Decoupling of Surface Diffusion and Relaxation Dynamics of Molecular

Total Page:16

File Type:pdf, Size:1020Kb

Decoupling of Surface Diffusion and Relaxation Dynamics of Molecular Decoupling of surface diffusion and relaxation SEE COMMENTARY dynamics of molecular glasses Yue Zhanga and Zahra Fakhraaia,1 aDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 Edited by Pablo G. Debenedetti, Princeton University, Princeton, NJ, and approved March 13, 2017 (received for review January 25, 2017) Tobacco mosaic virus is used as a probe to measure surface mics that are more similar to those of the free surface. These diffusion of ultrathin films of N,N0-Bis(3-methylphenyl)-N,N0- studies can help investigate whether the decoupling between sur- diphenylbenzidine (TPD) (12 nm < h < 53 nm, where h is the film face diffusion and bulk relaxation dynamics in aged and ultra- thickness) at various temperatures below the glass transition tem- stable molecular glass films is due to large differences between the perature, Tg, of all films. As the film thickness is decreased, Tg values [at least six orders of magnitude at Tg for ordinary glass decreases rapidly and the average film dynamics are enhanced and growing with lowering fictive temperature (11)] or whether by 6–14 orders of magnitude. We show that the surface diffu- it has a more fundamental origin. In addition, the typical thick- sion is invariant of the film thickness decrease and the result- nesses of molecular glasses used in applications such as coatings ing enhanced overall mobility. The values of the surface diffu- and organic electronics are less than 100 nm, and as such it is sion coefficient and its temperature dependence are invariant of imperative to directly characterize the surface mobility on these film thickness and are the same as the corresponding bulk val- nanosized glasses and to understand its role and effect in enhanc- ues (h = 400 nm). For the thinnest films (h < 20 nm), the effective ing the dynamics in ultrathin films used in these applications. activation energy for rearrangement (temperature dependence of Here we apply our recently developed tobacco mosaic virus relaxation times) becomes smaller than the activation energy for (TMV)-probe method (4, 11) to measure the surface diffusion surface diffusion. These results suggest that the fast surface dif- of ultrathin TPD glass films supported on silicon substrates. The fusion is decoupled from film relaxation dynamics and is a solely important advantage of the TMV-probe method is that it gen- free surface property. erates a mild perturbation on the free surface and requires no additional modification of the sample’s surface. As such, this is a fast surface diffusion j relaxation times j molecular glass j ultrathin films robust method that can be easily extended to study the surface of ultrathin molecular glass films. In this method, the surface mobil- ity can be evaluated by monitoring the temporal evolution of the he diffusion coefficients on the surfaces of molecular glasses surface response to TMV’s perturbation. In this study, the TMV- Tare reported to be orders of magnitude faster than the probe method is applied on the surfaces of ultrathin molecular bulk diffusion (1–6), with weaker temperature dependences and glass films, ranging from 12 nm to 53 nm, to measure their sur- stronger dependences on the molecular size or intermolecular face diffusion. The surface diffusion coefficients on these ultra- interactions (5–7). The measured fast surface diffusion on molec- thin films are found to be constant within the experimental error ular glass systems has been hypothesized to affect the frequently at four measuring temperatures below the bulk or thin film Tgs. observed fast surface crystallization (8, 9) and the formation of The results show that the surface diffusion has no dependence ultrastable glasses by physical vapor deposition (10). on the film thickness, whereas the Tg is reduced by as much as We recently investigated the surface diffusion of liquid- 20 K in 12-nm films and the average dynamics in these films are N N0 N N0 quenched bulk , -Bis(3-methylphenyl)- , -diphenylben- enhanced by 6–14 orders of magnitude. Furthermore, the acti- zidine (TPD) glasses (4) as well as aged and vapor-deposited vation energy of the thinnest films (h < 20 nm, where h is the ultrastable TPD glasses (11), spanning a range of 35 K in fic- tive temperatures and 13–20 orders of magnitude variations in structural relaxation times of the glass. We found that when held Significance below bulk glass transition temperature, Tg, the surface diffusion coefficient remains fast (about 6 orders of magnitude faster than Diffusion on the surfaces of molecular glasses is observed to the corresponding bulk diffusion coefficient of the ordinary glass be greatly enhanced compared with the bulk diffusion with at Tg), has a lower activation energy than bulk, and is invariant lower activation energies. However, the physical nature of the of the bulk dynamics on aged and ultrastable glass films. The lack fast surface diffusion and its relation to the glassy dynamics of correlation between the surface diffusion and bulk dynamics remain unclear. Relaxation dynamics of these glasses can be of aged or ultrastable glasses motivates further exploration of the enhanced by up to 14 orders of magnitude by reducing their nature of the observed fast surface diffusion on glassy surfaces. film thickness below 50 nm. By investigating the relationship Nanosized polymer films have been shown to have properties between surface diffusion and relaxation times of ultrathin that deviate strongly from the corresponding bulk properties. In films, we find that the fast surface diffusion remains invari- particular, their glass transition temperatures are reduced com- ant of the films’ relaxation dynamics even when the activation pared with their corresponding bulk values (12–17). The reduced energy of the film becomes lower than the activation energy Tg has been linked to enhanced relaxation dynamics near the for the surface diffusion, indicating a complete decoupling of PHYSICS free surface for both supported (12, 18, 19) and freestanding the relaxation dynamics and surface diffusion. (20, 21) films and the resulting enhancement of the overall relax- ation dynamics (15, 22, 23) of ultrathin films. We have recently Author contributions: Y.Z. and Z.F. designed research; Y.Z. performed research; Y.Z. and demonstrated that the viscosity and relaxation dynamics in ultra- Z.F. analyzed data; and Y.Z. and Z.F. wrote the paper. thin films of molecular glass TPD are similarly enhanced by 6–14 The authors declare no conflict of interest. orders of magnitude, depending on the measuring temperature This article is a PNAS Direct Submission. (24), but a direct comparison with fast surface diffusion to our See Commentary on page 4854. knowledge has not been made in molecular glass systems. 1To whom correspondence should be addressed. Email: [email protected]. By investigating surface diffusion coefficients on ultrathin TPD This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. films, surface diffusion can be measured in films with overall dyna- 1073/pnas.1701400114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1701400114 PNAS j May 9, 2017 j vol. 114 j no. 19 j 4915–4919 Downloaded by guest on September 26, 2021 film thickness) is lower than that of the surface diffusion on the A same films. These results suggest that the fast surface diffusion is fully decoupled from the overall film relaxation dynamics, down to film thicknesses where the film dynamics become compara- ble with the surface diffusion enhancement. Once the film is no longer glassy, the virus embeds into the film and surface diffusion can no longer be measured. Results and Discussion Tg Reduction and Enhanced Overall Dynamics in Ultrathin Films. The model system studied here is the organic molecular glass TPD (Tg = 330 K, molecular structure shown in Fig. 1B). Fig. 1A shows the measured Tg values as a function of film thick- ness. (Sample preparation, temperature ramping, and ellipsom- etry details can be found in Figs. S1–S4.) Fig. 1A, Inset shows representative normalized thickness profiles for four different films during the cooling ramps. The glass transition temperature B is defined as the intercept of the supercooled liquid line with the glassy line. As the temperature is decreased, ultrathin films maintain equilibrium at lower temperatures compared with the 120-nm film and show broader Tg transitions. As a result, the Tg is reduced as the film thickness is decreased, with an onset of devi- ation from bulk Tg around 50 nm. This observation is consistent with previous measurements of Tg reductions in ultrathin films of molecular (24–26) and polymeric glasses (12, 13, 15, 22, 23) and shows a similar range of thickness over which the Tgs of the ultrathin films are affected by the enhanced surface dynamics. We recently measured the effective viscosity and average relaxation times of ultrathin TPD films at various temperatures below bulk Tg (24). Using cooling-rate–dependent Tg (CR- Tg) measurements, the film’s average relaxation time at Tg can be estimated based on the inverse of cooling rates. Isothermal dewetting measurements were also performed in these studies to Fig. 1. (A) Glass transition temperatures, Tg, vs. film thickness for TPD films characterize the effective viscosity within films of various thick- supported on Si substrates measured using ellipsometry at a cooling rate of 10 K/min. A, Inset shows representative normalized thickness vs. temper- nesses and were related to relaxation times. Within the error ature plots for various film thicknesses. The black dashed lines show the of the experiments, both measures of dynamics (isothermal and slopes for thermal expansion coefficients of a bulk film in the supercooled temperature ramps) produced similar average relaxation times in liquid and glassy regimes. The black and green arrows show the values of Tg ultrathin films. Using these data from ref.
Recommended publications
  • Surface Diffusion Driven by Surface Energy
    Spring 2004 Evolving Small Structures Z. Suo Lecture 6 Surface Diffusion Driven by Surface Energy Examples Flattening a surface. Spherodizing. Rayleigh instability. Grain boundary grooving. Sintering Self-assembled quantum dots Atomic Flux and Surface Velocity Atoms can arrive to the surface in many ways. Atoms in the vapor can condense to the surface. Or conversely, atoms on the solid surface can evaporate. Atoms can diffuse in the volume of the solid. The body can also change shape by creep. In this lecture, we assume atoms can only move on the surface by diffusion, and all other modes of transport are negligibly slow. This situation happens for crystals at relatively low temperature, in a low vapor pressure environment. Define the atomic flux on a solid surface by numberof atoms J = ()length (time) Note that this flux is a vector tangent to the surface, and has a different dimension from that in the bulk. The flux is a vector field on the solid surface Consider a small element of the surface of the body. Let vn be the velocity of the solid surface, taken to be positive when the surface element gains atoms. The velocity is normal to the solid surface. The velocity is a scalar field on the solid surface. February 21, 2009 1 Spring 2004 Evolving Small Structures Z. Suo The surface element extends when it gains atoms, and recedes when it loses atoms. Let Ω be the volume per atom in the solid. Thus, vn / Ω is the number of atoms gained per unit area and per unit time.
    [Show full text]
  • Single Adatom Adsorption and Diffusion on Fe Surfaces
    Journal of Modern Physics, 2011, 2, 1067-1072 1067 doi:10.4236/jmp.2011.29130 Published Online September 2011 (http://www.SciRP.org/journal/jmp) Single Adatom Adsorption and Diffusion on Fe Surfaces Changqing Wang1*, Dahu Chang2, Chunjuan Tang2, Jianfeng Su2, Yongsheng Zhang2, Yu Jia3 1Department of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, China 2Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, China 3School of Physics and Engineering, Key Laboratory of Material Physics of Ministry of Education, Zhengzhou University, Zhengzhou, China E-mail: *[email protected] Received December 25, 2010; revised March 22, 2011; accepted April 8, 2011 Abstract Using Embedded-atom-method (EAM) potential, we have performed in detail molecular dynamics studies on a Fe adatom adsorption and diffusion dynamics on three low miller index surfaces, Fe (110), Fe (001), and Fe (111). Our results present that adatom adsorption energies and diffusion barriers on these surfaces have similar monotonic trend: adsorption energies, Ea(110) < Ea(001) < Ea(111), diffusion barriers, Ed(110) < Ed(001) < Ed(111). On the Fe (110) surface, adatom simple jump is the main diffusion mechanism with relatively low energy barrier; nevertheless, adatoms exchange with surface atoms play a dominant role in surface diffusion on the Fe (001). Keywords: EAM Potential, Molecular Dynamics, Diffusion, Nudged Elastic Band (NEB) Method, Iron, Adsorption 1. Introduction and Monte Carlo (MC) [16,17], it has been investigated intensively [18]. Understanding the processes of nucleation and growth on Iron is a very common metal for application. Abun- a substrate surface is of importance for growing high- dant work has been done on atom diffusion on the Fe quality thin film materials.
    [Show full text]
  • Heterogeneous Electrocatalysis in Porous Cathodes of Solid Oxide Fuel Cells
    Electrochimica Acta 159 (2015) 71–80 Contents lists available at ScienceDirect Electrochimica Acta journa l homepage: www.elsevier.com/locate/electacta Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells a b a,c b b b a,d, Y. Fu , S. Poizeau , A. Bertei , C. Qi , A. Mohanram , J.D. Pietras , M.Z. Bazant * a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA b Saint-Gobain Ceramics and Plastics, Northboro Research and Development Center, Northboro, MA, USA c Department of Civil and Industrial Engineering, University of Pisa, Italy d Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA A R T I C L E I N F O A B S T R A C T Article history: A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and Received 3 December 2014 used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled Received in revised form 19 January 2015 processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the Accepted 22 January 2015 triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like Available online 24 January 2015 frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different Keywords: cells directly confirms the predicted connection between geometrical properties and the impedance electrochemical impedance spectroscopy response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele (EIS) modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the Gerischer element porous electrode triple phase boundary) to the surface boundary layer length (square root of surface diffusivity divided by oxygen reduction reaction (ORR) the adsorption rate constant).
    [Show full text]
  • A Study of Surface Diffusion with the Scanning Tunneling Microscope from Fluctuations of the Tunneling Current Manuel Leonardo Pasetes Lozano Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 A study of surface diffusion with the scanning tunneling microscope from fluctuations of the tunneling current Manuel Leonardo Pasetes Lozano Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Condensed Matter Physics Commons Recommended Citation Pasetes Lozano, Manuel Leonardo, "A study of surface diffusion with the scanning tunneling microscope from fluctuations of the tunneling current " (1995). Retrospective Theses and Dissertations. 10959. https://lib.dr.iastate.edu/rtd/10959 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscr^t has been reproduced from the nuarofilm master. UMI films tiie text directfy from the original or copy submitted. Hius, some thesis and dissertation copies are in typewriter face, while others may be £rom aiQr type of conq)uter printer. The qnality of this Feprodnction is dependent upon the qoali^ of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margirnt^ and is^oper alignment can adverse^ affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note wiQ indicate the deletion.
    [Show full text]
  • A Study of the Surface Reactions of Hydrocarbons on Tungsten by Field Electron Emission Microscopy Nelson Craig Gardner Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 A study of the surface reactions of hydrocarbons on tungsten by field electron emission microscopy Nelson Craig Gardner Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Gardner, Nelson Craig, "A study of the surface reactions of hydrocarbons on tungsten by field electron emission microscopy " (1966). Retrospective Theses and Dissertations. 5365. https://lib.dr.iastate.edu/rtd/5365 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received ® 7-5587 GARDNER, Nelson Craig, 1937- A STUDY OF THE SURFACE REACTIONS OF HYDRO­ CARBONS ON TUNGSTEN BY FIELD ELECTRON EMIS­ SION MICROSCOPY. Iowa State University of Science and Technology, Ph.D„ 1966 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan A STUDY OF THE SURFACE REACTIONS OF HYDROCARBONS ON TUNGSTEN BY FIELD ELECTRON EMISSION MICROSCOPY by Nelson Craig Gardner A Dissertation Submitted to the Graduate Faculty in partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject:
    [Show full text]
  • Chapter 7 Solid Surface
    Chapter 7 Solid Surface Definition of solid : A matter that is rigid and resists stress. Difference between solid and liquid surface : Liquid : always in equilibrium and equipotential. (Fig 7.1a,b) Solid : the two assumptions are not valid. (Fig 7.1c,d) 7.1 Surface Mobility in Solids Consider a surface being in a dynamic state with interchange of molecules between the surface , the bulk , and the vapor phase . The impinging rate of vapor on a surface : Z 1 2 ⎛ 3 ⎞ −2 −1 Z = 0.23P⎜ ⎟ [cm ⋅ sec ]…….. (7.1) ⎝ MRT ⎠ P: vapor pressure of the material M: molecular weight ex. for tungsten(W) , P ≈ 10-37mmHg Z≈ 10~20 (atoms / cm2 ⋅ sec) Lifetime≈ 1037sec Tamman Temperature : (for bulk diffusion) z The temperature at which the atoms or molecules of the solid acquired sufficient energy for their bulk mobility and reactivity to become appreciable. (ex : sintering) z Tamman temperature ≈ one-half of melting point (K) z For example : for Cu at 725℃ P≈ 10-8mmHg , Z ≈ 1015 atoms/cm2.sec Surface resident time ≈ 1 sec Bulk diffusion rate ≈ 10nm in 0.1 sec But at room temperature ⇒ 10nm needs 1027 sec Surface diffusion : perform below the Tamman temperature bulk diffusion : no change in total activation energy (Fig 7.2a) surface diffusion : has a much lower barrier to diffusion (Fig 7.2b) , and much greater mobility. The history (especially thermal) of the material is important to the property (nature) of a solid surface. Surface changes ⇒ alterations in characteristics such as adsorption , wetting , adhesion , friction , or lubrication 7.1.1 Sintering Definition : For solid powders , fusion of adjacent particles occur when the system is heated to some temperature below the melting point.
    [Show full text]
  • Diffusion in Copper and Copper Alloys. Part I. Volume and Surface Self-Diffusion in Copper
    Diffusion in Copper and Copper Alloys. Part I. Volume and Surface Self-Diffusion in Copper Cite as: Journal of Physical and Chemical Reference Data 2, 643 (1973); https://doi.org/10.1063/1.3253129 Published Online: 29 October 2009 Daniel B. Butrymowicz, John R. Manning, and Michael E. Read ARTICLES YOU MAY BE INTERESTED IN Diffusion in Copper and Copper Alloys, Part II. Copper-Silver and Copper-Gold Systems Journal of Physical and Chemical Reference Data 3, 527 (1974); https:// doi.org/10.1063/1.3253145 Diffusion in copper and copper alloys. Part III. Diffusion in systems involving elements of the groups IA, IIA, IIIB, IVB, VB, VIB, and VIIB Journal of Physical and Chemical Reference Data 4, 177 (1975); https://doi.org/10.1063/1.555516 Diffusion in copper and copper alloys part IV. Diffusion in systems involving elements of group VIII Journal of Physical and Chemical Reference Data 5, 103 (1976); https://doi.org/10.1063/1.555528 Journal of Physical and Chemical Reference Data 2, 643 (1973); https://doi.org/10.1063/1.3253129 2, 643 © 1973 The U. S. Secretary of Commerce on behalf of the United States. Diffusion in Copper and Copper Alloys Part I. Volume and Surface Self-Diffusion in Copper DanielB. Butrymowicz:, John R. Manning, and Michael E. Read Institute for Materials Research, National Bureau of Standards, Washington, D. C. 20234 A survey, comparison, and critical analysis is presented of data compiled fr.om t~e sci~nt~c literature concerning copper self-di1fusion. Topics include volume diffusion, dislocat1o~ PI~ diffus~on, surface diffusion, sintering, electromigration, thermomigration, pressure effect on diffuSlO~, st~am~nhanced diffusion nuclear magnetic resonance measurements of solid state diffusion and diffUSion m molten copper.
    [Show full text]
  • CHAPTER 3: Epitaxy
    Chapter 3 1 CHAPTER 3: Epitaxy Epitaxy (epi means "upon" and taxis means "ordered") is a term applied to processes used to grow a thin crystalline layer on a crystalline substrate. The seed crystal in epitaxial processes is the substrate. Unlike the Czochralski process, crystalline thin films can be grown below the melting point using techniques such as chemical vapor deposition (CVD), molecular beam epitaxy (MBE), etc. When a material is grown epitaxially on a substrate of the same material, the process is called homoepitaxy, an example of which is depicted in Figure 3.1. On the contrary, if the layer and substrate are of different materials, such as AlxGa1-xAs on GaAs, the process is termed heteroepitaxy. Naturally, in heteroepitaxy, the crystal structures of the layer and the substrate must be similar in order to achieve good crystalline integrity. Performance of many devices, such as CMOS (Complementary MOS) and DRAM (Dynamic Random Access Memory), can be improved by employing epitaxial wafers. Succinctly speaking, epitaxial wafers have two fundamental advantages over bulk wafers. First, they offer device engineers a means to control the doping profiles not attainable through other conventional means such as diffusion or ion implantation. Secondly, the physical and chemical properties of the epitaxial layers can be made different from the bulk materials. A DRAM (dynamic random access memory) circuit employing MOS devices (Figure 3.2- 1) is vulnerable to soft errors created by alpha particles originating from packaging materials and the environment. These alpha particles can cause electron-hole pairs in the bulk of the wafer. If these charges migrate to the storage cell of a DRAM structure, the data stored can be wiped out.
    [Show full text]
  • Surface Diffusion
    Surface Di®usion Oleg M. Braun Institute of Physics National Academy of Sciences of Ukraine Contents 1 Introduction 3 2 Di®usion of a Single Atom 5 2.1 Di®usion: what is it? . 5 2.2 Langevin and Fokker-Planck-Kramers equations . 7 2.3 Solution: one-dimensional system . 10 2.3.1 Conventional di®usion equation . 10 2.3.2 The FPK equation in the absence of the substrate potential . 11 2.3.3 General case . 12 2.3.4 Smoluchowski equation . 13 2.3.5 Low-friction limit . 17 2.3.6 Intermediate friction . 19 2.4 Kramers theory . 20 2.5 Computer simulation: Molecular Dynamics . 23 2.6 Lattice models . 24 3 Collective Di®usion 27 3.1 Mechanisms of interaction between adsorbed atoms . 27 3.2 Di®erent di®usion coe±cients . 28 3.2.1 Susceptibility . 28 3.2.2 Self-di®usion coe±cient . 29 3.2.3 Mobility . 30 3.2.4 Chemical di®usivity . 30 3.3 Ideology of quasiparticles . 32 3.4 One-dimensional chain (the Frenkel-Kontorova model) . 32 3.5 Gas model . 32 3.6 Lattice models . 32 3.7 2D Frenkel-Kontorova model . 33 3.8 Phase transitions . 33 3.8.1 First-order phase transition . 33 3.8.2 Second-order phase transition . 33 3.9 Computer simulation . 34 3.9.1 Monte Carlo simulation . 34 3.9.2 Molecular Dynamics simulation . 34 4 Defects 35 4.1 ... 35 1 2 CONTENTS 5 Experimental Methods 37 6 Results 39 6.1 Quasi-one-dimensional systems . 39 6.2 ..
    [Show full text]
  • Cluster Diffusion and Coalescence on Metal Surfaces: Applications of a Self-Learning Kinetic Monte-Carlo Method
    Cluster Diffusion and Coalescence on Metal Surfaces: applications of a Self-learning Kinetic Monte-Carlo method Talat S. Rahman1*, Abdelkader Kara1, Altaf Karim1, Oleg Trushin2 1Department of Physics, Cardwell Hall, Kansas State University, Manhattan, KS 66506 2Institute of Microelectronics and Informatics, Russian Academy of Sciences, Yaroslavl 150007, Russia. *email:[email protected] ABSTRACT The Kinetic Monte Carlo (KMC) method has become an important tool for examination of phenomena like surface diffusion and thin film growth because of its ability to carry out simulations for time scales that are relevant to experiments. But the method generally has limited predictive power because of its reliance on predetermined atomic events and their energetics as input. We present a novel method, within the lattice gas model in which we combine standard KMC with automatic generation of a table of microscopic events, facilitated by a pattern recognition scheme. Each time the system encounters a new configuration, the algorithm initiates a procedure for saddle point search around a given energy minimum. Nontrivial paths are thus selected and the fully characterized transition path is permanently recorded in a database for future usage. The system thus automatically builds up all possible single and multiple atom processes that it needs for a sustained simulation. Application of the method to the examination of the diffusion of 2-dimensional adatom clusters on Cu(111) displays the key role played by specific diffusion processes and also reveals the presence of a number of multiple atom processes, whose importance is found to decrease with increasing cluster size and decreasing surface temperature. Similarly, the rate limiting steps in the coalescence of adatom islands are determined.
    [Show full text]
  • 8. Surface Diffusion
    Surface Physics 2008 8. Surface Diffusion Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science Random-Walk Motion • Thermal motion of an adatom on an ideal crystal surface : - Thermal excitation the adatom can hop from one adsorption site to the next • Mean square displacement at time t: 2 2 ∆r = νa t a = jump distance; ν = hopping frequency (Note that νt = number of hops!) • Diffusion coefficient : 2 ∆r νa2 2 in 1D diffusion D = = z = number of first neighbors = 4 on a square lattice zt z 6 on a hexagonal lattice Random-Walk Motion - Hopping surmounting a potential barrier • Arrhenius law : E ν0 = oscillation frequency of the atom in the well; ν = ν exp − diff 0 k T B Ediff = barrier height Tipically Ediff ~ 5-20% of Q (heat of desorption) • For chemisorbed species: Ediff >> kBT • If Ediff < kBT: 2D gas (only a few physisorbed species) Fick’s Laws • Fick’s First Law (for 1D diffusion): ∂c J = −D ∂x diffusion flux concentration gradient (flux region of lower concentration) • Fick’s Second Law (for 1D diffusion): ∂c ∂2c = D from equation of continuity ∂t ∂x2 • Analytical solutions can be found for specific initial and boundary conditions! Analytical Solutions of Fick’s Laws • We introduce the error function 2 x erf (x) = ∫ exp( −t 2 ) dt π 0 • Source of constant concentration: x c(x,t) = c0 1− erf 2 Dt 2 Dt : diffusion length - Example: Submonolayer film with 3D islands supplying mobile adatoms Analytical Solutions of Fick’s Laws • Source of infinite extent: c x c(x,t) = 0 1− erf 2 2 Dt - Example: Submonolayer
    [Show full text]
  • Molecular Dynamics Study on the Melting and Coalescence of Au Nanoparticles
    Surface-Induced Phase Transition During Coalescence of Au Nanoparticles: A Molecular Dynamics Simulation Study1 Reza Darvishi Kamachali Contact Address: Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany. Email: [email protected] Abstract In this study, the melting and coalescence of Au nanoparticles were investigated using molecular dynamics simulation. The melting points of nanoparticles were calculated by studying the potential energy and Lindemann indices as a function of temperature. The simulations show that coalescence of two Au nanoparticles of the same size occurs at far lower temperatures than their corresponding melting temperature. For smaller nanoparticles, the difference between melting and coalescence temperature increases. Detailed analyses of the Lindemann indices and potential energy distribution across the nanoparticles show that the surface melting in nanoparticles begins at several hundred degrees below the melting point. This suggests that the coalescence is governed by the surface diffusion and surface melting. Furthermore, the surface reduction during the coalescence accelerates its kinetics. It is found that for small enough particles and/or at elevated temperatures, the heat released due to the surface reduction results in a melting transition of the two attached nanoparticles. Keywords: Molecular Dynamics Simulation; Nanosystems; Coalescence; Surface Melting; Gold Nanoparticles; Phase Transition. 1. Introduction Due to the unique electronic, optical and catalytic properties of metallic nanoparticles [1-3], an increasingly growing interest is developing to explore 1 Completed in April 2008. See Acknowledgments for details. 1 nanoparticles technological applications [4-6]. In this context, the interactions between nanoparticles and their surrounding objects such as solvents, ion/electron beams, and other nanoparticles are fundamentally and technologically important for their storage and performance [7, 8].
    [Show full text]