Quantification of Water in Hydrous Ringwoodite

Total Page:16

File Type:pdf, Size:1020Kb

Quantification of Water in Hydrous Ringwoodite ORIGINAL RESEARCH ARTICLE published: 28 January 2015 EARTH SCIENCE doi: 10.3389/feart.2014.00038 Quantification of water in hydrous ringwoodite Sylvia-Monique Thomas 1*,StevenD.Jacobsen2, Craig R. Bina 2, Patrick Reichart 3, Marcus Moser 3, Erik H. Hauri 4, Monika Koch-Müller 5,JosephR.Smyth6 and Günther Dollinger 3 1 Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV, USA 2 Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA 3 Department für Luft- und Raumfahrttechnik LRT2, Universität der Bundeswehr München, Neubiberg, Germany 4 Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC, USA 5 Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Potsdam, Germany 6 Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA Edited by: Ringwoodite, γ-(Mg,Fe)2SiO4, in the lower 150 km of Earth’s mantle transition zone Mainak Mookherjee, Cornell (410–660 km depth) can incorporate up to 1.5–2wt% H2O as hydroxyl defects. We University, USA present a mineral-specific IR calibration for the absolute water content in hydrous Reviewed by: ringwoodite by combining results from Raman spectroscopy, secondary ion mass Geoffrey David Bromiley, University of Edinburgh, UK spectrometry (SIMS) and proton-proton (pp)-scattering on a suite of synthetic Mg- and Marc Blanchard, CNRS - Université Fe-bearing hydrous ringwoodites. H2O concentrations in the crystals studied here Pierre et Marie Curie, France range from 0.46 to 1.7wt% H2O (absolute methods), with the maximum H2Oin *Correspondence: the same sample giving 2.5 wt% by SIMS calibration. Anchoring our spectroscopic Sylvia-Monique Thomas, results to absolute H-atom concentrations from pp-scattering measurements, we report Department of Geoscience, University of Nevada Las Vegas, frequency-dependent integrated IR-absorption coefficients for water in ringwoodite −1 −2 4505 S. Maryland Parkway, LFG 114, ranging from 78,180 to 158,880 Lmol cm , depending upon frequency of the OH Las Vegas NV 89154-4010, USA absorption. We further report a linear wavenumber IR calibration for H2O quantification in e-mail: sylvia-monique.thomas@ hydrous ringwoodite across the Mg SiO -Fe SiO solid solution, which will lead to more unlv.edu 2 4 2 4 accurate estimations of the water content in both laboratory-grown and naturally occurring ringwoodites. Re-evaluation of the IR spectrum for a natural hydrous ringwoodite inclusion in diamond from the study of Pearson et al. (2014) indicates the crystal contains 1.43 ± 0.27 wt% H2O, thus confirming near-maximum amounts of H2O for this sample from the transition zone. Keywords: IR spectroscopy, water in nominally anhydrous minerals, transition zone, mineral-specific absorption coefficient, SIMS, Raman spectroscopy, proton-proton scattering, ringwoodite INTRODUCTION in ringwoodite, mainly involving charge-compensating vacancies Ringwoodite was first described in the Tenham meteorite found at the octahedral Mg-Fe sites, the tetrahedral Si site, and normally in Queensland, Australia, by Binns et al. (1969) and named after vacant interstitial sites (e.g., Kudoh et al., 2000; Smyth et al., 2003, the Australian mineral physicist Ted Ringwood. The first terres- 2004; Chamorro Pérez et al., 2006; Blanchard et al., 2009; Mrosko trial occurrence of ringwoodite was recently reported by Pearson et al., 2013; Panero et al., 2013; Purevjav et al., 2014; Yang et al., et al. (2014), who discovered a hydrous ringwoodite inclusion in 2014). ultra-deep diamonds from Juina, Brazil. Ringwoodite is one of Because of its likely abundance (>50% of a pyrolite model) themajorcomponentsoftheEarth’smantletransitionzone(e.g., in the lower 150 km of the Earth’s mantle transition zone Bernal, 1936; Akaogi and Akimoto, 1977; Anderson and Bass, (410–660 km depth) and for its ability to incorporate significant 1986; Bina and Wood, 1986; Irifune, 1987; Ringwood and Major, amounts of H2O, we have undertaken this study on determining 1967) and although nominally anhydrous, ringwoodite is well- the absolute water content in ringwoodite. Infrared (IR) spec- known to incorporate up to 1.5–2 wt% of water as (OH)− point troscopy is one of the most common tools for analysis of water in defects in both laboratory-grown and naturally occurring samples minerals, for which mineral-specific absorption coefficients are (e.g., Kohlstedt et al., 1996; Bolfan-Casanova et al., 2000; Smyth required. The absolute water content in minerals was conven- et al., 2003; Pearson et al., 2014). tionally determined by quantitative dehydration weight analyses Water in nominally anhydrous minerals (NAMs) influences (e.g., Aines and Rossman, 1984), but more suitable for the typ- phase relations (e.g., Hirschmann, 2006), melting temperature ically very small amounts (μg) of material from high-pressure (e.g., Hirth and Kohlstedt, 1996; Hirschmann et al., 2009; Tenner and high-temperature syntheses, two additional methods have et al., 2012), and physical properties including electrical conduc- been developed: elastic recoil detection analysis (e.g., Aubaud tivity (e.g., Yoshino et al., 2009), thermal conductivity (Thomas et al., 2009; Bureau et al., 2009; Withers et al., 2012)andproton- et al., 2012), elasticity (e.g., Jacobsen, 2006), and rheology (e.g., proton (pp) scattering (e.g., Gose et al., 2008; Thomas et al., 2008; Kavner, 2003). Several OH defect mechanisms have been studied Reichart and Dollinger, 2009). www.frontiersin.org January 2015 | Volume 2 | Article 38 | 1 Thomas et al. Water in ringwoodite In addition to theoretically based IR calibrations for water in ringwoodite (Balan et al., 2008; Blanchard et al., 2009), % % % experimentally determined IR absorption coefficients have been % 0.30 0.06 0.30 0.06 0.01 0.03 0.02 estimated for ringwoodite either by using general calibrations 0.02 ± ± ± ± ± ± ± (Paterson, 1982; Libowitzky and Rossman, 1997)orfromsec- ± ondary ion mass spectrometry (SIMS) measurements of water contents, which we note are usually calibrated against the water content in silicate glasses or minerals measured by IR. Absorption coefficients for water quantification have been determined for ringwoodites with fayalite component (Fa100, Fe2SiO4)through Fa40 and for pure forsterite (Fo100, Mg2SiO4) composition (Koch-Müller and Rhede, 2010) but not for compositions span- 0.140.12 0.89 0.36 0.07 1.11 0.51 2.50 ning the likely Fe-content of the mantle transition zone from Fo75 0.30 1.38 ± ± ± ± to Fo95. ± In this study we calibrate the water concentrations in synthetic hydrous ringwoodite from IR spectroscopy against independently determined values from Raman spectroscopy, SIMS and the absorption coefficient. absolute H-concentration measured by pp-scattering microscopy. Broad-beam pp-scattering has previously been applied to mm- sized samples (Thomas et al., 2008). However, until recently this quantification technique was not feasible for smaller samples syn- 0.18 1.16 0.35 1.65 thesized under very high pressure-temperature conditions in the 0.23 0.85 ± ± multi-anvil press. Here, we employ pp-scattering experiments on ± synthetic ringwoodite crystals less than 200 μm in largest dimen- sion and quantify 3D distributions of atomic hydrogen at μm spatial resolution. We also present hydrogen depth-profiles and 2D hydrogen maps and H2O concentrations in samples used for ) Independent determined Independent determined Independent determined the spectroscopic calibration. We calculate absorption coefficients 2 − for a suite of hydrous ringwoodite with varying Fe- and water (cm concentrations, test their wavenumber-dependence, and compare i results with literature data. The IR calibration can thus be used ) PP-scattering (wt%) Raman spectroscopy (wt%) SIMS (wt%) to determine the absolute water content in hydrous ringwoodite, 1 − m for SZ0820, respectively. which we also apply to the natural hydrous ringwoodite inclusion μ in diamond reported by Pearson et al. (2014). MATERIALS AND METHODS . )(cm 1 SAMPLES − Samples used in this study were synthesized at high P-T condi- O analyses. 2 m for SZ0570 and 50 tions in multi-anvil presses and cover a range of H2Ocontents μ and compositions (Table 1). Chemical analyses and other char- )(cm acterizationsofthesinglecrystalsusedinthisstudyhavebeen 3 published elsewhere: for samples MA120, MA62, MA56, and (cm MA75, see Koch-Müller and Rhede (2010), Taran et al. (2009), Koch-Müller and Rhede (2010) ) volume wavenumber maximum water content from water content from water content from and Koch-Müller et al. (2009); Koch-Müller et al. (2011); for sam- 3 ple SZ0820, see Ye et al. (2012); for samples SZ9901 and SZ0104, see Smyth et al. (2003); Smyth et al. (2004), Thomas et al. (2012), and Jacobsen et al. (2004); for sample SZ0570, see Mao et al. (2011). High-quality, crack- and inclusion-free isotropic single * μ m) crystals ranging in longest dimension from 50 to 500 mwere µ ( selected for analyses. The color of the ringwoodites used here thickness (g/cm varies from colorless to dark blue to almost opaque depending on Fe concentration. Fo60Fo39Fo22Fay – – – 4.09 – 4.36 40.52 4.56 41.11 4.87 41.65 3220 42.14 3240 3320 3244 3400 3260 3358 81,720 56,820 3386 31,440 32,000 – – – – 0.46 – – – 0.30 0.19 0.21 3D HYDROGEN MICROSCOPY BY PROTON-PROTON SCATTERING Proton-proton scattering at proton energies up to 25 MeV has % % % % been used in a broad-beam configuration to perform hydrogen Sample characterization and water content from Thicknesses of samples used for pp-scattering analyses were 71 Table 1 | Sample information and IR spectroscopic data for H Run no. Run info SampleSZ0820 DensitySZ9901 Fo100 MolarSZ0104 Fo90SZ0570 Fo87 Mean 84 Fo83MA62 39MA56 13 3.47MA75 Band 18 3.65Note that 40.55 we A use one-directional% 3.67 absorbance values derived from unpolarized spectra 40.27 3.73 of* cubic ringwoodite and multiply them 40.57 by 3232 three to calculate the 40.59 3240 3273 3130 3240 3168 361,800 3169 188,500 3174 304,500 1.77 234,900 1.13 0.91 – 0.94 depth microscopy in mm-sized mineral platelets, as described MA120 Frontiers in Earth Science | Earth and Planetary Materials January 2015 | Volume 2 | Article 38 | 2 Thomas et al.
Recommended publications
  • Probing the Earth's Deep Interior Through Geochemistry
    Probing the Earth’s Deep Interior Through Geochemistry White, W. M. (2015). Probing the Earth’s Deep Interior through Geochemistry. Geochemical Perspectives, 4(2), 95-251. European Association of Geochemistry Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Volume 4, number 2 | October 2015 Probing the Earth’s Deep Interior Through Geochemistry WILLIAM M. WHITE WILLIAM Each issue of Geochemical Perspectives pre- sents a single article with an in-depth view Editorial Board on the past, present and future of a field of geochemistry, seen through the eyes of highly Liane G. BenninG respected members of our community. The GFZ Postdam, Germany articles combine research and history of the University of Leeds, UK field’s development and the scientist’s opinions about future directions. We welcome personal glimpses into the author’s scientific life, how Janne BLicHerT-TofT ideas were generated and pitfalls along the way. ENS Lyon, France Perspectives articles are intended to appeal to the entire geochemical community, not only to experts. They are not reviews or monographs; they go beyond the current state of the art, im lliott providing opinions about future directions and T e University of Bristol, UK impact in the field. Copyright 2015 European Association of Geochemistry, EAG. All rights reserved. This journal and the individual contributions contained in it are protected under copy- right by the EAG. The following terms and conditions eric H. oeLkers apply to their use: no part of this publication may be University College London, UK reproduced, translated to another language, stored CNRS Toulouse, France in a retrieval system or transmitted in any form or by any means, electronic, graphic, mechanical, photo- copying, recording or otherwise, without prior written permission of the publisher.
    [Show full text]
  • Exploration of Earth's Deep Interior by Merging Nanotechnology, Diamond-Anvil Cell Experiments, and Computational Crystal Chem
    Exploration of Earth’s Deep Interior by Merging Nanotechnology, Diamond-Anvil Cell Experiments, and Computational Crystal Chemistry Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jeffrey Scott Pigott, M.S. Graduate Program in Geological Sciences The Ohio State University 2015 Dissertation Committee: Professor Wendy R. Panero, Advisor Professor W. Berry Lyons Professor Michael Barton Professor David R. Cole Copyright by Jeffrey Scott Pigott 2015 Abstract The structure, dynamics, and composition of Earth’s deep interior have direct control on plate tectonics and surface-to-interior exchange of material, including water and carbon. To properly interpret geophysical data of the Earth’s interior, accurate and precise measurements of the material properties of the constituent mineral phases are required. Additionally, experimentally derived data need to be augmented by computational chemistry and modeling of physical properties to elucidate the effect of compositional variations and deep storage of volatile components (e.g. H2O and CO2) within the crystalline phases. This dissertation uses in situ high pressure, high-temperature experiments in the laser-heated diamond anvil cell (LHDAC) coupled with synchrotron-based x-ray diffraction. The thermal expansion and bulk modulus of Ni and SiO2 are measured to P = ~110 GPa and T = ~3000 K. Nickel is a significant component of the Earth’s core and SiO2 is the fundamental building block of the Earth’s mantle and crust. We have designed the first controlled-geometry samples of Ni and SiO2, manufactured using nanofabrication techniques, and specifically tuned to reduce systematic errors in the measurement.
    [Show full text]
  • CONTROL ID: 954710 TITLE: Deep Water Cycle: Its Role in Earth's
    Proof CONTROL ID: 954710 TITLE: Deep Water Cycle: its Role in Earth's Thermal Evolution and Plate Tectonics PRESENTATION TYPE: Assigned by Committee (Oral or Poster) CURRENT SECTION/FOCUS GROUP: Union (U) CURRENT SESSION: U15. Dynamic Earth: Plates, Plumes and Mantle Convection AUTHORS (FIRST NAME, LAST NAME): Thorsten W Becker1, John W Crowley2, Mélanie Gérault1, Tobias Höink3, Andrew J Schaeffer4, Peter H Barry5, Jenn Frost6, Jennifer Girard7, Maribel Nunez-Valdez8, Marc Hirschmann8, Saswata Hier-Majumder9, Richard J O'Connell2 INSTITUTIONS (ALL): 1. Earth Sciences, USC, Los Angeles, CA, United States. 2. Harvard University, Cambridge, MA, United States. 3. Rice University, Houston, TX, United States. 4. Dublin Institute for Advanced Studies, Dublin, Ireland. 5. Scripps, UCSD, La Jolla, CA, United States. 6. University of Bristol, Bristol, United Kingdom. 7. Florida International University, Miami, FL, United States. 8. University of Minnesota, Minneapolis, MN, United States. 9. University of Maryland, College Park, MD, United States. Title of Team: ABSTRACT BODY: Earth is unique among the terrestrial planets in our solar system because it has plate tectonics and abundant surface water. It has long been suggested that these two salient features are intimately related. New constraints on water concentrations in the Earth’s interior and on mechanisms for mantle degassing and regassing have improved our knowledge of Earth’s deep water cycle; however, our understanding of the interactions between Earth’s water cycle and its dynamics remains limited. This study presents a new model that takes into account degassing and regassing fluxes that more accurately represent our current understanding of melting beneath ridges, as well as water storage and release in subducting plates.
    [Show full text]
  • Hydration of Olivine and Earth's Deep Water Cycle
    Hydration of Olivine and Earth’s Deep Water Cycle IASPEI October 5, 2005 Olivine Hydration and Earth’s Deep Water Cycle J. R. Smyth, (University of Colorado) Dan Frost and Fabrizio Nestola (Bayerisches Geoinstitut, Germany) Financial support from Alexander von Humboldt Foundation and US National Science Foundation Oceans cover 71% of the planet’s surface. 71% of the surface But only 0.025% of the mass Earth’s Deep Water Cycle • 0.15 percent H2O by weight in the top 10 km of the descending slab is sufficient to recycle the entire ocean volume once over 4.5 billion years at current subduction rates. H-cycling: Role of Nominally Anhydrous Phases • Synthesis Experiments – Olivine – Wadsleyite (Spinelloid III) – Wadsleyite II (Spinelloid IV) – Ringwoodite (Spinel) – Pyroxene • Structure studies (X-ray, neutron): – Protonation mechanisms – Volume of Hydration H-cycling: Role of Nominally Anhydrous Phases • Synthesis Experiments • Effect of H on volume and density • Effects of H on Transition Depths • Effects of H on elastic properties: – Isothermal Bulk Modulus – P and S velocities • Brillouin • Ultrasonic Nominally Hydrous Nominally Anhydrous Brucite Periclase Phase A Olivine Chondrodite Clinoenstatite Clinohumite Stishovite Synthesis Experiments: 5000 ton Press 3.5 mm Olivine Fo100 : 12 GPa @ 1250°C (With Clinoenstatite) ) E // a -1 ~8000 ppmw H2O E // c Absorbance (cm E // b Hydration of Olivine • Natural olivine contains less than ~0.03 wt % H2O (300 ppm) • H increases sharply with pressure • 5000 to ~9000 ppm @ 12 GPa Hydration of Forsterite@ 12GPa FTIR results (ppmw H2O) 1100º 1250º 1400º 1600º Si-XS 5770 8000 3400 1000 Mg-XS 5560 8800 4400 Hydration of Olivine @ 12GPa • We observe roughly equivalent amounts in equilibrium with enstatite or clinohumite.
    [Show full text]
  • Seismic Evidence for Water Deep in Earth's Upper Mantle
    R EPORTS million years ago (Ma), subduction mainly took place in the eastern Mediterranean with Seismic Evidence for Water Deep mostly south- and eastward-dipping subduc- tion. Remnants of the subducted slab can be in Earth’s Upper Mantle found in the lower mantle between 1300 and 1900 km depth under locations such as Egypt Mark van der Meijde,* Federica Marone, Domenico Giardini, and Libya (18). Subduction was ubiquitous Suzan van der Lee after 80 Ma. At present, active subduction zones are found in southern Italy and Greece. Water in the deep upper mantle can influence the properties of seismic dis- We investigated seismic discontinuities in the continuities in the mantle transition zone. Observations of converted seismic deep upper mantle of the Mediterranean re- waves provide evidence of a 20- to 35-kilometer-thick discontinuity near a gion by searching seismograms for seismic S depth of 410 kilometers, most likely explained by as much as 700 parts per waves that converted from P waves at the million of water by weight. discontinuities. Our search was facilitated by a recent temporary deployment of mobile Two major seismic velocity discontinuities, lies in the mantle transition zone would broadband seismic stations [MIDSEA (19)] at nominal depths of 410 and 660 km, border have no seismically observable effect on along the plate boundary between Eurasia the transition zone of Earth’s mantle. The the thickness of the 660-km discontinuity and Africa. We analyzed over 500 seismo- 410-km discontinuity is the result of the tran- (7), whereas the effect on the 520-km dis- grams recorded in the Mediterranean region sition from olivine to wadsleyite.
    [Show full text]
  • Carbon Dioxide Oxygen Cycle Diagram Worksheet
    Carbon Dioxide Oxygen Cycle Diagram Worksheet Albert remains subjunctive: she glass her prayer novelises too penetrably? Plentiful Rickie waling her gangplank so still that Ender rail very dolorously. Puffingly needed, Dominic sleeved half-pike and cooperate epicenter. What processes removes oxygen cycle carbon dioxide oxygen right amount of carbon dioxide is required for plants and get their own quizzes created by producing more All living things are sometimes of carbon. Carbon Dioxide Oxygen Cycle Worksheet. Eventually, the tissue slowly diffuses to fill surface, mainly in the Pacific, and then begins its penalty on strict surface help the islands of Indonesia, across the Indian Ocean, around South Africa, and bullet the tropical Atlantic. Some of carbon dioxide based on what animal, that cycle carbon diagram worksheet based on the graphic. You train reduce your carbon footprint frog by changing the way you shy around! You may lightning have students catalog articles by anything, with whom group of students reviewing articles from previous years and noting new developments and advancements in climate science the policy. Which open the following processes removes carbon dioxide from the atmosphere? It down the wide common element of subsequent human body. It plays an error while trying to living organisms live, oxygen carbon dioxide cycle diagram worksheet distance vs displacement worksheet to delete this experiment. Trees that oxygen when crops or comments or cool your worksheet. Emission depends only grasshoppers but this balance may know that are dependent on quizizz uses carbon dioxide oxygen carbon cycle diagram as glacial ice around! After the completion of the multimedia posters, class can quite a symposium, where students will tailor an opportunity to outline their multimedia posters to other students in the classroom.
    [Show full text]
  • Influence of the Ringwoodite-Perovskite Transition on Mantle Convection in Spherical Geometry As a Function of Clapeyron Slope A
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Solid Earth Discuss., 3, 713–741, 2011 Solid Earth www.solid-earth-discuss.net/3/713/2011/ Discussions doi:10.5194/sed-3-713-2011 © Author(s) 2011. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Solid Earth (SE). Please refer to the corresponding final paper in SE if available. Influence of the Ringwoodite-Perovskite transition on mantle convection in spherical geometry as a function of Clapeyron slope and Rayleigh number M. Wolstencroft1,* and J. H. Davies1 1School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK *now at: University of Ottawa, Ottawa, Ontario, Canada Received: 21 July 2011 – Accepted: 27 July 2011 – Published: 4 August 2011 Correspondence to: J. H. Davies ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 713 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract We investigate the influence on mantle convection of the negative Clapeyron slope ringwoodite to perovskite and ferro-periclase mantle phase transition, which is corre- lated with the seismic discontinuity at 660 km depth. In particular, we focus on un- 5 derstanding the influence of the magnitude of the Clapeyron slope (as measured by the Phase Buoyancy parameter, P ) and the vigour of convection (as measured by the Rayleigh number, Ra) on mantle convection. We have undertaken 76 simulations of isoviscous mantle convection in spherical geometry varying Ra and P . Three domains of behaviour were found: layered convection for high Ra and more negative P , whole 10 mantle convection for low Ra and less negative P and transitional behaviour in an inter- vening domain.
    [Show full text]
  • Water Content in Garnet from Eclogites: Implications for Water Cycle in Subduction Channels
    minerals Article Water Content in Garnet from Eclogites: Implications for Water Cycle in Subduction Channels Yiren Gou 1, Qin Wang 1,* , Yan Li 1,2 and Richard Wirth 2 1 State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China; [email protected] (Y.G.); [email protected] (Y.L.) 2 GeoForschungsZentrum Potsdam, Section 3.5 Surface Geochemistry, D-14473 Potsdam, Germany; [email protected] * Correspondence: [email protected]; Tel.: +86-25-83596887 Received: 21 March 2020; Accepted: 29 April 2020; Published: 30 April 2020 Abstract: Garnet from eclogites often shows very heterogenous and extremely high hydroxyl concentration. Eight eclogite samples were selected from the Sulu ultrahigh-pressure terrane and the Sumdo high-pressure metamorphic belt (Lhasa). The mean hydroxyl concentration in pyrope-rich and almandine-rich garnet varies from 54 to 427 ppm H2O and increases with the retrogression degree of eclogites. TEM observations reveal nanometer-sized anthophyllite exsolutions and clinochlore inclusions in water-rich domains in garnet, where anthophyllite is partly replaced by clinochlore. Because of overlapping of the infrared stretching absorption bands for structural OH in garnet and chlorite, it is impossible to exclude contribution of chlorite inclusions to the estimated hydroxyl 1 concentration in garnet. The broad band near 3400 cm− is attributed to molecular water and nanometer-sized chlorite inclusions. Anthophyllite exsolutions may be formed by decomposition of hydrous garnet from ultrahigh-pressure eclogites during exhumation. Significant amounts of water can be stored in garnet from massif eclogites in the forms of hydroxyl in garnet and nanometer-sized inclusions of anthophyllite and clinochlore, as well as fluid inclusions.
    [Show full text]
  • The Upper Mantle and Transition Zone
    The Upper Mantle and Transition Zone Daniel J. Frost* DOI: 10.2113/GSELEMENTS.4.3.171 he upper mantle is the source of almost all magmas. It contains major body wave velocity structure, such as PREM (preliminary reference transitions in rheological and thermal behaviour that control the character Earth model) (e.g. Dziewonski and Tof plate tectonics and the style of mantle dynamics. Essential parameters Anderson 1981). in any model to describe these phenomena are the mantle’s compositional The transition zone, between 410 and thermal structure. Most samples of the mantle come from the lithosphere. and 660 km, is an excellent region Although the composition of the underlying asthenospheric mantle can be to perform such a comparison estimated, this is made difficult by the fact that this part of the mantle partially because it is free of the complex thermal and chemical structure melts and differentiates before samples ever reach the surface. The composition imparted on the shallow mantle by and conditions in the mantle at depths significantly below the lithosphere must the lithosphere and melting be interpreted from geophysical observations combined with experimental processes. It contains a number of seismic discontinuities—sharp jumps data on mineral and rock properties. Fortunately, the transition zone, which in seismic velocity, that are gener- extends from approximately 410 to 660 km, has a number of characteristic ally accepted to arise from mineral globally observed seismic properties that should ultimately place essential phase transformations (Agee 1998). These discontinuities have certain constraints on the compositional and thermal state of the mantle. features that correlate directly with characteristics of the mineral trans- KEYWORDS: seismic discontinuity, phase transformation, pyrolite, wadsleyite, ringwoodite formations, such as the proportions of the transforming minerals and the temperature at the discontinu- INTRODUCTION ity.
    [Show full text]
  • Implications of Subduction Rehydration for Earth's Deep Water
    Implications of Subduction Rehydration for Earth’s Deep Water Cycle Lars Rüpke Physics of Geological Processes, University of Oslo, Oslo, Norway, and SFB 574 Volatiles and Fluids in Subduction Zones, Kiel, Germany Jason Phipps Morgan Cornell University, Ithaca, New York, USA and SFB 574 Volatiles and Fluids in Subduction Zones, Kiel, Germany Jacqueline Eaby Dixon RSMAS/MGG, University of Miami, Miami, Florida, USA The “standard model” for the genesis of the oceans is that they are exhalations from Earth’s deep interior continually rinsed through surface rocks by the global hydrologic cycle. No general consensus exists, however, on the water distribution within the deeper mantle of the Earth. Recently Dixon et al. [2002] estimated water concentrations for some of the major mantle components and concluded that the most primitive (FOZO) are significantly wetter than the recycling associated EM or HIMU mantle components and the even drier depleted mantle source that melts to form MORB. These findings are in striking agreement with the results of numerical modeling of the global water cycle that are presented here. We find that the Dixon et al. [2002] results are consistent with a global water cycle model in which the oceans have formed by efficient outgassing of the mantle. Present-day depleted mantle will contain a small volume fraction of more primitive wet mantle in addition to drier recycling related enriched components. This scenario is consis- tent with the observation that hotspots with a FOZO-component in their source will make wetter basalts than hotspots whose mantle sources contain a larger fraction of EM and HIMU components.
    [Show full text]
  • FY 2011 LDRD Report to Congress
    Department of Energy FY 2011 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories For additional information on the Department's Laboratory Directed Research and Development program, please see the Office of Science website: http://science.energy.gov/lpe/laboratory-directed-research-and-development/ or the National Nuclear Security Administration website: http://tri-lab.lanl.gov/ Formally, this Report responds to the Conference Report (H.R. Rep. No. 106-988 (Conf. Rep.)) accompanying the Fiscal Year (FY) 2001 Energy and Water Development Appropriations Act, which requested the DOE Chief Financial Officer “develop and execute a financial accounting report of LDRD expenditures by laboratory and weapons production plant.” It also responds to the National Defense Authorization Act for Fiscal Year 1997 (Pub. L. No. 104-201), which requires submission each year of “a report on the funds expended during the preceding fiscal year on [LDRD] activities […] to permit an assessment of the extent to which such activities support the national security mission of the Department of Energy.” Further, this Report addresses the requirement in the Conference Report (H.R. Rep. No. 107-258 (Conf. Rep.)) accompanying the FY 2002 Energy and Water Development Appropriations Act, which requests the Secretary of Energy include in the annual Report to Congress on LDRD expenditures “an affirmation that all LDRD activities derived from funds of other agencies have been conducted in a manner that support science and
    [Show full text]
  • RINGWOODITE-OLIVINE ASSEMBLAGES in DHOFAR 922 L6 MELT VEINS. D. D. Badjukov1, F. Brandstaetter2, G. Kurat3, E. Libowitzky3 and J
    Lunar and Planetary Science XXXVI (2005) 1684.pdf RINGWOODITE-OLIVINE ASSEMBLAGES IN DHOFAR 922 L6 MELT VEINS. D. D. Badjukov1, F. Brandstaetter2, G. Kurat3, E. Libowitzky3 and J. Raitala4, 1V.I. Vernadsky Institute RAS, Kosygin str. 19, 11991, Moscow, Russia, [email protected], 2Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria, [email protected], 3Universität Wien, Institut für Geologische Wissenschaften, Althanstr. 14, A- 1090 Wien, Austria, [email protected], 3University of Oulu, FIN 90401, Finland, [email protected], Introduction. Shock-induced melt veins stand out gave in average a composition enriched in Al and Ca among different types of veins in ordinary chondrites relatively to the host chondrite, which is proposed to due to their specific mineral assemblages. They often be due to preferred melting of plagioclase. Embedded contain high pressure polymorphs of host chondrite in the veins are non-melted inclusions of the host minerals like wadsleyite, ringwoodite, majorite, chondrite which were converted to different phases, akimotoite and so on [1-4]. Because of a compositional common are ringwoodite, olivine, majorite, pyroxene similarity between chondrites and the Earth’s mantle, and plagioclase glass. Several areas contain also green the shock melt veins are an unique natural source of wadsleyite aggregates. Some majorite and ringwoodite study of mantle mineralogy. Two lithologies are clasts are enveloped by a silica mantle. Ringwoodite is characteristic for the veins: silicates, oxide(s), observed also at a distance of no more than ~0.5 mm sulfide(s) and metal crystallized from a melt and solid from vein walls in the host rock.
    [Show full text]