Witold Hurewicz, in Memoriam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1603.03361V3 [Math.GN] 18 May 2016 Eeecs R O Eddfrtermidro Hspaper
PRODUCTS OF MENGER SPACES: A COMBINATORIAL APPROACH PIOTR SZEWCZAK AND BOAZ TSABAN Abstract. We construct Menger subsets of the real line whose product is not Menger in the plane. In contrast to earlier constructions, our approach is purely combinatorial. The set theoretic hypothesis used in our construction is far milder than earlier ones, and holds in all but the most exotic models of real set theory. On the other hand, we establish pro- ductive properties for versions of Menger’s property parameterized by filters and semifilters. In particular, the Continuum Hypothesis implies that every productively Menger set of real numbers is productively Hurewicz, and each ultrafilter version of Menger’s property is strictly between Menger’s and Hurewicz’s classic properties. We include a number of open problems emerging from this study. 1. Introduction A topological space X is Menger if for each sequence U1, U2,... of open covers of the space X, there are finite subsets F1 ⊆ U1, F2 ⊆ U2, . whose union forms a cover of the space X. This property was introduced by Karl Menger [17], and reformulated as presented here by Witold Hurewicz [11]. Menger’s property is strictly between σ-compact and Lindelöf. Now a central notion in topology, it has applications in a number of branches of topology and set theory. The undefined notions in the following example, which are available in the indicated references, are not needed for the remainder of this paper. Example 1.1. Menger spaces form the most general class for which a positive solution of arXiv:1603.03361v3 [math.GN] 18 May 2016 the D-space problem is known [2, Corolarry 2.7], and the most general class for which a general form of Hindman’s Finite Sums Theorem holds [25]. -
From the Collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ
From the collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ These documents can only be used for educational and research purposes (“Fair use”) as per U.S. Copyright law (text below). By accessing this file, all users agree that their use falls within fair use as defined by the copyright law. They further agree to request permission of the Princeton University Library (and pay any fees, if applicable) if they plan to publish, broadcast, or otherwise disseminate this material. This includes all forms of electronic distribution. Inquiries about this material can be directed to: Seeley G. Mudd Manuscript Library 65 Olden Street Princeton, NJ 08540 609-258-6345 609-258-3385 (fax) [email protected] U.S. Copyright law test The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or other reproduction is not to be “used for any purpose other than private study, scholarship or research.” If a user makes a request for, or later uses, a photocopy or other reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement. The Princeton Mathematics Community in the 1930s Transcript Number 36 (PMC36) © The Trustees of Princeton University, 1985 ALBERT TUCKER OVERVIEW OF MATHEMATICS AT PRINCETON IN THE 1930s This is an interview on 8 October 1984 of Albert Tucker in Princeton, New Jersey. -
Roman Duda (Wrocław, Poland) EMIGRATION OF
ORGANON 44:2012 Roman Duda (Wrocław, Poland) EMIGRATION OF MATHEMATICIANS FROM POLAND IN THE 20 th CENTURY (ROUGHLY 1919–1989) ∗ 1. Periodization For 123 years (1795–1918) Poland did not exist as an independent state, its territory being partitioned between Prussia (Germany), Austria and Russia 1. It was a period of enforced assimilation within new borders and thus of restraining native language and culture which first provoked several national uprisings against oppressors, and then – in the three decades at the turn of the 19 th to 20 th centuries – of a slow rebuilding of the nation’s intellectual life. Conditions, however, were in general so unfavourable that many talents remained undeveloped while some talented people left the country to settle and work elsewhere. Some of the mathematicians emigrating then (in the chronological order of birth): • Józef Maria Hoene–Wro ński (1776–1853) in France, • Henryk Niew ęgłowski (1807–1881) in Paris, • Edward Habich (1835–1909) in Peru, • Franciszek Mertens (1840–1929) in Austria, • Julian Sochocki (1842–1927) in Petersburg, • Jan Ptaszycki (1854–1912) in Petersburg, • Bolesław Młodziejewski (1858–1923) in Moscow, • Cezary Russyan (1867–1934) in Kharkov, • Władysław Bortkiewicz (1868–1931) in Berlin, • Alexander Axer (1880–1948) in Switzerland. Thus the period of partitions was a time of a steady outflow of many good names (not only mathematicians), barely balanced by an inflow due to assim- ilation processes. The net result was decisively negative. After Poland regained independence in 1918, five newly established or re–established Polish universities (Kraków, Lwów, Warsaw, Vilnius, Pozna ń) ∗ The article has been prepared on the suggestion of Prof. -
President's Report Issue I ~-- __ - Volume 81 Number 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY BULLETIN PRESIDENT'S REPORT ISSUE I ~-- __ - VOLUME 81 NUMBER 1 OCTOBER, 1945 Published by Massachusetts Institute of Technology Cambridge, Massachusetts Entered July 3, 1933, at the Post Office, Boston, Massachusetts, as second-class matter under Act of Congress of August 24, 1912z. Published by the Massachusetts Institute of Technology, Cambridge Station, Boston, Massachusetts, in February, June, August, and October. Issues of the BULLETIN include the reports of the President and of the Treasurer, the General Catalogue, the Undergraduate Course Schedules, and the Directory of Officers and Students. MASSACHUSETTS INSTITUTE OF TECHNOLOGY BULLETIN President's Report Issue I944-1945 VOLUME 81 NUMBER I OCTOBER, 1945 PUBLISHED BY THE INSTITUTE, CAMBRIDGE THE CORPORATION 1945-1946 President KARL T. COMPTON Secretary Treasurer WALTER HUMPHREYS HORACE S. FORD LIFE MEMBERS W. CAMERON FORBES JOHN R. MACOMBER WILLIS R. WHITNEY EDWIN S. WEBSTER ALFRED L. LooMIs* GORDON S. RENTSCHLER PIERRE S. DU PONT HARLOW SHAPLEY VANNEVAR BUSH* HARRY J. CARLSON ALFRED P. SLOAN, JR. WILLIAM EMERSON GERARD SWOPE LAMMOT DU PONT RALPH E. FLANDERS FRANKLIN W. HOBBS FRANK B. JEWETT JAMES M. BARKER JOSEPH W. POWELL REDFIELD PROCTOR THOMAS C. DESMOND JOHN E. ALDRED GODFREY L. CABOT J. WILLARD HAYDEN WALTER HUMPHREYS WILLIAM C. POTTER WILLIAM S. NEWELL VICTOR M. CUTTER BRADLEY DEWEY Lou's S. CATES ALBERT H. WIGGIN HENRY E. WORCESTER MARSHALL B. DALTON FRANCIS J. CHESTERMAN SPECIAL TERM MEMBERS Term Expires January, 1946 Term Expires January, 1947 Term Expires January,1948 CHARLES E. SPENCER, JR. WILLARD H. Dow PHILLIPS KETCHUM Term Expires January, 1949 Term Expires January, Q950 GEORGE A. -
NEWSLETTER Issue: 485 - November 2019
i “NLMS_485” — 2019/10/25 — 12:08 — page 1 — #1 i i i NEWSLETTER Issue: 485 - November 2019 YAEL NAIM DOWKER GRESHAM’S TEACHING AND GEOMETRY ETHICS IN ERGODIC THEORY PROFESSORS MATHEMATICS i i i i i “NLMS_485” — 2019/10/25 — 12:08 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Iain Moatt (Royal Holloway, University of London) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or photog- Tomasz Brzezinski (Swansea University) rapher for the rights to reproduce. The LMS Lucia Di Vizio (CNRS) cannot accept responsibility for the accuracy of Jonathan Fraser (University of St Andrews) information in the Newsletter. Views expressed Jelena Grbic´ (University of Southampton) do not necessarily represent the views or policy Thomas Hudson (University of Warwick) of the Editorial Team or London Mathematical Stephen Huggett Society. Adam Johansen (University of Warwick) Bill Lionheart (University of Manchester) ISSN: 2516-3841 (Print) Mark McCartney (Ulster University) ISSN: 2516-385X (Online) Kitty Meeks (University of Glasgow) DOI: 10.1112/NLMS Vicky Neale (University of Oxford) Susan Oakes (London Mathematical Society) Andrew Wade (Durham University) NEWSLETTER WEBSITE Early Career Content Editor: Vicky Neale The Newsletter is freely available electronically News Editor: Susan Oakes at lms.ac.uk/publications/lms-newsletter. Reviews Editor: Mark McCartney MEMBERSHIP CORRESPONDENTS AND STAFF Joining the LMS is a straightforward process. -
8 Aristotle and Modern Mathematical Theories of The
This is a longer version of: A. G. J. Newstead, ‘Aristotle and Modern Mathem- atical Theories of the Continuum’, in Aristotle and Contemporary Science, D. Sfendoni-Mentzou, J. Hattiangadi, and D.M. Johnson, eds. (Frankfurt: Peter Lang, 2001, 113-129. @2001 8 Aristotle and Modern Mathematical Theories of the Continuum * A G J Newstead 1 Introduction: Mathematical and Physical Continua The mathematical structure of the continuum, in the guise of the domain of continuous, differentiable functions, has proved im- mensely useful in the study of nature. However, we have learned to be sceptical of any claim to the effect that our current favourite mathematical theory necessarily describes the actual structure of the physical universe. The continuous manifold of space-time may be no more than a helpful idealisation, when in fact space- time has a minutely grainy or quantised structure. Nonetheless, the question of whether the classical continuum is an accurate representation of the structure of space-time is a separate question from the one which we have to answer today. We are interested in the mathematical concept of the continuum itself. In saying that we may develop a mathematical theory of the continuum regardless of whether such a continuum is actually to be found in the universe, we are relying on the premise that there is such a thing as pure mathematics, a body of knowledge whose evidential basis rests on something other than observation of the physical world. Consider, for example, the proposition that the tangent to a point P on a circle’s circumference is perpendicular to the radius connecting P and the centre of the circle. -
RESEARCH STATEMENT Most of My Research Is Focused on Two
RESEARCH STATEMENT BOAZ TSABAN Most of my research is focused on two research topics. Within general and set theoretic topology, I study selection principles and their relations to real analysis and Ramsey theory. Within mathematical cryptology, I study the computational problems of public key protocols based on nonabelian groups. I have solved several central problems in each of these topics and, to this end, developed methods with impact beyond the motivating problems. 1. Selection principles The theory of selection principles deals with mathematical properties and notions defined by selections from sequences of structured sets. For example, recall that a space is compact if every open cover of the space has a finite subcover. Compactness is a very useful property, but most spaces, including very important examples such as subsets of the real line, are not compact. A weaker restriction is provided by Menger's property, defined by Karl Menger in 1924. Motivated by his studies in dimension theory, Menger formulated his property as a basis property in metric spaces. In 1925, Witold Hurewicz observed that Menger's property is equivalent to the following covering property: For each sequence of open covers of the space, there are finite subsets of these covers that, taken together, cover the space. Menger's property is one of several selective covering properties, which evolved in inde- pendent contexts such as measure theory (Borel's strong measure zero and Rothberger's closely related property C00) and function spaces (Fr´echet{Urysohn property, Alexander Arhangel'ski˘ı’scountable fan tightness and Masami Sakai's stronger notion, Lev Bukovsky's, Ireneusz Rec law's, and Miroslav Repicky's weak quasinormal convergence, etc.). -
641 the Book, However, Should Prove Useful As a Reference Book on The
i942] BOOK REVIEWS 641 The book, however, should prove useful as a reference book on the literature of the subject prior to 1938. W. SEIDEL Dimension Theory. By Witold Hurewicz and Henry Wallman. (Prince ton Mathematical Series, no. 4.) Princeton University Press, 1941. 156 pp. $3.00. In contrast with Karl Menger's well known Dimensionstheorie which could claim a considerable measure of completeness at the time of its publication (1928) the present modest volume includes "only those topics . which are of interest to the general worker in mathe matics as well as the specialist in topology." Despite this self-imposed limitation, the authors have presented a simple and connected ac count of the most essential parts of dimension theory. They have treated this branch of topology—hardly surpassed in the elegance of its results—with discrimination and technical skill (it should be pointed out that the senior author is one of the outstanding builders of the theory). The result is an unusually interesting book. It must have been a pleasure to write; it was certainly a pleasure to read. The dimension of a space is the least integer n for which every point has arbitrarily small neighborhoods whose boundaries are of di mension less than n; empty sets are of dimension — 1. This well known recursive definition is due independently to Menger and Urysohn although its intuitive content goes back to Poincaré. It would be natural to expect that a theory based on such a definition would be purely point-set theoretical in character. The remarkable thing is, however, that there exist a number of equivalent definitions of dimension, each belonging to a different domain of ideas and each "right" and natural in its domain. -
1. Ei IAH(B,H(F,G)), Dr(H) = Ynh, Singular Prism a Is a Map A
VOL. 43, 1957 MATHEMATICS: HUREWICZ AND FADELL 241 l K. Kodaira and D. C. Spencer, "On the Variation of Almost-complex Structures," in Algebraic Geometry and Topology (Princeton, N.J., 1957). 2 A. Frblicher and A. Nijenhuis, "Some New Cohomology Invariants for Complex Manifolds. I, II." Indagationes math., 18, No. 5, 1956 (here referred to as Paper C. I.). 3A Frblicher and A. Nijenhuis, "Theory of Vector-valued Differential Forms. I," ibid. No. 3, pp. 338-359, 1956. 4 K. Kodaira, "On a Differential Geometric Method in Theory of Analytic Stacks," these PROCEEDINGS, 39, 1268-1273, 1953. ON THE SPECTRAL SEQUENCE OF A FIBER SPACE. II BY WITOLD HUREWICZ AND EDWARD FADELL* MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND UNIVERSITY OF WISCONSIN Communicated by Richard Brauer, December 18, 1956 1. INTRODUCTION The objective of this paper is to outline a proof of the following result, first con- jectured by Hurewicz, which generalizes a well-known theorem of Leray-Serrel and also extends a previous result of the authors.2 The details will appear else- where. THEOREM. If (X, B, p) is a fiber space in the sense of Hurewicz3 with fiber F, and if B is r - 1-connected, r > 1, then, in the associated spectral sequence {Ej, dj based on singular chains with coefficient group G, we have the following: 1. Ei IAH(B,H(F,G)), 2 < <r; di = 0 2 < i< r-1. 2. Identifying H(B, H(F, G)) with Er2 the differential operator dr: H(B, H(F, G)) - H(B, H(F, G)) is given by the cap product dr(h) = y n h, h E H(B, H(F, G)), where y is the characteristic cohomology class of B and H(F, G) and 7rr(B) are suitably paired. -
Areas of Mathematical Research in Princeton in The
From the collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ These documents can only be used for educational and research purposes (“Fair use”) as per U.S. Copyright law (text below). By accessing this file, all users agree that their use falls within fair use as defined by the copyright law. They further agree to request permission of the Princeton University Library (and pay any fees, if applicable) if they plan to publish, broadcast, or otherwise disseminate this material. This includes all forms of electronic distribution. Inquiries about this material can be directed to: Seeley G. Mudd Manuscript Library 65 Olden Street Princeton, NJ 08540 609-258-6345 609-258-3385 (fax) [email protected] U.S. Copyright law test The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or other reproduction is not to be “used for any purpose other than private study, scholarship or research.” If a user makes a request for, or later uses, a photocopy or other reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement. The Princeton Mathematics Community in the 1930s Transcript Number 33 (PMC33) © The Trustees of Princeton University, 1985 ALBERT TUCKER AREAS OF MATHEMATICAL RESEARCH AT PRINCETON IN THE 1930s This is an interview of Albert Tucker in his office at Princeton University on 11 July 1984. -
A Bibliography of Collected Works and Correspondence of Mathematicians Steven W
A Bibliography of Collected Works and Correspondence of Mathematicians Steven W. Rockey Mathematics Librarian Cornell University [email protected] December 14, 2017 This bibliography was developed over many years of work as the Mathemat- ics Librarian at Cornell University. In the early 1970’s I became interested in enhancing our library’s holdings of collected works and endeavored to comprehensively acquire all the collected works of mathematicians that I could identify. To do this I built up a file of all the titles we held and another file for desiderata, many of which were out of print. In 1991 the merged files became a printed bibliography that was distributed for free. The scope of the bibliography includes the collected works and correspon- dence of mathematicians that were published as monographs and made available for sale. It does not include binder’s collections, reprint collec- tions or manuscript collections that were put together by individuals, de- partments or libraries. In the beginning I tried to include all editions, but the distinction between editions, printings, reprints, translations and now e-books was never easy or clear. In this latest version I have supplied the OCLC identification number, which is used by libraries around the world, since OCLC does a better job connecting the user with the various ver- sion than I possibly could. In some cases I have included a title that has an author’s mathematical works but have not included another title that may have their complete works. Conversely, if I believed that a complete works title contained significant mathematics among other subjects, Ihave included it. -
Hurewicz Tests: Separating and Reducing Analytic Sets the Conscious Way
Hurewicz tests: separating and reducing analytic sets the conscious way By Tam¶as M¶atrai Submitted to Central European University Department of Mathematics and its Applications Supervisor: Tam¶as Keleti Budapest, Hungary 2005 2 Abstract In this thesis we develop the theory of topological Hurewicz test pairs. The central idea of this method is to construct special Polish topologies in such a way that simply structured sets, e.g. sets of low Borel class, are either \almost empty" or of second category in the corresponding special topology. Through this approach, which can be considered as a generalization of the Baire Category Theorem for higher Borel classes, we are able to give a quantitative aspect, in Baire category sense, to certain results related to Hurewicz test sets. As an application of the theory, we prove some results related to trans¯nite convergence of Borel functions, to the problem of ¯nding simple generators of analytic ideals and to the problem of constructing Hurewicz test sets for generalized separation of analytic sets. Contents 1 Classical results, motivating problems 5 2 De¯nitions and notation 11 2.1 Sequences and trees . 11 2.2 Re¯ning topologies, basic open sets . 12 2.3 Hierarchies, separation, reduction . 14 3 The » = 3 case 17 0 3.1 The ¦3 set of Lusin . 17 3.2 Generating ideals . 24 4 Topological Hurewicz test pairs 37 4.1 Distinguishing Borel classes . 37 4.2 Intersection criteria . 45 4.3 A moment of being concrete . 53 4.4 Constructible coverings . 56 5 Testing the di®erence hierarchy 59 6 -convergent functions 69 I 3 4 CONTENTS 7 Generalized separation and reduction 75 7.1 Witnessing generalized separation .