Boltzmann Equation II: Binary Collisions

Total Page:16

File Type:pdf, Size:1020Kb

Boltzmann Equation II: Binary Collisions Physics 127b: Statistical Mechanics Boltzmann Equation II: Binary Collisions Binary collisions in a classical gas Scattering out Scattering in v'1 v'2 v 1 v 2 R v 2 v 1 v'2 v'1 Center of V' Mass Frame V θ θ b sc sc R V V' Figure 1: Binary collisions in a gas: top—lab frame; bottom—centre of mass frame Binary collisions in a gas are very similar, except that the scattering is off another molecule. An individual scattering process is, of course, simplest to describe in the center of mass frame in terms of the relative E velocity V =Ev1 −Ev2. However the center of mass frame is different for different collisions, so we must keep track of the results in the lab frame, and this makes the calculation rather intricate. I will indicate the main ideas here, and refer you to Reif or Landau and Lifshitz for precise discussions. Lets first set things up in the lab frame. Again we consider the pair of scattering in and scattering out processes that are space-time inverses, and so have identical cross sections. We can write abstractly for the scattering out from velocity vE1 due to collisions with molecules with all velocities vE2, which will clearly be proportional to the number f (vE1) of molecules at vE1 (which we write as f1—sorry, not the same notation as in the previous sections where f1 denoted the deviation of f from the equilibrium distribution!) and the 3 3 number f2d v2 ≡ f(vE2)d v2 in each velocity volume element, and then we must integrate over all possible vE0 vE0 outgoing velocities 1 and 2 ZZZ df (vE ) 1 =− w(vE0 , vE0 ;Ev , vE )f f d3v d3v0 d3v0 . (1) dt 1 2 1 2 1 2 2 1 2 out vE0 vE0 Similarly for the scattering in from collisions between molecules with velocities 1 and 2 which collide to 1 give outgoing velocities vE1 and vE2 ZZZ df (vE ) 1 = w(vE , vE ;Ev0 , vE0 )f0f 0d3v d3v0 d3v0 (2) dt 1 2 1 2 1 2 2 1 2 in f 0 = f(vE0 ) (with 1 1 etc.). The space-time inversion symmetry tells us that w(vE0 , vE0 ;Ev , vE ) = w(vE , vE ;Ev0 vE0 ), 1 2 1 2 1 2 1 2 (3) so that ZZZ df (vE ) 1 = w(vE0 , vE0 ;Ev , vE )(f0f 0 − f f )d3v d3v0 d3v0 . (4) dt 1 2 1 2 1 2 1 2 2 1 2 coll These expressions are good for setting up the problem and making general arguments, but there is a 9 dimensional integral to do, and the scattering function w is comprised of many delta functions that express vE0 vE0 the conservation of energy and momentum (only a very limited set of 1 and 2 are consistent with the incoming velocities) that are complicated to write down directly in terms of the lab-frame velocities. We consequently transform to the center of mass frame, defining center of mass and relative coordinates m rE + m rE 1 1 2 2 E rEc = , R =Er1 −Er2, (5) m1 + m2 the corresponding velocities E E cE = drEc/dt, V = dR/dt, (6) and similar primed expressions in terms of the outgoing velocities. The conservation laws are now easy to state cE =Ec0, VE = VE 0 , (7) and we can simply describe the scattering rate, which in the CM frame is entirely analogous to scattering off a fixed center, in terms of a differential (angular) cross section scattering rate into solid angle dsc = nscVσ(θsc, V )dsc, (8) with nsc the density of scatterers, here the particles of velocity v2. Thus we can write the collision term: Z Z df (vE ) 1 0 0 3 = f(vE )f (vE ) − f(vE )f (vE ) |vE −Ev | σ (|vE −Ev | ,θsc) dscd vE (9) dt 1 2 1 2 1 2 1 2 2 coll vE2 sc with the geometry as shown in Fig. 1 and σ the differential cross section in the center of mass frame. So now we are doing the integral in the centre of mass frame for each vE2—a much simpler integration—but must vE0 vE0 vE , vE θ evaluate 1 and 2 in terms of 1 2 and sc. Thus the collision term can be evaluated as a four dimensional integral For more details consult Reif, chapter 14 and particularly §14.8. Boltzmann’s H-theorem An interesting application of the Boltzmann equation is Boltzmann’s H-theorem. Boltzmann showed from the Boltzmann equation that the quantity H (not the Hamiltonian!) defined by Z H = d3vfln f (10) 2 never increases dH ≤ . dt 0 (11) Thus, within the limitations of the Boltzmann equation, −H plays the role of a generalization of the entropy (actually S/kT )toarbitrary distributions, not restricted to ones characterized by macroscopic thermodynamic variables. A sketch of the derivation is as follows. The time derivative of H is Z dH df = d3v 1 ( + f ) dt 1 dt 1 ln 1 (12) ZZZZ coll = w(vE0 , vE0 ;Ev , vE )(f0f 0 − f f )( + f )d3v d3v d3v0 d3v0 1 2 1 2 1 2 1 2 1 ln 1 1 2 1 2 (13) Using the symmetry of the scattering process under spatial inversions, time reversal, and interchange of the two incoming (and outgoing) molecules this can be written in four different ways, with all terms the same ( + f ) ( + f ), −( + f 0), −( + f 0) except 1 ln 1 is replaced by 1 ln 2 1 ln 1 1 ln 2 respectively. Summing these four expressions then gives ZZZZ dH 1 =− w(vE0 , vE0 ;Ev , vE ) ln f 0f 0 − ln f f f 0f 0 − f f d3v d3v d3v0 d3v0 (14) dt 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 But for any positive x and y it can be seen that (ln y − ln x)(y − x) ≥ 0 (15) y = x dH/dt ≤ f 0f 0 = f f with the equal sign only valid for . Hence 0, and the equality only holds if 1 2 1 2. f 0f 0 = f f The equilibrium condition 1 2 1 2 is equivalent to f 0 + f 0 = f + f ln 1 ln 2 ln 1 ln 2 (16) i.e. the sum of quantities before the collision equals the sum of corresponding quantities after the collision, for all collisions. Since the equilibrium distribution must also be isotropic, so that the momentum vector cannot occur in the distribution, this shows that the equilibrium distribution must be the exponential of a term proportional to the kinetic energy of the particle, i.e. the distribution must be the Maxwell distribution, and then the proportionality constant is β. Conservation laws and hydrodynamic equations For quantities that are conserved in the collisions, such as mass, momentum and energy, if we sum these quantities over all the molecules, we can derive macroscopic conservation laws which are the equations of hydrodynamics and heat transport. The conservation laws take the form of the time derivative of a density given by the divergence of the corresponding current or flux. These currents can then be evaluated first using the equilibrium distribution function f0 and then suing the correction f1 coming from deviations from equilibrium driven by gradients of the temperature, pressure or chemical potential, and velocity. Conservation laws First consider the mass. Then Z d3vmf(x,E v,t)E = n(x,t)mE = ρ(x,t)E (17) 3 with ρ the mass density. We can use the Boltzmann equation ∂f ∂f FE ∂f df +Ev · + · = ∂t ∂xE m ∂vE dt (18) coll to derive the equation of motion for the density Z Z Z ∂ρ ∂f ∂f df =− d3vmvE · − d3vFE · + d3vm . ∂t ∂xE ∂vE dt (19) coll The lastR term on the fight hand side is zero because mass is conserved in the collisions, the second term E 3 E E −F · d v ∇vf is also zero, and the first term is −∇·Eg with gE = ρuE the momentum density Z g(E x,t)E = d3vmvf(E x,E v,t)E (20) and uE the average velocity R d3v vf(E x,E v,t)E u(E x,t)E = R (21) d3vf(x,E v,t)E Thus we have derived the macroscopic conservation law for mass ∂ρ + ∇·E (ρu)E = . ∂t 0 (22) Now we investigate the consequence of the conservation of momentum mvE in the collision. Integrating over the velocity distribution gives Z Z Z ∂(ρu)E ∂f (x,E v,t)E ∂f ∂f = d3vmvE =− d3vmvE vE · − d3v vE FE · ∂t ∂t ∂xE ∂vE (23) where again the collision term drops out. This simplifies to Z ∂(ρu)E =−∇·E m d3v vE vfE + 8E ∂t (24) (you might want to write this in component notation if the double vector is confusing) where integration by parts is used in the last term, and 8(E x,t)E = F(E x,E t)n(x,t)E is the force per unit volume. Now write the molecular velocity in terms of the mean velocity uE and a correction VE with zero mean vE =Eu + V,E (25) R 3 E with d vVf= 0. Then Z Z d3v vE vfE = nuEuE + d3v VE Vf,E (26) since the cross term gives zero. Thus Eq. (24) reduces to ∂(ρu)E ←→ + ∇·E (ρuEu)E = 8E − ∇·E 6 ∂t (27) or in component form ∂(ρui) ∂ ∂ + (ρuiuj ) = 8i − 6ij (28) ∂t ∂xj ∂xj 4 ←→ (repeated index j summed over) with 6 the momentum flux or stress tensor Z R d3VVV f(x,E uE + V,t)E 3 E i j 6ij = m d VViVj f(x,E uE + V,t)= mn R = ρ ViVj .
Recommended publications
  • A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action
    Article A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action Ivan Kennedy 1,2,*, Harold Geering 2, Michael Rose 3 and Angus Crossan 2 1 Sydney Institute of Agriculture, University of Sydney, NSW 2006, Australia 2 QuickTest Technologies, PO Box 6285 North Ryde, NSW 2113, Australia; [email protected] (H.G.); [email protected] (A.C.) 3 NSW Department of Primary Industries, Wollongbar NSW 2447, Australia; [email protected] * Correspondence: [email protected]; Tel.: + 61-4-0794-9622 Received: 23 March 2019; Accepted: 26 April 2019; Published: 1 May 2019 Abstract: A convenient practical model for accurately estimating the total entropy (ΣSi) of atmospheric gases based on physical action is proposed. This realistic approach is fully consistent with statistical mechanics, but reinterprets its partition functions as measures of translational, rotational, and vibrational action or quantum states, to estimate the entropy. With all kinds of molecular action expressed as logarithmic functions, the total heat required for warming a chemical system from 0 K (ΣSiT) to a given temperature and pressure can be computed, yielding results identical with published experimental third law values of entropy. All thermodynamic properties of gases including entropy, enthalpy, Gibbs energy, and Helmholtz energy are directly estimated using simple algorithms based on simple molecular and physical properties, without resource to tables of standard values; both free energies are measures of quantum field states and of minimal statistical degeneracy, decreasing with temperature and declining density. We propose that this more realistic approach has heuristic value for thermodynamic computation of atmospheric profiles, based on steady state heat flows equilibrating with gravity.
    [Show full text]
  • LECTURES on MATHEMATICAL STATISTICAL MECHANICS S. Adams
    ISSN 0070-7414 Sgr´ıbhinn´ıInstiti´uid Ard-L´einnBhaile´ Atha´ Cliath Sraith. A. Uimh 30 Communications of the Dublin Institute for Advanced Studies Series A (Theoretical Physics), No. 30 LECTURES ON MATHEMATICAL STATISTICAL MECHANICS By S. Adams DUBLIN Institi´uid Ard-L´einnBhaile´ Atha´ Cliath Dublin Institute for Advanced Studies 2006 Contents 1 Introduction 1 2 Ergodic theory 2 2.1 Microscopic dynamics and time averages . .2 2.2 Boltzmann's heuristics and ergodic hypothesis . .8 2.3 Formal Response: Birkhoff and von Neumann ergodic theories9 2.4 Microcanonical measure . 13 3 Entropy 16 3.1 Probabilistic view on Boltzmann's entropy . 16 3.2 Shannon's entropy . 17 4 The Gibbs ensembles 20 4.1 The canonical Gibbs ensemble . 20 4.2 The Gibbs paradox . 26 4.3 The grandcanonical ensemble . 27 4.4 The "orthodicity problem" . 31 5 The Thermodynamic limit 33 5.1 Definition . 33 5.2 Thermodynamic function: Free energy . 37 5.3 Equivalence of ensembles . 42 6 Gibbs measures 44 6.1 Definition . 44 6.2 The one-dimensional Ising model . 47 6.3 Symmetry and symmetry breaking . 51 6.4 The Ising ferromagnet in two dimensions . 52 6.5 Extreme Gibbs measures . 57 6.6 Uniqueness . 58 6.7 Ergodicity . 60 7 A variational characterisation of Gibbs measures 62 8 Large deviations theory 68 8.1 Motivation . 68 8.2 Definition . 70 8.3 Some results for Gibbs measures . 72 i 9 Models 73 9.1 Lattice Gases . 74 9.2 Magnetic Models . 75 9.3 Curie-Weiss model . 77 9.4 Continuous Ising model .
    [Show full text]
  • Entropy and H Theorem the Mathematical Legacy of Ludwig Boltzmann
    ENTROPY AND H THEOREM THE MATHEMATICAL LEGACY OF LUDWIG BOLTZMANN Cambridge/Newton Institute, 15 November 2010 C´edric Villani University of Lyon & Institut Henri Poincar´e(Paris) Cutting-edge physics at the end of nineteenth century Long-time behavior of a (dilute) classical gas Take many (say 1020) small hard balls, bouncing against each other, in a box Let the gas evolve according to Newton’s equations Prediction by Maxwell and Boltzmann The distribution function is asymptotically Gaussian v 2 f(t, x, v) a exp | | as t ≃ − 2T → ∞ Based on four major conceptual advances 1865-1875 Major modelling advance: Boltzmann equation • Major mathematical advance: the statistical entropy • Major physical advance: macroscopic irreversibility • Major PDE advance: qualitative functional study • Let us review these advances = journey around centennial scientific problems ⇒ The Boltzmann equation Models rarefied gases (Maxwell 1865, Boltzmann 1872) f(t, x, v) : density of particles in (x, v) space at time t f(t, x, v) dxdv = fraction of mass in dxdv The Boltzmann equation (without boundaries) Unknown = time-dependent distribution f(t, x, v): ∂f 3 ∂f + v = Q(f,f) = ∂t i ∂x Xi=1 i ′ ′ B(v v∗,σ) f(t, x, v )f(t, x, v∗) f(t, x, v)f(t, x, v∗) dv∗ dσ R3 2 − − Z v∗ ZS h i The Boltzmann equation (without boundaries) Unknown = time-dependent distribution f(t, x, v): ∂f 3 ∂f + v = Q(f,f) = ∂t i ∂x Xi=1 i ′ ′ B(v v∗,σ) f(t, x, v )f(t, x, v∗) f(t, x, v)f(t, x, v∗) dv∗ dσ R3 2 − − Z v∗ ZS h i The Boltzmann equation (without boundaries) Unknown = time-dependent distribution
    [Show full text]
  • A Molecular Modeler's Guide to Statistical Mechanics
    A Molecular Modeler’s Guide to Statistical Mechanics Course notes for BIOE575 Daniel A. Beard Department of Bioengineering University of Washington Box 3552255 [email protected] (206) 685 9891 April 11, 2001 Contents 1 Basic Principles and the Microcanonical Ensemble 2 1.1 Classical Laws of Motion . 2 1.2 Ensembles and Thermodynamics . 3 1.2.1 An Ensembles of Particles . 3 1.2.2 Microscopic Thermodynamics . 4 1.2.3 Formalism for Classical Systems . 7 1.3 Example Problem: Classical Ideal Gas . 8 1.4 Example Problem: Quantum Ideal Gas . 10 2 Canonical Ensemble and Equipartition 15 2.1 The Canonical Distribution . 15 2.1.1 A Derivation . 15 2.1.2 Another Derivation . 16 2.1.3 One More Derivation . 17 2.2 More Thermodynamics . 19 2.3 Formalism for Classical Systems . 20 2.4 Equipartition . 20 2.5 Example Problem: Harmonic Oscillators and Blackbody Radiation . 21 2.5.1 Classical Oscillator . 22 2.5.2 Quantum Oscillator . 22 2.5.3 Blackbody Radiation . 23 2.6 Example Application: Poisson-Boltzmann Theory . 24 2.7 Brief Introduction to the Grand Canonical Ensemble . 25 3 Brownian Motion, Fokker-Planck Equations, and the Fluctuation-Dissipation Theo- rem 27 3.1 One-Dimensional Langevin Equation and Fluctuation- Dissipation Theorem . 27 3.2 Fokker-Planck Equation . 29 3.3 Brownian Motion of Several Particles . 30 3.4 Fluctuation-Dissipation and Brownian Dynamics . 32 1 Chapter 1 Basic Principles and the Microcanonical Ensemble The first part of this course will consist of an introduction to the basic principles of statistical mechanics (or statistical physics) which is the set of theoretical techniques used to understand microscopic systems and how microscopic behavior is reflected on the macroscopic scale.
    [Show full text]
  • Entropy: from the Boltzmann Equation to the Maxwell Boltzmann Distribution
    Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution A formula to relate entropy to probability Often it is a lot more useful to think about entropy in terms of the probability with which different states are occupied. Lets see if we can describe entropy as a function of the probability distribution between different states. N! WN particles = n1!n2!....nt! stirling (N e)N N N W = = N particles n1 n2 nt n1 n2 nt (n1 e) (n2 e) ....(nt e) n1 n2 ...nt with N pi = ni 1 W = N particles n1 n2 nt p1 p2 ...pt takeln t lnWN particles = "#ni ln pi i=1 divide N particles t lnW1particle = "# pi ln pi i=1 times k t k lnW1particle = "k# pi ln pi = S1particle i=1 and t t S = "N k p ln p = "R p ln p NA A # i # i i i=1 i=1 ! Think about how this equation behaves for a moment. If any one of the states has a probability of occurring equal to 1, then the ln pi of that state is 0 and the probability of all the other states has to be 0 (the sum over all probabilities has to be 1). So the entropy of such a system is 0. This is exactly what we would have expected. In our coin flipping case there was only one way to be all heads and the W of that configuration was 1. Also, and this is not so obvious, the maximal entropy will result if all states are equally populated (if you want to see a mathematical proof of this check out Ken Dill’s book on page 85).
    [Show full text]
  • Boltzmann Equation
    Boltzmann Equation ● Velocity distribution functions of particles ● Derivation of Boltzmann Equation Ludwig Eduard Boltzmann (February 20, 1844 - September 5, 1906), an Austrian physicist famous for the invention of statistical mechanics. Born in Vienna, Austria-Hungary, he committed suicide in 1906 by hanging himself while on holiday in Duino near Trieste in Italy. Distribution Function (probability density function) Random variable y is distributed with the probability density function f(y) if for any interval [a b] the probability of a<y<b is equal to b P=∫ f ydy a f(y) is always non-negative ∫ f ydy=1 Velocity space Axes u,v,w in velocity space v dv have the same directions as dv axes x,y,z in physical du dw u space. Each molecule can be v represented in velocity space by the point defined by its velocity vector v with components (u,v,w) w Velocity distribution function Consider a sample of gas that is homogeneous in physical space and contains N identical molecules. Velocity distribution function is defined by d N =Nf vd ud v d w (1) where dN is the number of molecules in the sample with velocity components (ui,vi,wi) such that u<ui<u+du, v<vi<v+dv, w<wi<w+dw dv = dudvdw is a volume element in the velocity space. Consequently, dN is the number of molecules in velocity space element dv. Functional statement if often omitted, so f(v) is designated as f Phase space distribution function Macroscopic properties of the flow are functions of position and time, so the distribution function depends on position and time as well as velocity.
    [Show full text]
  • Nonlinear Electrostatics. the Poisson-Boltzmann Equation
    Nonlinear Electrostatics. The Poisson-Boltzmann Equation C. G. Gray* and P. J. Stiles# *Department of Physics, University of Guelph, Guelph, ON N1G2W1, Canada ([email protected]) #Department of Molecular Sciences, Macquarie University, NSW 2109, Australia ([email protected]) The description of a conducting medium in thermal equilibrium, such as an electrolyte solution or a plasma, involves nonlinear electrostatics, a subject rarely discussed in the standard electricity and magnetism textbooks. We consider in detail the case of the electrostatic double layer formed by an electrolyte solution near a uniformly charged wall, and we use mean-field or Poisson-Boltzmann (PB) theory to calculate the mean electrostatic potential and the mean ion concentrations, as functions of distance from the wall. PB theory is developed from the Gibbs variational principle for thermal equilibrium of minimizing the system free energy. We clarify the key issue of which free energy (Helmholtz, Gibbs, grand, …) should be used in the Gibbs principle; this turns out to depend not only on the specified conditions in the bulk electrolyte solution (e.g., fixed volume or fixed pressure), but also on the specified surface conditions, such as fixed surface charge or fixed surface potential. Despite its nonlinearity the PB equation for the mean electrostatic potential can be solved analytically for planar or wall geometry, and we present analytic solutions for both a full electrolyte, and for an ionic solution which contains only counterions, i.e. ions of sign opposite to that of the wall charge. This latter case has some novel features. We also use the free energy to discuss the inter-wall forces which arise when the two parallel charged walls are sufficiently close to permit their double layers to overlap.
    [Show full text]
  • Lecture 7: Boltzmann Distribution & Thermodynamics of Mixing
    Prof. Tibbitt Lecture 7 Networks & Gels Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Mark W. Tibbitt { ETH Z¨urich { 14 M¨arz2019 1 Suggested reading • Molecular Driving Forces { Dill and Bromberg: Chapters 10, 15 2 Boltzmann distribution Before continuing with the thermodynamics of polymer solutions, we will briefly discuss the Boltzmann distri- bution that we have used occassionally already in the course and will continue to assume a working knowledge of for future derivations. We introduced statistical mechanics earlier in the course, showing how a probabilistic view of systems can predict macroscale observable behavior from the structures of the atoms and molecules that compose them. At the core, we model probability distributions and relate them to thermodynamic equilibria. We discussed macrostates, microstates, ensembles, ergodicity, and the microcanonical ensemble and used these to predict the driving forces of systems as they move toward equilibrium or maximum entropy. In the beginning section of the course, we discussed ideal behavior meaning that we assumed there was no energetic contribution from interactions between atoms and molecules in our systems. In general, we are interested in modeling the behavior of real (non-ideal) systems that accounts for energetic interactions between species of the system. Here, we build on the introduction of statistical mechanics, as presented in Lecture 2, to consider how we can develop mathematical tools that account for these energetic interactions in real systems. The central result is the Boltzmann distribution, which provides probability distributions based on the underlying energy levels of the system. In this approach, we now want to consider simple models (often lattice models) that allow us to count microstates but also assign an energy Ei for each microstate.
    [Show full text]
  • Statistical Thermodynamics (Mechanics) Pressure of Ideal Gas
    1/16 [simolant -I0 -N100] 2/16 Statistical thermodynamics (mechanics) co05 Pressure of ideal gas from kinetic theory I co05 Molecule = mass point L Macroscopic quantities are a consequence ¨¨* N molecules of mass m in a cube of edge length L HY HH of averaged behavior of many particles HH Velocity of molecule = ~ , , 6 H = ( , ,y ,z) HH HH ¨¨* After reflection from the wall: , , y ¨ → − ¨ Next time it hits the wall after τ = 2L/, Force = change in momentum per unit time - Momentum P~ = m~ Change of momentum = ΔP = 2m, Averaged force by impacts of one molecule: 2 ΔP 2m, m, F, = = = τ 2L/, L → Pressure = force of all N molecules divided by the area N N 2 F, 1 m, p =1 = = 2 = 3 P L P L Kinetic energy of one molecule: 1 2 1 2 1 2 2 2 m ~ m = m(, + ,y + ,z) 2 | | ≡ 2 2 3/16 4/16 Pressure of ideal gas from kinetic theory II co05 Boltzmann constant co05 Kinetic energy = internal energy (monoatomic gas) 1 N 3 N 2 2 pV = nRT = NkBT Ekin = m = m, 2 1 2 1 X= X= N = nNA ⇒ N 2 1 m, 2 Ekin p = = 3 = P L 3 V R k 1.380649 10 23 JK 1 Or B = = − − NA × 2 ! pV = Ekin = nRT 3 Note: Summary: since May 20, 2019 it is defined: Temperature is a measure of the kinetic energy ( 0th Law) k 1.380649 10 23 JK 1, B = − − ∼ × 23 1 Pressure = averaged impacts of molecules NA = 6.02214076 10 mol , × − We needed the classical mechanics therefore, exactly: 1 1 R = 8.31446261815324 J mol K Ludwig Eduard Boltzmann (1844–1906) Once more: − − credit: scienceworld.wolfram.com/biography/Boltzmann.html N R 3n 3N 3 n = , kB = U Ekin = RT = kBT, CV,m = R NA NA ⇒ ≡ 2 2
    [Show full text]
  • Deterministic Numerical Schemes for the Boltzmann Equation
    Deterministic Numerical Schemes for the Boltzmann Equation by Akil Narayan and Andreas Klöckner <{anaray,kloeckner}@dam.brown.edu> Abstract This article describes methods for the deterministic simulation of the collisional Boltzmann equation. It presumes that the transport and collision parts of the equation are to be simulated separately in the time domain. Time stepping schemes to achieve the splitting as well as numerical methods for each part of the operator are reviewed, with an emphasis on clearly exposing the challenges posed by the equation as well as their resolution by various schemes. 1 Introduction The Boltzmann equation is an equation of statistical mechanics describing the evolution of a rarefied gas. In a fluid in continuum mechanics, all particles in a spatial volume element are approximated as • having the same velocity. In a rarefied gas in statistical mechanics, there is enough space that particles in one spatial volume • element may have different velocities. The equation itself is a nonlinear integro-differential equation which decribes the evolution of the density of particles in a monatomic rarefied gas. Let the density function be f( x, v, t) . The quantity f( x, v, t)dx dv represents the number of particles in the phase-space volume element dx dv at time t. Both x and 3 3 + v are three-dimensional independent variables, so the density function is a map f: R R R R 6 × × → 0 R 0, . The theory of kinetics and statistical mechanics gives rise to the laws which the density func- ∪ ∞ tion {f must} obey in the absence of external forces.
    [Show full text]
  • Boltzmann Equation 1
    Contents 5 The Boltzmann Equation 1 5.1 References . 1 5.2 Equilibrium, Nonequilibrium and Local Equilibrium . 2 5.3 Boltzmann Transport Theory . 4 5.3.1 Derivation of the Boltzmann equation . 4 5.3.2 Collisionless Boltzmann equation . 5 5.3.3 Collisional invariants . 7 5.3.4 Scattering processes . 7 5.3.5 Detailed balance . 9 5.3.6 Kinematics and cross section . 10 5.3.7 H-theorem . 11 5.4 Weakly Inhomogeneous Gas . 13 5.5 Relaxation Time Approximation . 15 5.5.1 Approximation of collision integral . 15 5.5.2 Computation of the scattering time . 15 5.5.3 Thermal conductivity . 16 5.5.4 Viscosity . 18 5.5.5 Oscillating external force . 20 5.5.6 Quick and Dirty Treatment of Transport . 21 5.5.7 Thermal diffusivity, kinematic viscosity, and Prandtl number . 22 5.6 Diffusion and the Lorentz model . 23 i ii CONTENTS 5.6.1 Failure of the relaxation time approximation . 23 5.6.2 Modified Boltzmann equation and its solution . 24 5.7 Linearized Boltzmann Equation . 26 5.7.1 Linearizing the collision integral . 26 5.7.2 Linear algebraic properties of L^ ............................. 27 5.7.3 Steady state solution to the linearized Boltzmann equation . 28 5.7.4 Variational approach . 29 5.8 The Equations of Hydrodynamics . 32 5.9 Nonequilibrium Quantum Transport . 33 5.9.1 Boltzmann equation for quantum systems . 33 5.9.2 The Heat Equation . 37 5.9.3 Calculation of Transport Coefficients . 38 5.9.4 Onsager Relations . 39 5.10 Appendix : Boltzmann Equation and Collisional Invariants .
    [Show full text]
  • Translation of Ludwig Boltzmann's Paper
    Entropy 2015, 17, 1971-2009; doi:10.3390/e17041971 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Translation of Ludwig Boltzmann’s Paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp 373-435 (Wien. Ber. 1877, 76:373-435). Reprinted in Wiss. Abhandlungen, Vol. II, reprint 42, p. 164-223, Barth, Leipzig, 1909 Kim Sharp * and Franz Matschinsky E. R. Johnson Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-215-573-3506; Fax: +1-215-898-4217. Academic Editor: Kevin H. Knuth Received: 22 December 2014 / Accepted: 27 March 2015 / Published: 2 April 2015 Abstract: Translation of the seminal 1877 paper by Ludwig Boltzmann which for the first time established the probabilistic basis of entropy. Includes a scientific commentary. Keywords: Ludwig Boltzmann; second law of thermodynamics; entropy 1. Introduction Barely any of Boltzmann’s original scientific work is available in translation. This is remarkable given his central role in the development of both equilibrium and non-equilibrium statistical mechanics, his statistical mechanical explanation of entropy, and our understanding of the Second Law of thermodynamics. What Boltzmann actually wrote on these subjects is rarely quoted directly, his methods Entropy 2015, 17 1972 are not fully appreciated, and key concepts have been misinterpreted.
    [Show full text]