann Mor Harchol Phil Rogaway Baruch Awerbuch Bruce Hendrickson Ronitt Rubinfeld Yossi Azar Diane Hernek Steven Rudich Eric Bach Dorit Hochbaum Larry Ruzzo Amotz Bar-Noy Neil Immerman Katherine St. John Iavid Mix Barrington Piotr Indyk Jeanette Schmidt Paul Beame Tao Jiang Steve Seiden Michael Ben-Or David Johnson David Shmoys Andras Benczur Nabil Kahale Peter Shor Charles H. Bennett Sampath Kannan Meera Sitharam Avrim Blum Sanjeev Khanna Cliff Stein Ryan Borgstrom Samir Khuller Craig Silverstein Sam Buss Joe Kilian Alistair Sinclair Paul Callahan Valerie King Greg So&in Ran Canetti Jon Kleinberg Aravind Srinivasan Pei Cao Phokion Kolaitis Madhu Sudan Moses Charikar Elias Koutsoupias Elizabeth Sweedyk Chandra Chekuri Hugo M. Krawczyk Eva Tardos Joseph Cheriyan Eyal Kushilevitz Jacob0 Toran Ken Clarkson Richard Ladner Shang-Hua Teng Richard Cole Vitus Leung Manfred Warmuth Don Coppersmith Jack Lutz John Watrous David Eppstein Gary Miller Joel Wein Martin Farach John Mitchell Scott Weinstein Joan Feigenbaum S. Muthukrishnan Avi Wigderson Anj a Feldmann Joseph (Seffi) Naor David P. Williamson Faith Fich Moni Naor David Bruce Wilson Lance Fortnow Andrew Odylzko Rebecca Wright Matt Franklin Frank J. Oles Shibu Yooseph Alan Frieze Steven Phillips Neal Young Eli Gafni Nick Pippenger William Gasarch Tal Rabin xii .
Recommended publications
  • FOCS 2005 Program SUNDAY October 23, 2005
    FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H.
    [Show full text]
  • Four Results of Jon Kleinberg a Talk for St.Petersburg Mathematical Society
    Four Results of Jon Kleinberg A Talk for St.Petersburg Mathematical Society Yury Lifshits Steklov Institute of Mathematics at St.Petersburg May 2007 1 / 43 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 / 43 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 2 / 43 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 2 / 43 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 2 / 43 Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams 2 / 43 Part I History of Nevanlinna Prize Career of Jon Kleinberg 3 / 43 Nevanlinna Prize The Rolf Nevanlinna Prize is awarded once every 4 years at the International Congress of Mathematicians, for outstanding contributions in Mathematical Aspects of Information Sciences including: 1 All mathematical aspects of computer science, including complexity theory, logic of programming languages, analysis of algorithms, cryptography, computer vision, pattern recognition, information processing and modelling of intelligence.
    [Show full text]
  • Navigability of Small World Networks
    Navigability of Small World Networks Pierre Fraigniaud CNRS and University Paris Sud http://www.lri.fr/~pierre Introduction Interaction Networks • Communication networks – Internet – Ad hoc and sensor networks • Societal networks – The Web – P2P networks (the unstructured ones) • Social network – Acquaintance – Mail exchanges • Biology (Interactome network), linguistics, etc. Dec. 19, 2006 HiPC'06 3 Common statistical properties • Low density • “Small world” properties: – Average distance between two nodes is small, typically O(log n) – The probability p that two distinct neighbors u1 and u2 of a same node v are neighbors is large. p = clustering coefficient • “Scale free” properties: – Heavy tailed probability distributions (e.g., of the degrees) Dec. 19, 2006 HiPC'06 4 Gaussian vs. Heavy tail Example : human sizes Example : salaries µ Dec. 19, 2006 HiPC'06 5 Power law loglog ppk prob{prob{ X=kX=k }} ≈≈ kk-α loglog kk Dec. 19, 2006 HiPC'06 6 Random graphs vs. Interaction networks • Random graphs: prob{e exists} ≈ log(n)/n – low clustering coefficient – Gaussian distribution of the degrees • Interaction networks – High clustering coefficient – Heavy tailed distribution of the degrees Dec. 19, 2006 HiPC'06 7 New problematic • Why these networks share these properties? • What model for – Performance analysis of these networks – Algorithm design for these networks • Impact of the measures? • This lecture addresses navigability Dec. 19, 2006 HiPC'06 8 Navigability Milgram Experiment • Source person s (e.g., in Wichita) • Target person t (e.g., in Cambridge) – Name, professional occupation, city of living, etc. • Letter transmitted via a chain of individuals related on a personal basis • Result: “six degrees of separation” Dec.
    [Show full text]
  • The Complexity of Nash Equilibria by Constantinos Daskalakis Diploma
    The Complexity of Nash Equilibria by Constantinos Daskalakis Diploma (National Technical University of Athens) 2004 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christos H. Papadimitriou, Chair Professor Alistair J. Sinclair Professor Satish Rao Professor Ilan Adler Fall 2008 The dissertation of Constantinos Daskalakis is approved: Chair Date Date Date Date University of California, Berkeley Fall 2008 The Complexity of Nash Equilibria Copyright 2008 by Constantinos Daskalakis Abstract The Complexity of Nash Equilibria by Constantinos Daskalakis Doctor of Philosophy in Computer Science University of California, Berkeley Professor Christos H. Papadimitriou, Chair The Internet owes much of its complexity to the large number of entities that run it and use it. These entities have different and potentially conflicting interests, so their interactions are strategic in nature. Therefore, to understand these interactions, concepts from Economics and, most importantly, Game Theory are necessary. An important such concept is the notion of Nash equilibrium, which provides us with a rigorous way of predicting the behavior of strategic agents in situations of conflict. But the credibility of the Nash equilibrium as a framework for behavior-prediction depends on whether such equilibria are efficiently computable. After all, why should we expect a group of rational agents to behave in a fashion that requires exponential time to be computed? Motivated by this question, we study the computational complexity of the Nash equilibrium. We show that computing a Nash equilibrium is an intractable problem.
    [Show full text]
  • Understanding Innovations and Conventions and Their Diffusion Process in Online Social Media
    UNDERSTANDING INNOVATIONS AND CONVENTIONS AND THEIR DIFFUSION PROCESS IN ONLINE SOCIAL MEDIA A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Rahmtin Rotabi December 2017 c 2017 Rahmtin Rotabi ALL RIGHTS RESERVED UNDERSTANDING INNOVATIONS AND CONVENTIONS AND THEIR DIFFUSION PROCESS IN ONLINE SOCIAL MEDIA Rahmtin Rotabi, Ph.D. Cornell University 2017 This thesis investigates innovations, trends, conventions and practices in online social media. Tackling these problems will give more insight into how their users use these online platforms with the hope that the results can be generalized to the offline world. Every major step in human history was accompanied by an innovation, from the time that mankind invented and mastered the production of fire, to the invention of the World Wide Web. The societal process of adopting innovations has been a case that has fas- cinated many researchers throughout the past century. Prior to the existence of online social networks, economists and sociologists were able to study these phenomena on small groups of people through microeconomics and microsociology. However, the data gathered from these online communities help us to take one step further, initiating stud- ies on macroeconomic and macrosociologal problemsin addition to the previous two areas. Work in this thesis sheds light on the properties of both innovators and laggards, the expansion and adaptation of innovation, competition among innovations with the same purpose, and the eventual crowding out of competitor innovations in the target society. Lastly, we look at the bigger picture by studying the entire diffusion process as a whole, abstracting out a great deal of details.
    [Show full text]
  • CS Cornell 40Th Anniversary Booklet
    Contents Welcome from the CS Chair .................................................................................3 Symposium program .............................................................................................4 Meet the speakers ..................................................................................................5 The Cornell environment The Cornell CS ambience ..............................................................................6 Faculty of Computing and Information Science ............................................8 Information Science Program ........................................................................9 College of Engineering ................................................................................10 College of Arts & Sciences ..........................................................................11 Selected articles Mission-critical distributed systems ............................................................ 12 Language-based security ............................................................................. 14 A grand challenge in computer networking .................................................16 Data mining, today and tomorrow ...............................................................18 Grid computing and Web services ...............................................................20 The science of networks .............................................................................. 22 Search engines that learn from experience ..................................................24
    [Show full text]
  • From the AMS Secretary
    From the AMS Secretary Society and delegate to such committees such powers as Bylaws of the may be necessary or convenient for the proper exercise American Mathematical of those powers. Agents appointed, or members of com- mittees designated, by the Board of Trustees need not be Society members of the Board. Nothing herein contained shall be construed to em- Article I power the Board of Trustees to divest itself of responsi- bility for, or legal control of, the investments, properties, Officers and contracts of the Society. Section 1. There shall be a president, a president elect (during the even-numbered years only), an immediate past Article III president (during the odd-numbered years only), three Committees vice presidents, a secretary, four associate secretaries, a Section 1. There shall be eight editorial committees as fol- treasurer, and an associate treasurer. lows: committees for the Bulletin, for the Proceedings, for Section 2. It shall be a duty of the president to deliver the Colloquium Publications, for the Journal, for Mathemat- an address before the Society at the close of the term of ical Surveys and Monographs, for Mathematical Reviews; office or within one year thereafter. a joint committee for the Transactions and the Memoirs; Article II and a committee for Mathematics of Computation. Section 2. The size of each committee shall be deter- Board of Trustees mined by the Council. Section 1. There shall be a Board of Trustees consisting of eight trustees, five trustees elected by the Society in Article IV accordance with Article VII, together with the president, the treasurer, and the associate treasurer of the Society Council ex officio.
    [Show full text]
  • Elliot Anshelevich
    ELLIOT ANSHELEVICH [email protected] Department of Computer Science Office: (607) 255-5578 Cornell University Cell: (607) 262-6170 Upson Hall 5139 Fax: (607) 255-4428 Ithaca, NY 14853 http://www.cs.cornell.edu/people/eanshel Research Interests My interests center on the design and analysis of algorithms. I am especially inter- ested in algorithms for large decentralized networks, including networks involving strategic agents. In particular, I am interested in: • Strategic agents in networks, and influencing their behavior • Network design problems • Distributed load balancing algorithms • Local and decentralized routing algorithms • Influence and information propagation in both social and computer networks Education Cornell University, Ithaca, New York, 2000-2005 Ph.D. Computer Science, expected May 2005 Thesis title: Design and Management of Networks with Strategic Agents Advisor: Jon Kleinberg Master of Science, May 2004 Rice University, Houston, Texas, 1996-2000 B.S. Computer Science, May 2000 Double major in Computer Science and Mathematics magna cum laude Professional and Research Experience Lucent Technologies, Murray Hill, New Jersey Summer 2004 Conducted research on game theoretic network design with Gordon Wilfong and Bruce Shepherd. We study the peering and customer-provider relationships be- tween Autonomous Systems in the Internet, and analyze them using algorithmic game theory. This research is still ongoing and we expect to submit our results for publication in Spring 2005. Lucent Technologies, Murray Hill, New Jersey Summer 2003 Conducted research as an intern on optical network design at Bell Labs. This re- search was done together with Lisa Zhang. We addressed the problem of designing a cheap optical network that satisfies all user demands.
    [Show full text]
  • Link Prediction with Combinatorial Structure: Block Models and Simplicial Complexes
    Link Prediction with Combinatorial Structure: Block Models and Simplicial Complexes Jon Kleinberg Including joint work with Rediet Abebe, Austin Benson, Ali Jadbabaie, Isabel Kloumann, Michael Schaub, and Johan Ugander. Cornell University Neighborhoods and Information-Sharing Marlow-Byron-Lento-Rosenn 2009 Node neighborhoods are the \input" in the basic metaphor for information sharing in social media. w s v A definitional problem: For a given m, who are the m closest people to you in a social network? Defining \closeness" just by hop count has two problems: Not all nodes at a given number of hops seems equally \close." The small-world phenomenon: most nodes are 1, 2, 3, or 4 hops away. Many applications for this question: Content recommendation: What are the m closest people discussing? Link recommendation: Who is the closest person you're not connected to? Similarity: Which nodes should I include in a group with s? Problems Related to Proximity w s v Two testbed versions of these questions: Link Prediction: Given a snapshot of the network up to some time t0, produce a ranked list of pairs likely to form links after time t0. [Kleinberg-LibenNowell 2003, Backstrom-Leskovec 2011, Dong-Tang-Wu-Tian-Chawla-Rao-Cao 2012]. Seed Set Expansion: Given some representative members of a group, produce a ranked list of nodes likely to also belong to the group [Anderson-Chung-Lang 2006, Abrahao et al 2012, Yang-Leskovec 2012]. Problems Related to Proximity w s v Methods for seed set expansion Local: Add nodes iteratively by some measure of the number of edges they have to current group members.
    [Show full text]
  • The Mathematical Work of Jon Kleinberg
    The Mathematical Work of Jon Kleinberg Gert-Martin Greuel, John E. Hopcroft, and Margaret H. Wright The Notices solicited the following article describing the work of Jon Kleinberg, recipient of the 2006 Nevanlinna Prize. The International Mathematical Union also issued a news release, which appeared in the October 2006 issue of the Notices. The Rolf Nevanlinna Prize is awarded by the In- Find the Mathematics; Then Solve the ternational Mathematical Union for “outstanding Problem contributions in mathematical aspects of informa- Kleinberg broadly describes his research [8] as cen- tion sciences”. Jon Kleinberg, the 2006 recipient tering “around algorithmic issues at the interface of the Nevanlinna Prize, was cited by the prize of networks and information, with emphasis on committee for his “deep, creative, and insightful the social and information networks that underpin contributions to the mathematical theory of the the Web and other on-line media”. The phenomena global information environment”. that Kleinberg has investigated arise from neither Our purpose is to present an overall perspective the physical laws of science and engineering nor on Kleinberg’s work as well as a brief summary of the abstractions of mathematics. Furthermore, the three of his results: networks motivating much of his work lack both • the “hubs and authorities” algorithm, deliberate design and central control, as distinct based on structural analysis of link topol- from (for example) telephone networks, which ogy, for locating high-quality information were built and directed to achieve specific goals. on the World Wide Web; He has focused instead on networks that feature • methods for discovering short chains in very large numbers of unregulated interactions be- large social networks; and tween decentralized, human-initiated actions and • techniques for modeling, identifying, and structures.
    [Show full text]
  • Graph Evolution: Densification and Shrinking Diameters
    Graph Evolution: Densification and Shrinking Diameters JURE LESKOVEC Carnegie Mellon University JON KLEINBERG Cornell University and CHRISTOS FALOUTSOS Carnegie Mellon University How do real graphs evolve over time? What are normal growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network or in a very small number of snapshots; these include heavy tails for in- and out-degree distributions, communities, small-world phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n)orO(log(log n)). Existing graph generation models do not exhibit these types of behavior even at a qualitative level. We provide a new graph generator, based on a forest fire spreading process that has a simple, intuitive justification, requires very few parameters (like the flammability of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. This material is based on work supported by the National Science Foundation under Grants No. IIS-0209107 SENSOR-0329549 EF-0331657IIS-0326322 IIS- 0534205, CCF-0325453, IIS-0329064, CNS-0403340, CCR-0122581; a David and Lucile Packard Foundation Fellowship; and also by the Pennsylvania Infrastructure Technology Alliance (PITA), a partnership of Carnegie Mellon, Lehigh University and the Commonwealth of Pennsylvania’s Department of Community and Economic Development (DCED).
    [Show full text]
  • Pagerank Algorithm
    Link Analysis Algorithms Copyright Ellis Horowitz 2011-2019 Overview of the talk • Background on Citation Analysis • Google’s PageRank Algorithm • Simplified Explanation of PageRank • Examples of how PageRank algorithm works • OBservations about PageRank algorithm • Importance of PageRank • KleinBerg’s HITS Algorithm Copyright Ellis Horowitz, 2011-2019 2 History of Link Analysis • Bibliometrics has been active since at least the 1960’s • A definition from Wikipedia: • "Bibliometrics is a set of methods to quantitatively analyze academic literature. Citation analysis and content analysis are commonly used bibliometric methods. While bibliometric methods are most often used in the field of library and information science, bibliometrics have wide applications in other areas.” • Many research fields use bibliometric methods to explore – the impact of their field, – the impact of a set of researchers, or – the impact of a particular paper. Copyright Ellis Horowitz, 2011-2019 3 Bibliometrics http://citeseerx.ist.psu.edu/stats/citations • One common technique of Top Ten Most Cited Articles in CS Literature Bibliometrics is citation analysis CiteSeerx is a search engine for academic papers • Citation analysis is the examination of the frequency, patterns, and graphs of citations in articles and books. • citation analysis can observe links to other works or other researchers. • Bibliographic coupling: two papers that cite many of the same papers • Co-citation: two papers that were cited by many of the same papers • Impact factor (of a journal): frequency with which the average article in a journal has been cited in a particular year or period Copyright Ellis Horowitz 2011-2018 Bibliographic Coupling • Measure of similarity of documents introduced by Kessler of MIT in 1963.
    [Show full text]