Heterobranchia)

Total Page:16

File Type:pdf, Size:1020Kb

Heterobranchia) VENUS 78 (1–2): 33–43, 2019 ©The Malacological Society of Japan DOI: http://doi.org/10.18941/venus.78.1-2_33Shell Structures of Pyramidelloid Gastropods December 25, 201933 Comparison of Shell Structures in Pyramidelloid Gastropods (Heterobranchia) Tsuyoshi Takano1,2,3*, Yasunori Kano1 and Takenori Sasaki2 1Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan 2The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan 3Meguro Parasitological Museum, 4-1-1 Shimomeguro, Meguro, Tokyo 153-0064, Japan Abstract: The structural composition of shells was observed by scanning electron microscopy for one amathinid and five pyramidellid species in the heterobranch gastropod superfamily Pyramidelloidea. The shells of the six study species consisted of thick crossed-lamellar (CL) layers that were sandwiched between thin outer and inner prismatic layers. Interspecific differences were observed in the number and thickness of the CL layers, the dip angle of the second-order lamellae of each CL layer, and the microstructure of the outer and inner prismatic layers. Of these, the microstructure of the prismatic layers may be useful as taxonomic characters distinguishing the genera and species of Pyramidelloidea. The distributions of observed character states were, however, inconsistent with conventional familial and subfamilial classification, supporting previous anatomical and molecular studies that have challenged the monophyly of pyramidelloid higher taxa. Keywords: Amathinidae, parasite, Pyramidellidae, SEM, shell microstructure, taxonomy Introduction The marine gastropod family Pyramidellidae (subclass Heterobranchia: superfamily Pyramidelloidea) consists at the very least of 5,000 species that belong to approximately 350 genera and subgenera (Schander et al., 1999a). Most pyramidellids are temporary parasites of annelids and of other mollusks. Their functional foot and high-spired shell may facilitate efficient crawling in soft sediment (Vermeij, 1993). Pyramidellids are actually often collected free-living with no information as to their preference for specific hosts (e.g., Hori, 2017). Anatomical traits of the digestive tract, however, seem to confirm a parasitic mode of life for all pyramidellid species. These traits include the absence of a radula and the presence of a long acrembolic proboscis and a buccal pump to suck out body fluids of the host (Fretter & Graham, 1949; Wise, 1996; Ponder & de Keyzer, 1998). The Amathinidae, the only other family of the extant Pyramidelloidea, represents a more specialized group of parasites on bivalve mollusks (Ponder, 1987). Species of the type genus Amathina differ from pyramidellids in having a much higher expansion rate of the aperture that gives the shell a limpet-like (patelliform) appearance (Ponder & de Keyzer, 1998). Amathinids are characterized anatomically in having diffuse salivary glands and a secondary pallial gill, and in lacking the hypobranchial gland, stylet and buccal bulb (Ponder, 1987; Hori & Tsuchida, 1995). Studies on pyramidelloid taxonomy and systematics have been largely based on the shell profile (e.g., Høisæter, 2014; see also Schander et al., 2003 and references therein). Schander et al. (1999a) * Corresponding author: [email protected] 34 T. Takano et al. recognized six distinct families, i.e. Amathinidae, Anisocyclidae, Odostomiidae, Pyramidellidae, Syrnolidae and Turbonillidae, by synthesizing previous conchological studies. In their reviews of gastropod classification, Bouchet & Rocroi (2005) and Bouchet et al. (2017) largely adopted Schander et al.’s (1999a) scheme for Pyramidelloidea, though they downgraded the Odostomiidae, Pyramidellidae, Syrnolidae and Turbonillidae to subfamilies within the Pyramidellidae (s.l.) and synonymized the Anisocyclidae under Turbonillinae; Schander et al.’s (1999a) subfamilies of Pyramidellidae (s.l.) were also downgraded to 11 tribes in the Odostomiinae, Pyramidellinae, Syrnolinae and Turbonillinae. On the other hand, detailed observation of shell morphology and anatomical characters (Wise, 1996; Schander et al., 1999b) has suggested the non-monophyly of the Odostomiinae and Turbonillinae sensu Bouchet & Rocroi (2005). The latter subfamily’s status as a monophyletic clade has been questioned also through analyses of mitochondrial 16S rDNA sequences (Schander et al., 2003). Classification based on gross shell morphology alone, therefore, does not seem to reflect true phylogenetic relationships. However, comprehensive acquisition of anatomical or molecular data is a huge challenge for the Pyramidelloidea, many species of which are represented only by empty shells (Peñas & Rolán, 2010). Comparisons of shell (micro)structures, which can be observed even in empty shells, might thus shed new light on pyramidelloid systematics. Previous studies have reported variation in shell structures within a family or a higher taxonomic group of the Gastropoda. These include Taylor & Reid (1990) for the Littorinidae (Caenogastropoda), Falniowski & Szarowska (1995) and studies cited therein for the Truncatelloidea (Caenogastropoda), Hedegaard (1997) for various Vetigastropoda, Sasaki (2001) for the Neritoidea (Neritimorpha), and Kiel (2004) for various gastropod taxa from the deep-sea hydrothermal vents and cold seep environments. Notably, Fuchigami & Sasaki (2005) have shown that the structure is almost stable within each patellogastropod genus while differences exist between genera. However, previous studies for the Heterobranchia have focused on the identification of observed microstructures and comparison with other gastropod taxa, rather than structural variation among heterobranch families and genera (e.g., Bandel, 1979, 1990). Here we investigate the shell structure for the Pyramidelloidea by scanning electron microscopy (SEM) for the first time and evaluate its usefulness for the generic and (sub) familial classification of the superfamily. Materials and Methods We selected ten specimens for the observation of shell structures (Fig. 1; Table 1). These include five pyramidellid species that cover all four subfamilies of Pyramidellidae (sensu Bouchet et al., 2017) as well as a single species of Amathinidae. Specimen identification followed Hori (2017). Sayella? sp. (= Gen. aff. Sayella sp. sensu Hori, 2017) belongs to the subfamily Pyramidellinae, provided that the species is phylogenetically allied to the type of Sayella (S. hemphilli). The samples were collected from intertidal and shallow subtidal waters. Brachystomia bipyramidata and Leucotina sp. were found on their bivalve hosts (Crassostrea gigas and Ruditapes philippinarum, respectively; Table 1). The other species were collected while autonomous and thus there is no information as to the host. All animals were treated with hot water and preserved in pure ethanol for DNA extraction and molecular phylogenetic analysis (Takano, Kano et al., in prep.). The study material of Leucotina sp. and B. bipyramidata might represent immature forms of the species (see Hori, 2017 for fully-grown shells). The structural composition of the shell was observed on the fractured faces of both penultimate and body whorls to ensure examination of all shell layers of the specimens. The shell was broken with a vise into pieces, which were then treated with half-diluted commercial bleach for 1–3 h. The shell pieces were cleaned with an ultrasonic cleaner for 1 min, rinsed in double distilled water for more than 2 h, dried, and coated with osmium for 15 s using a plasma coater (Vacuum Device Shell Structures of Pyramidelloid Gastropods 35 Fig. 1. Study specimens of amathinid (A) and pyramidellid (B–F) gastropods. A. Leucotina sp. (UMUT RM33113, specimen T37, shell height: 3.7 mm). B. Brachystomia bipyramidata (UMUT RM33114, T23–2, 3.3 mm; subfamily Odostomiinae). C. Pyramidella maculosa (UMUT RM33117, T40, 29.6 mm; Pyramidellinae). D. Sayella? sp. (UMUT RM33118, T35, 2.6 mm; Pyramidellinae). E. Syrnola serotina (UMUT RM33119, T22–2, 6.7 mm; Syrnolinae). F. Cingulina circinata (UMUT RM33120, T32, 8.5 mm; Turbonillinae). HPC-1SW). The fractured face and outer and inner surfaces of the shell were observed with a SEM (Keyence VE-8800) at The University Museum, The University of Tokyo (UMUT). Multiple shell pieces were examined to characterize fractured faces in directions parallel and perpendicular to growth lines. Other pieces were used for the observation of the outer and inner surfaces of the shell. Voucher material has been deposited at UMUT (see Table 1). The identification and terminology of microstructures follow previous studies; microstructures equivalent to those observed in this study have been precisely described and illustrated for other molluscan groups (e.g., Carter, 1990; Taylor & Reid, 1990; Fuchigami & Sasaki, 2005). We therefore highlight differences in the structural composition among the study species rather than the details of the respective microstructures. To avoid any confusion, these are our definitions of four technical terms: - dip angle: the angle of the growth axis of crystal units to the plane of the inner shell surface - microstructure: the morphology of crystal units and their mode of aggregation - shell layer: a sheet-like component consisting of a single microstructure - structural composition: the total composition of microstructures and shell layers constituting the shell. T. Takano et al. 3 Table 1. Species used in present study with collection sites and habitats of specimens. Abbreviation:
Recommended publications
  • Mollusca: Gastropoda), Con Caracteres Singulares, Recolectadas En Las Cuevas Submarinas De Cuba
    Rev. Acad. Canar. Cienc, XXII (Num. 3), 189-198 (2010) (publicado en octubre de 201 1) NUEVAS ESPECIES DE MOLUSCOS GASTEROPODOS (MOLLUSCA: GASTROPODA), CON CARACTERES SINGULARES, RECOLECTADAS EN LAS CUEVAS SUBMARINAS DE CUBA J. Espinosa 1 & J. Ortea2 1 a Institute) de Oceanologia, Avda. l n° 18406, E. 184 y 186, Playa, La Habana, Cuba 2 Departamento BOS, Universidad de Oviedo, Espafia RESUMEN Se describen un genero y cuatro especies nuevas de gasteropodos marinos, con con- chas muy distintivas, recolectados en cuevas submarinas de Santa Lucia y Guanahacabibes, Cuba. Diodora seme, especie nueva, caracterizada por su patron de coloracion y por su ori- ficio, muy por debajo del apice y en forma de cerradura antigua. Milicheilea hidalgogatoae genero y especie nuevos, singularizada por su apofisis interna, unida solamente a la porcion central de la base de la concha y proyectada mas de cuatro veces la longitud de esta. Murexiella dalli, especie nueva, caracterizada por su protoconcha con pocas vueltas, por su escultura y por presentar un largo canal sifonal, marcadamente inclinado hacia la parte dor- sal de la concha. Chrysallida thetisae, especie nueva, que se distingue por su protoconcha heterostrofica, parcialmente sumergida en la espira, por su escultura y por la columela con dos pliegues en la pared parieto-columelar. Palabras claves: Mollusca, Gastropoda, fauna cavernicola, genero nuevo, especies nuevas, Cuba. ABSTRACT One new genus and four new species of marine gastropods with very distinctive shells are described. They were collected in submarine caves of Santa Lucia and Guanahacabibes, Cuba. Diodora serae, new species, characterized by its color pattern and by its hole, well below the apex and keyhole-shaped.
    [Show full text]
  • Zootaxa,Lovell Augustus Reeve (1814?865): Malacological Author and Publisher
    ZOOTAXA 1648 Lovell Augustus Reeve (1814–1865): malacological author and publisher RICHARD E. PETIT Magnolia Press Auckland, New Zealand Richard E. Petit Lovell Augustus Reeve (1814–1865): malacological author and publisher (Zootaxa 1648) 120 pp.; 30 cm. 28 November 2007 ISBN 978-1-86977-171-3 (paperback) ISBN 978-1-86977-172-0 (Online edition) FIRST PUBLISHED IN 2007 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2007 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1648 © 2007 Magnolia Press PETIT Zootaxa 1648: 1–120 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Lovell Augustus Reeve (1814–1865): malacological author and publisher RICHARD E. PETIT 806 St. Charles Road, North Myrtle Beach, SC 29582-2846, USA. E-mail: [email protected] Table of contents Abstract ................................................................................................................................................................................4
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Coen's Pyramidellidae (Gastropoda Heterobranchia): a Revision of Types
    Biodiversity Journal, 2015, 6 (1): 415–430 MONOGRAPH Coen’s Pyramidellidae (Gastropoda Heterobranchia): a revision of types Pasquale Micali1*, Italo Nofroni2, Riccardo Giannuzzi Savelli3, Francesco Pusateri4 & Stefano Bartolini5 1Via Papiria 17, 61032 Fano, Pesaro-Urbino, Italy; e-mail: [email protected] 2Via B. Croce 97, 00142 Roma, Italy; e-mail: [email protected] 3Via Mater Dolorosa 54, 90146 Palermo, Italy; e-mail: [email protected] 4Via Castellana 64, 90135 Palermo, Italy; e-mail: [email protected] 5Via E. Zacconi 16, 50137 Florence, Italy; e-mail: [email protected] *Corresponding author ABSTRACT Coen introduced several new nominal taxa in the Pyramidellidae and in most Mollusca families. The Coen types, now at the Hebrew University of Jerusalem, have been examined; most of them are holotypes or lectotypes. Some lectotypes were already selected by van Aartsen, as stated in the label, therefore we have not done any further selection of types. The new pyramidellid species have been practically identified and named by Monterosato, and were all found in shell grit collected on the beach of Lido (a small island in front of Venice). None of the Coen’s new species seems to be valid. KEY WORDS Coen collection; Pyramidellidae; Adriatic Sea; Mediterranean Sea. Received 29.10.2014; accepted 20.12.2014; printed 30.03.2015 Proceedings of the Eighth Malacological Pontine Meeting, October 4th- 5th, 2014 - San Felice Circeo, Italy INTRODUCTION The first Coen’s work is dated 1914, when he was about 40 years old, but his name was already Giorgio Silvio Coen (1873-1951) was born in present in the malacological world, because there Venice, graduated as a civil engineer in the presti- was a Turbonilla coeni Preston, 1905 possibly gious University of Padua and spent his life in (because the Author did not indicate the origin of Venice.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Life in the Spray Zone
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zoosystematics and Evolution Jahr/Year: 2018 Band/Volume: 94 Autor(en)/Author(s): Pimenta Alexandre Dias, Santos Franklin N., Cunha Carlo M. Artikel/Article: Redescription and reassignment of Ondina semicingulata to the Pyramidellidae, with review of the occurrence of genus Evalea in the Western Atlantic (Gastropoda) 535-544 Creative Commons Attribution 4.0 licence (CC-BY); original download https://pensoft.net/journals Zoosyst. Evol. 9@ (@) 2018, ##–## | DOI 10.3897/[email protected] Redescription and reassignment of Ondina semicingulata to the Pyramidellidae, with review of the occurrence of genus Evalea in the Western Atlantic (Gastropoda) Alexandre D. Pimenta1, Franklin N. Santos2, Carlo M. Cunha3 1 Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, Brazil 2 Departamento de Educação e Ciências Humanas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus 29932–540, Espírito Santo, Brazil 3 Universidade Metropolitana de Santos. Ave. Conselheiro Nébias 536, 11045-002, Santos, SP, Brazil http://zoobank.org/ Corresponding author: Alexandre D. Pimenta ([email protected]) Abstract Received 31 July 2018 Acteon semicingulatus Dall, 1927, previously known only by its original description is Accepted @@ ##### 2018 reassigned to the Pyramidellidae, in Ondina, based on the collecting of several new spec- Published @@ ##### 2018 imens along the coast of Brazil, in the same bathymetry as the type locality. Its shell shape variation is discussed and Odostomia (Evalea) ryclea Dall, 1927 is considered a synony- Academic editor: my.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Three Alien Molluscs from Iskenderun Bay (SE Turkey)
    Aquatic Invasions (2006) Volume 1, Issue 2: 76-79 DOI 10.3391/ai.2006.1.2.4 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article Three alien molluscs from Iskenderun Bay (SE Turkey) Doğan Çeviker1 and Serhat Albayrak2* 1Itri Sokak No:2 34349 Balmumcu-Istanbul, Turkey E-mail: [email protected] 2Istanbul University, Faculty of Science, Department of Biology 34118 Vezneciler-Istanbul, Turkey E-mail: [email protected] *Corresponding author Received 26 April 2006; accepted in revised form 4 May 2006 Abstract This study reports the presence of three alien molluscs from Iskenderun Bay (SE Turkey). Amathina tricarinata (Linnaeus, 1767) and Petricola hemprichi Issel, 1869 have prior records from other regions of Mediterranean, but, Cardites akabana (Sturany, 1899) first recorded in this paper. Since all of them are present in the Red Sea or Suez Canal, they can be considered as Lessepsian immigrants. Key words: Mollusca, alien species, Mediterranean, Turkey Introduction that 88 % of the exotic molluscs are Lessepsian immigrants in the eastern Mediterranean (Galil The Mediterranean Sea hosts about 8500 species and Zenetos 2002). Detailed data about these species of macroscopic animals. This rich biodiversity, are available on the Internet (www.ciesm.org/atlas). representing 8-9 % of total species number of the Either Lessepsian or non-Lessepsian, many world’s seas, comprises temperate and sub- new non-indigenous species continue to enter the tropical elements together with endemic and Mediterranean. alien species (Zenetos et al. 2002). The eastern Mediterranean is most vulnerable The introduction of alien species (also known to invasion and should be continuously as exotic, introduced or non-native species) into monitored.
    [Show full text]
  • The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
    UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene.
    [Show full text]
  • Mollusc Fauna of Iskenderun Bay with a Checklist of the Region
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 12: 171-184 (2012) DOI: 10.4194/1303-2712-v12_1_20 SHORT PAPER Mollusc Fauna of Iskenderun Bay with a Checklist of the Region Banu Bitlis Bakır1, Bilal Öztürk1*, Alper Doğan1, Mesut Önen1 1 Ege University, Faculty of Fisheries, Department of Hydrobiology Bornova, Izmir. * Corresponding Author: Tel.: +90. 232 3115215; Fax: +90. 232 3883685 Received 27 June 2011 E-mail: [email protected] Accepted 13 December 2011 Abstract This study was performed to determine the molluscs distributed in Iskenderun Bay (Levantine Sea). For this purpose, the material collected from the area between the years 2005 and 2009, within the framework of different projects, was investigated. The investigation of the material taken from various biotopes ranging at depths between 0 and 100 m resulted in identification of 286 mollusc species and 27542 specimens belonging to them. Among the encountered species, Vitreolina cf. perminima (Jeffreys, 1883) is new record for the Turkish molluscan fauna and 18 species are being new records for the Turkish Levantine coast. A checklist of Iskenderun mollusc fauna is given based on the present study and the studies carried out beforehand, and a total of 424 moluscan species are known to be distributed in Iskenderun Bay. Keywords: Levantine Sea, Iskenderun Bay, Turkish coast, Mollusca, Checklist İskenderun Körfezi’nin Mollusca Faunası ve Bölgenin Tür Listesi Özet Bu çalışma İskenderun Körfezi (Levanten Denizi)’nde dağılım gösteren Mollusca türlerini tespit etmek için gerçekleştirilmiştir. Bu amaçla, 2005 ve 2009 yılları arasında sürdürülen değişik proje çalışmaları kapsamında bölgeden elde edilen materyal incelenmiştir.
    [Show full text]
  • The Pyramidellidae (Mollusca: Gastropoda) from the Miocene Cantaure Formation of Venezuela
    Cainozoic Research, 15(1-2), pp. 13-54, October 2015 13 The Pyramidellidae (Mollusca: Gastropoda) from the Miocene Cantaure Formation of Venezuela Bernard M. Landau1, 3 & Patrick I. LaFollette2 1 Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands; Instituto Dom Luiz da Universi- dade de Lisboa, Portugal and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200-261 Albufeira, Portugal; [email protected] 2 Research Associate, Malacology Department, Natural History Museum of Los Angeles County, 900 Exposition Boul- evard, Los Angeles, California, U.S.A.; [email protected] 3 corresponding author Received 18 June 2015, revised version accepted 15 July 2015 The Pyramidellidae Gray, 1840 present in the upper Burdigalian-lower Langhian, Lower-Middle Miocene, Cantaure Formation assemblage of Venezuela is described and discussed. Twenty-one species are recognised: 13 are described as new: Brachystomia cantaurana nov. sp., Goniodostomia bicarinata nov. sp., Iolaea miocenica nov. sp., Chrysallida cantaurana nov. sp., Kleinella pumila nov. sp., Parthenina martae nov. sp., Ividella guppyi nov. sp., Chemnitzia macsotayi nov. sp., Turbonilla paraguanensis nov. sp., Pyrgiscus caribbaeus nov. sp., Pyrgiscus silvai nov. sp., Eulimella dianeae nov. sp. and Iselica belliata nov. sp., three are left in open nomenclature. The state of knowledge of tropical American Neogene pyramidellids is rudimentary, but the assemblage is fairly typical at generic level to that of the tropical American Neogene today, with some species suggesting closer affinities with tropical American Pacific taxa. KEY WORDS: Pyramidellidae, Miocene, Cantaure, Venezuela, new species. Introduction Pyramidellidae. Of these projects, only Bartsch’s 1955 ‘The pyramidellid mollusks of the Pliocene deposits of Despite the enormous amount of research done by the North St.
    [Show full text]