Absolute-Magnitude Calibration for W Uma-Type Systems. II. in Uence Of

Total Page:16

File Type:pdf, Size:1020Kb

Absolute-Magnitude Calibration for W Uma-Type Systems. II. in Uence Of AbsoluteMagnitude Calibration for W UMatype Systems I I Inuence of Metallicity 1 Slavek Rucinski Longb ow Drive Scarb orough Ontario MW W Canada March ABSTRACT A mo dication to the absolute magnitude calibration for W UMatype systems taking into account dierences in metal abundances is derived on the basis of contact binary systems recently discovered in metalp o or clusters A preliminary estimate of the magnitude of the metallicitydependent term for the B V based calibration is M F eH The calibration based on the V I color is V C exp ected to b e less sensitive with the correction term F eH Need for a metallicitydependent term in the calibration Searches for gravitational microlenses are currently giving large numbers of serendipitously discovered variable stars Among these variables there are many W UMatype contact binaries On the basis of the rst part of the catalog of variable stars discovered during the OGLE pro ject Udalski et al one can estimate the total number of contact binaries which will b e discovered in the Baade Window during OGLE at well over one thousand This estimate is based on discoveries of such systems in the rst part of the catalog which covered one of the OGLE elds ie less than of the whole area searched the Central Baade Window BWC and reached I The newly discovered systems will provide excellent statistics for the p erio d color and amplitude distributions of contact binaries much b etter than those based on the skyeld sample which is heavily biased towards largeamplitude variables Kaluzny Rucinski Rucinski Kaluzny They can b e also utilized as calibrators of distances into the inner galactic disk Rucinski with their absolute magnitudes estimated using the p erio dcolor calibration derived recently by Rucinski a CAL The large numbers of contact binaries which are now b eing discovered should b e compared with W UMatype systems in the most recent General Catalogue of Variable Stars Among those only systems have go o dquality data but only for half of that in standard photometric systems Stars visible toward the Galactic Bulge show a large spread in metallicity While the Bulge stars might show a range of metallicities as large as F eH Frogel all contact Aliated with the Department of Astronomy University of Toronto and Department of Physics and Astronomy York University binary systems visible in BWC Rucinski are at distances kp c from us and thus b elong to the Disk p opulation For this p opulation the range in metallicities is exp ected to b e F eH The calibration presented in CAL utilized the observational dereddened B V color as the temp erature index Since redbased color indices should b ecome more p opular in the future and the OGLE pro ject provides data in V and I sp ectral bands an additional very preliminary C calibration based on the V I color was also given in CAL This calibration was derived C assuming that the relation b etween the B V and V I colors is identical to that for the Main C Sequence stars an assumption which do es not necessarily have to b e correct for the W UMatype systems b ecause of their strong chromospheric activity The relations given in CAL for predicting the absolute magnitudes M at maximum light together with an indep endent calibration for M V I Rucinski are M log P B V V M log P V I V C M log P V I I C The p erio d P is in days and b oth colors are reddeningfree The predictive p ower of these relations was estimated in CAL to b e at a level of ab out mag Extensive MonteCarlo exp eriments show that the uncertainty dep ends on a particular p erio dcolor combination and is smaller typically mag within the strict range of p erio ds and colors used to derive the calibrations P day B V V I C The metallicity dep endence has b een bypassed in CAL as the calibration was based on a few nearby W UMa systems which presumably have solar abundances and on four nearby op en clusters with mo derate underabundances F eH see Table in CAL The B V based version of the calibration was applied also in CAL to three distant clusters with a larger range of metallicities In this case the goal was to sieve out nonmember foreground and background Milky Way interlopers from these low galacticlatitude clusters Mazur et al applied recently the calibration for the same purp ose to establish membership of among W UMatype systems in the eld of Cr and Yan Mateo used it for systems in the globular cluster M see b elow The three lowlatitude clusters analyzed in CAL had F eH b etween and It was noted that the most metalp o or cluster To showed consistently p ositive deviations M from V pr ed obs obs where M is derived simply from the brightness of a the calibration M M M V V V V system at maximum light and the assumed distance mo dulus of the cluster The metallicity of To is denitely low but is p o orly known at this moment it might b e as low as F eH Geisler We would like to establish if the deviations observed for To could b e caused by the low metallicity of the cluster This pap er addresses the metallicity dep endence of the absolute magnitude calibrations given by Equations and in view of recent discoveries of W UMatype binaries in metalp o or globular clusters Determination of the correction on the basis of metalp o or globular clusters Little is known ab out metal abundances of isolated W UMa systems mostly b ecause of the extreme rotational blending of sp ectral lines which prevents application of traditional techniques Mo dern metho ds of sp ectral synthesis could p ossibly shed light on this matter but have not b een yet applied ubv y photometry of a sample of bright W UMa systems Rucinski Kaluzny Rucinski has not lead to clearcut results as it was imp ossible to exclude the presence of intrinsic activityrelated p eculiarities in ultraviolet parts of sp ectra Fortunately recent discoveries of contact systems in very metalp o or stellar systems oer a p ossibility of a preliminary lo ok into the dep endence of absolute magnitudes on metal abundances Mo dications to the periodcolor relation resulting from metallicity dierences were already discussed by Rucinski b POP This study concentrated on limits imp osed by the fullconvection condition for Population II stars but implicitly discussed observed mo dications to p erio ds and colors for low metallicity systems It was shown there that two systems in NGC NH and NH Mateo et al and four systems in NGC Kaluzny Krzeminski V V V and V are bluer and have shorter p erio ds than the common Population I W UMa systems Application of the M M l og P B V calibration conrmed that these V V systems were slightly fainter than exp ected as should b e for Population II stars Thus six bona de representatives of metalp o or p opulations were identied at that time It was argued in POP that the remaining systems in NGC were Milky Way foreground interlopers It should b e stressed that data for the contact systems in b oth of the metalp o orest clusters NGC and NGC are of medio cre quality due to diculties of observing faint variable stars However b oth clusters are so metalp o or that even crude data could give information on ma jor trends due to metallicity variations Recently Yan Mateo discovered contact binaries in M increasing the sample of W UMatype systems in the globular clusters from to This is a very imp ortant discovery as the relatively mo derate metal underabundance of the cluster estimated at ab out F eH p ermits to bridge the large gap b etween the solarabundance systems and the metalp o or ones pr ed for The data were obtained in the V and I lters so that Eq must b e used to calculate M C V systems in M This forces us to discuss together results based on the B V color with results based on the V I color We address the sp ecic question of relative sensitivities of b oth colors C to metallicities in the last section of the pap er The assumptions made to determine the absolute magnitudes M and the reddeningcorrected V colors of systems in the three globular clusters were as follows For NGC m M E B V for NGC m M E B V with additional corrections for patchy extinction as describ ed by Kaluzny Krzeminski and for M m M and E B V The values of p erio ds and colors for the W UMa systems were taken from the discovery pap ers and are listed in Table Figure shows the deviations M from the Population I calibration as function of F eH V for systems in stellar systems of low metal abundance These are the systems in three globular clusters new systems M and systems as in POP and the systems in the op en cluster To as in CAL The values of F eH for these clusters were taken from Geisler and Geisler et al for To for NGC and for NGC F eH was assumed for M Less extreme values of F eH have b een also given in the literature for To Kubiak et al assumed F eH and the database of Webbink gave and for NGC and NGC resp ectively The systems which we consider as members of the clusters have b een marked in Figure by lled symbols The broken lines give the approximate range for the membership acceptancerejection for Population I systems estimated at mag in CAL On the basis of Figure we conclude The globular cluster data suggest a weak dep endence of the absolute magnitude M on V F eH a linear relation should suce for the relatively p o or data which are available now Inclusion or rejection of M would have only a minor inuence on the slop e of a
Recommended publications
  • Commission 27 of the Iau Information Bulletin
    COMMISSION 27 OF THE I.A.U. INFORMATION BULLETIN ON VARIABLE STARS Nos. 2401 - 2500 1983 September - 1984 March EDITORS: B. SZEIDL AND L. SZABADOS, KONKOLY OBSERVATORY 1525 BUDAPEST, Box 67, HUNGARY HU ISSN 0374-0676 CONTENTS 2401 A POSSIBLE CATACLYSMIC VARIABLE IN CANCER Masaaki Huruhata 20 September 1983 2402 A NEW RR-TYPE VARIABLE IN LEO Masaaki Huruhata 20 September 1983 2403 ON THE DELTA SCUTI STAR BD +43d1894 A. Yamasaki, A. Okazaki, M. Kitamura 23 September 1983 2404 IQ Vel: IMPROVED LIGHT-CURVE PARAMETERS L. Kohoutek 26 September 1983 2405 FLARE ACTIVITY OF EPSILON AURIGAE? I.-S. Nha, S.J. Lee 28 September 1983 2406 PHOTOELECTRIC OBSERVATIONS OF 20 CVn Y.W. Chun, Y.S. Lee, I.-S. Nha 30 September 1983 2407 MINIMUM TIMES OF THE ECLIPSING VARIABLES AH Cep AND IU Aur Pavel Mayer, J. Tremko 4 October 1983 2408 PHOTOELECTRIC OBSERVATIONS OF THE FLARE STAR EV Lac IN 1980 G. Asteriadis, S. Avgoloupis, L.N. Mavridis, P. Varvoglis 6 October 1983 2409 HD 37824: A NEW VARIABLE STAR Douglas S. Hall, G.W. Henry, H. Louth, T.R. Renner 10 October 1983 2410 ON THE PERIOD OF BW VULPECULAE E. Szuszkiewicz, S. Ratajczyk 12 October 1983 2411 THE UNIQUE DOUBLE-MODE CEPHEID CO Aur E. Antonello, L. Mantegazza 14 October 1983 2412 FLARE STARS IN TAURUS A.S. Hojaev 14 October 1983 2413 BVRI PHOTOMETRY OF THE ECLIPSING BINARY QX Cas Thomas J. Moffett, T.G. Barnes, III 17 October 1983 2414 THE ABSOLUTE MAGNITUDE OF AZ CANCRI William P. Bidelman, D. Hoffleit 17 October 1983 2415 NEW DATA ABOUT THE APSIDAL MOTION IN THE SYSTEM OF RU MONOCEROTIS D.Ya.
    [Show full text]
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • Galaxies – AS 3011
    Galaxies – AS 3011 Simon Driver [email protected] ... room 308 This is a Junior Honours 18-lecture course Lectures 11am Wednesday & Friday Recommended book: The Structure and Evolution of Galaxies by Steven Phillipps Galaxies – AS 3011 1 Aims • To understand: – What is a galaxy – The different kinds of galaxy – The optical properties of galaxies – The hidden properties of galaxies such as dark matter, presence of black holes, etc. – Galaxy formation concepts and large scale structure • Appreciate: – Why galaxies are interesting, as building blocks of the Universe… and how simple calculations can be used to better understand these systems. Galaxies – AS 3011 2 1 from 1st year course: • AS 1001 covered the basics of : – distances, masses, types etc. of galaxies – spectra and hence dynamics – exotic things in galaxies: dark matter and black holes – galaxies on a cosmological scale – the Big Bang • in AS 3011 we will study dynamics in more depth, look at other non-stellar components of galaxies, and introduce high-redshift galaxies and the large-scale structure of the Universe Galaxies – AS 3011 3 Outline of lectures 1) galaxies as external objects 13) large-scale structure 2) types of galaxy 14) luminosity of the Universe 3) our Galaxy (components) 15) primordial galaxies 4) stellar populations 16) active galaxies 5) orbits of stars 17) anomalies & enigmas 6) stellar distribution – ellipticals 18) revision & exam advice 7) stellar distribution – spirals 8) dynamics of ellipticals plus 3-4 tutorials 9) dynamics of spirals (questions set after
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • PHAS 1102 Physics of the Universe 3 – Magnitudes and Distances
    PHAS 1102 Physics of the Universe 3 – Magnitudes and distances Brightness of Stars • Luminosity – amount of energy emitted per second – not the same as how much we observe! • We observe a star’s apparent brightness – Depends on: • luminosity • distance – Brightness decreases as 1/r2 (as distance r increases) • other dimming effects – dust between us & star Defining magnitudes (1) Thus Pogson formalised the magnitude scale for brightness. This is the brightness that a star appears to have on the sky, thus it is referred to as apparent magnitude. Also – this is the brightness as it appears in our eyes. Our eyes have their own response to light, i.e. they act as a kind of filter, sensitive over a certain wavelength range. This filter is called the visual band and is centred on ~5500 Angstroms. Thus these are apparent visual magnitudes, mv Related to flux, i.e. energy received per unit area per unit time Defining magnitudes (2) For example, if star A has mv=1 and star B has mv=6, then 5 mV(B)-mV(A)=5 and their flux ratio fA/fB = 100 = 2.512 100 = 2.512mv(B)-mv(A) where !mV=1 corresponds to a flux ratio of 1001/5 = 2.512 1 flux(arbitrary units) 1 6 apparent visual magnitude, mv From flux to magnitude So if you know the magnitudes of two stars, you can calculate mv(B)-mv(A) the ratio of their fluxes using fA/fB = 2.512 Conversely, if you know their flux ratio, you can calculate the difference in magnitudes since: 2.512 = 1001/5 log (f /f ) = [m (B)-m (A)] log 2.512 10 A B V V 10 = 102/5 = 101/2.5 mV(B)-mV(A) = !mV = 2.5 log10(fA/fB) To calculate a star’s apparent visual magnitude itself, you need to know the flux for an object at mV=0, then: mS - 0 = mS = 2.5 log10(f0) - 2.5 log10(fS) => mS = - 2.5 log10(fS) + C where C is a constant (‘zero-point’), i.e.
    [Show full text]
  • Part 2 – Brightness of the Stars
    5th Grade Curriculum Space Systems: Stars and the Solar System An electronic copy of this lesson in color that can be edited is available at the website below, if you click on Soonertarium Curriculum Materials and login in as a guest. The password is “soonertarium”. http://moodle.norman.k12.ok.us/course/index.php?categoryid=16 PART 2 – BRIGHTNESS OF THE STARS -PRELIMINARY MATH BACKGROUND: Students may need to review place values since this lesson uses numbers in the hundred thousands. There are two website links to online education games to review place values in the section. -ACTIVITY - HOW MUCH BIGGER IS ONE NUMBER THAN ANOTHER NUMBER? This activity involves having students listen to the sound that different powers of 10 of BBs makes in a pan, and dividing large groups into smaller groups so that students get a sense for what it means to say that 1,000 is 10 times bigger than 100. Astronomy deals with many big numbers, and so it is important for students to have a sense of what these numbers mean so that they can compare large distances and big luminosities. -ACTIVITY – WHICH STARS ARE THE BRIGHTEST IN THE SKY? This activity involves introducing the concepts of luminosity and apparent magnitude of stars. The constellation Canis Major was chosen as an example because Sirius has a much smaller luminosity but a much bigger apparent magnitude than the other stars in the constellation, which leads to the question what else effects the brightness of a star in the sky. -ACTIVITY – HOW DOES LOCATION AFFECT THE BRIGHTNESS OF STARS? This activity involves having the students test how distance effects apparent magnitude by having them shine flashlights at styrene balls at different distances.
    [Show full text]
  • U Antliae — a Dying Carbon Star
    THE BIGGEST, BADDEST, COOLEST STARS ASP Conference Series, Vol. 412, c 2009 Donald G. Luttermoser, Beverly J. Smith, and Robert E. Stencel, eds. U Antliae — A Dying Carbon Star William P. Bidelman,1 Charles R. Cowley,2 and Donald G. Luttermoser3 Abstract. U Antliae is one of the brightest carbon stars in the southern sky. It is classified as an N0 carbon star and an Lb irregular variable. This star has a very unique spectrum and is thought to be in a transition stage from an asymptotic giant branch star to a planetary nebula. This paper discusses possi- ble atomic and molecular line identifications for features seen in high-dispersion spectra of this star at wavelengths from 4975 A˚ through 8780 A.˚ 1. Introduction U Antliae (U Ant = HR 4153 = HD 91793) is classified as an N0 carbon star with a visual magnitude of 5.38 and B−V of +2.88 (Hoffleit 1982). It also is classified as an Lb irregular variable with small scale light variations. Scattered light optical images for U Ant have been made and these observations are consistent the existence of a geometrically thin (∼3 arcsec) spherically symmetric shell of radius ∼43 arcsec. The size of this shell agrees very well with that of the detached shell seen in CO radio line emission. These observations also show the presence of at least one, possibly two, shells inside the 43 arcsec shell (Gonz´alez Delgado et al. 2001). In this paper, absorption lines in the optical spectrum of U Ant are tentatively identified for this bright cool carbon star.
    [Show full text]
  • The H and G Magnitude System for Asteroids
    Meetings The BAA Observers’ Workshops The H and G magnitude system for asteroids This article is based on a presentation given at the Observers’ Workshop held at the Open University in Milton Keynes on 2007 February 24. It can be viewed on the Asteroids & Remote Planets Section website at http://homepage.ntlworld.com/ roger.dymock/index.htm When you look at an asteroid through the eyepiece of a telescope or on a CCD image it is a rather unexciting point of light. However by analysing a number of images, information on the nature of the object can be gleaned. Frequent (say every minute or few min- Figure 2. The inclined orbit of (23) Thalia at opposition. utes) measurements of magnitude over periods of several hours can be used to generate a lightcurve. Analysis of such a lightcurve Absolute magnitude, H: the V-band magnitude of an asteroid if yields the period, shape and pole orientation of the object. it were 1 AU from the Earth and 1 AU from the Sun and fully Measurements of position (astrometry) can be used to calculate illuminated, i.e. at zero phase angle (actually a geometrically the orbit of the asteroid and thus its distance from the Earth and the impossible situation). H can be calculated from the equation Sun at the time of the observations. These distances must be known H = H(α) + 2.5log[(1−G)φ (α) + G φ (α)], where: in order for the absolute magnitude, H and the slope parameter, G 1 2 φ (α) = exp{−A (tan½ α)Bi} to be calculated (it is common for G to be given a nominal value of i i i = 1 or 2, A = 3.33, A = 1.87, B = 0.63 and B = 1.22 0.015).
    [Show full text]
  • AST 112 – Activity #4 the Stellar Magnitude System
    Students: ____________________ _____________________ _____________________ _____________________ AST 112 – Activity #4 The Stellar Magnitude System Purpose To learn how astronomers express the brightnesses of stars Objectives To review the origin of the magnitude system To calculate using base-ten logarithms To set the scale for apparent magnitudes To define absolute magnitude in terms of apparent magnitude and distance To determine the distance to a star given its apparent and absolute magnitudes Introduction The stellar magnitude system ranks stars according to their brightnesses. The original idea came from the ancient Greek scientist Hipparchus (c. 130 B.C.), who proclaimed the brightest stars to be of the first “magnitude”, the next brightest of the second magnitude, and so on down to 6th magnitude for the dimmest stars. Modern astronomers have adopted this general idea, adding specific mathematical and astronomical definitions. We explore how astronomers describe star brightnesses below. Part #1: Stellar magnitude scales 1. Given the information in the introduction, does the number used to represent a star’s magnitude increase or decrease with increasing brightness? 2. Astronomers define a difference of 5 magnitudes to be equivalent to a multiplicative factor of 100 in brightness. How many times brighter is a magnitude + 1 star compared to a magnitude + 6 star? 3. Extrapolate the magnitude system beyond positive numbers: what would be the magnitude of a star 100 times brighter than a magnitude + 3 star? Briefly defend your answer. 4. Suppose you are told a star has a magnitude of zero. Does that make sense? Does this mean the star has no brightness? Table 4-1.
    [Show full text]
  • • Flux and Luminosity • Brightness of Stars • Spectrum of Light • Temperature and Color/Spectrum • How the Eye Sees Color
    Stars • Flux and luminosity • Brightness of stars • Spectrum of light • Temperature and color/spectrum • How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective zone D) Photosphere E) Chromosphere Flux and luminosity • Luminosity - A star produces light – the total amount of energy that a star puts out as light each second is called its Luminosity. • Flux - If we have a light detector (eye, camera, telescope) we can measure the light produced by the star – the total amount of energy intercepted by the detector divided by the area of the detector is called the Flux. Flux and luminosity • To find the luminosity, we take a shell which completely encloses the star and measure all the light passing through the shell • To find the flux, we take our detector at some particular distance from the star and measure the light passing only through the detector. How bright a star looks to us is determined by its flux, not its luminosity. Brightness = Flux. Flux and luminosity • Flux decreases as we get farther from the star – like 1/distance2 • Mathematically, if we have two stars A and B Flux Luminosity Distance 2 A = A B Flux B Luminosity B Distance A Distance-Luminosity relation: Which star appears brighter to the observer? Star B 2L L d Star A 2d Flux and luminosity Luminosity A Distance B 1 =2 = LuminosityB Distance A 2 Flux Luminosity Distance 2 A = A B Flux B Luminosity B DistanceA 1 2 1 1 =2 =2 = Flux = 2×Flux 2 4 2 B A Brightness of stars • Ptolemy (150 A.D.) grouped stars into 6 `magnitude’ groups according to how bright they looked to his eye.
    [Show full text]
  • Using the SFA Star Charts and Understanding the Equatorial Coordinate System
    Using the SFA Star Charts and Understanding the Equatorial Coordinate System SFA Star Charts created by Dan Bruton of Stephen F. Austin State University Notes written by Don Carona of Texas A&M University Last Updated: August 17, 2020 The SFA Star Charts are four separate charts. Chart 1 is for the north celestial region and chart 4 is for the south celestial region. These notes refer to the equatorial charts, which are charts 2 & 3 combined to form one long chart. The star charts are based on the Equatorial Coordinate System, which consists of right ascension (RA), declination (DEC) and hour angle (HA). From the northern hemisphere, the equatorial charts can be used when facing south, east or west. At the bottom of the chart, you’ll notice a series of twenty-four numbers followed by the letter “h”, representing “hours”. These hour marks are right ascension (RA), which is the equivalent of celestial longitude. The same point on the 360 degree celestial sphere passes overhead every 24 hours, making each hour of right ascension equal to 1/24th of a circle, or 15 degrees. Each degree of sky, therefore, moves past a stationary point in four minutes. Each hour of right ascension moves past a stationary point in one hour. Every tick mark between the hour marks on the equatorial charts is equal to 5 minutes. Right ascension is noted in ( h ) hours, ( m ) minutes, and ( s ) seconds. The bright star, Antares, in the constellation Scorpius. is located at RA 16h 29m 30s. At the left and right edges of the chart, you will find numbers marked in degrees (°) and being either positive (+) or negative(-).
    [Show full text]
  • The Universe in Powers Of
    154 The Sourcebook for Teaching Science ACTIVITY 8.1.2 Advance Organizers in 8.2 Orders of Magnitude: Your Science Text Textbook authors and publishers use “ traffi c The Universe in signs ” to inform readers about the structure and Powers of Ten content of the book. Research has shown that these advance organizers help students learn and “ How wide is the Milky Way galaxy? ” “ How small remember new material by developing structures is a carbon atom? ” These questions may sound or schemas into which new information can be simple, but their answers are virtually impos- placed. Sadly, many students ignore these signs and sible to comprehend since nothing in our realm spend much more time reading than necessary, yet of experience approximates either of these meas- with minimal understanding and retention. ures. To grasp the magnitude of such dimensions Before reading a textbook, you should study is perhaps impossible, but it is relatively easy to its structure and features. Complete the following express such dimensions by scaling up or down activity for a chapter that your science instructor (expressing them in orders of magnitude greater assigns. By understanding the structure of the text, or smaller) from things with whose dimensions we you will understand the structure of the discipline are familiar. An order of magnitude is the number and be better able to integrate new ideas into your of powers of 10 contained in the number and gives existing mental outline. a shorthand way to describe scale. An understand- ing of scale allows us to organize our thinking and Organization of the Book experience in terms of size and gives us a sense of Special features: What are the unique or special dimension within the universe.
    [Show full text]