Boltzmann Equation 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stress Relaxation of Glass Using a Parallel Plate Viscometer Guy-Marie Vallet Clemson University, [email protected]
Clemson University TigerPrints All Theses Theses 8-2011 Stress relaxation of glass using a parallel plate viscometer Guy-marie Vallet Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Materials Science and Engineering Commons Recommended Citation Vallet, Guy-marie, "Stress relaxation of glass using a parallel plate viscometer" (2011). All Theses. 1158. https://tigerprints.clemson.edu/all_theses/1158 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. TITLE PAGE STRESS RELAXATION OF GLASS USING A PARALLEL PLATE VISCOMETER A Thesis Presented to The Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree of Master of Science Materials Science and Engineering By Guy-Marie Vallet August 2011 Accepted by: Dr. Vincent Blouin, Committee Chair Dr. Jean-Louis Bobet Dr. Evelyne Fargin Dr. Paul Joseph Dr. Véronique Jubera Dr. Igor Luzinov Dr. Kathleen Richardson ABSTRACT Currently, grinding and polishing is the traditional method for manufacturing optical glass lenses. However, for a few years now, precision glass molding has gained importance for its flexibility in manufacturing aspheric lenses. With this new method, glass viscoelasticity and more specifically stress relaxation are important phenomena in the glass transition region to control the molding process and to predict the final lens shape. The goal of this research is to extract stress relaxation parameters in shear of Pyrex® glass by using a Parallel Plate Viscometer (PPV). -
A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action
Article A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action Ivan Kennedy 1,2,*, Harold Geering 2, Michael Rose 3 and Angus Crossan 2 1 Sydney Institute of Agriculture, University of Sydney, NSW 2006, Australia 2 QuickTest Technologies, PO Box 6285 North Ryde, NSW 2113, Australia; [email protected] (H.G.); [email protected] (A.C.) 3 NSW Department of Primary Industries, Wollongbar NSW 2447, Australia; [email protected] * Correspondence: [email protected]; Tel.: + 61-4-0794-9622 Received: 23 March 2019; Accepted: 26 April 2019; Published: 1 May 2019 Abstract: A convenient practical model for accurately estimating the total entropy (ΣSi) of atmospheric gases based on physical action is proposed. This realistic approach is fully consistent with statistical mechanics, but reinterprets its partition functions as measures of translational, rotational, and vibrational action or quantum states, to estimate the entropy. With all kinds of molecular action expressed as logarithmic functions, the total heat required for warming a chemical system from 0 K (ΣSiT) to a given temperature and pressure can be computed, yielding results identical with published experimental third law values of entropy. All thermodynamic properties of gases including entropy, enthalpy, Gibbs energy, and Helmholtz energy are directly estimated using simple algorithms based on simple molecular and physical properties, without resource to tables of standard values; both free energies are measures of quantum field states and of minimal statistical degeneracy, decreasing with temperature and declining density. We propose that this more realistic approach has heuristic value for thermodynamic computation of atmospheric profiles, based on steady state heat flows equilibrating with gravity. -
LECTURES on MATHEMATICAL STATISTICAL MECHANICS S. Adams
ISSN 0070-7414 Sgr´ıbhinn´ıInstiti´uid Ard-L´einnBhaile´ Atha´ Cliath Sraith. A. Uimh 30 Communications of the Dublin Institute for Advanced Studies Series A (Theoretical Physics), No. 30 LECTURES ON MATHEMATICAL STATISTICAL MECHANICS By S. Adams DUBLIN Institi´uid Ard-L´einnBhaile´ Atha´ Cliath Dublin Institute for Advanced Studies 2006 Contents 1 Introduction 1 2 Ergodic theory 2 2.1 Microscopic dynamics and time averages . .2 2.2 Boltzmann's heuristics and ergodic hypothesis . .8 2.3 Formal Response: Birkhoff and von Neumann ergodic theories9 2.4 Microcanonical measure . 13 3 Entropy 16 3.1 Probabilistic view on Boltzmann's entropy . 16 3.2 Shannon's entropy . 17 4 The Gibbs ensembles 20 4.1 The canonical Gibbs ensemble . 20 4.2 The Gibbs paradox . 26 4.3 The grandcanonical ensemble . 27 4.4 The "orthodicity problem" . 31 5 The Thermodynamic limit 33 5.1 Definition . 33 5.2 Thermodynamic function: Free energy . 37 5.3 Equivalence of ensembles . 42 6 Gibbs measures 44 6.1 Definition . 44 6.2 The one-dimensional Ising model . 47 6.3 Symmetry and symmetry breaking . 51 6.4 The Ising ferromagnet in two dimensions . 52 6.5 Extreme Gibbs measures . 57 6.6 Uniqueness . 58 6.7 Ergodicity . 60 7 A variational characterisation of Gibbs measures 62 8 Large deviations theory 68 8.1 Motivation . 68 8.2 Definition . 70 8.3 Some results for Gibbs measures . 72 i 9 Models 73 9.1 Lattice Gases . 74 9.2 Magnetic Models . 75 9.3 Curie-Weiss model . 77 9.4 Continuous Ising model . -
Entropy and H Theorem the Mathematical Legacy of Ludwig Boltzmann
ENTROPY AND H THEOREM THE MATHEMATICAL LEGACY OF LUDWIG BOLTZMANN Cambridge/Newton Institute, 15 November 2010 C´edric Villani University of Lyon & Institut Henri Poincar´e(Paris) Cutting-edge physics at the end of nineteenth century Long-time behavior of a (dilute) classical gas Take many (say 1020) small hard balls, bouncing against each other, in a box Let the gas evolve according to Newton’s equations Prediction by Maxwell and Boltzmann The distribution function is asymptotically Gaussian v 2 f(t, x, v) a exp | | as t ≃ − 2T → ∞ Based on four major conceptual advances 1865-1875 Major modelling advance: Boltzmann equation • Major mathematical advance: the statistical entropy • Major physical advance: macroscopic irreversibility • Major PDE advance: qualitative functional study • Let us review these advances = journey around centennial scientific problems ⇒ The Boltzmann equation Models rarefied gases (Maxwell 1865, Boltzmann 1872) f(t, x, v) : density of particles in (x, v) space at time t f(t, x, v) dxdv = fraction of mass in dxdv The Boltzmann equation (without boundaries) Unknown = time-dependent distribution f(t, x, v): ∂f 3 ∂f + v = Q(f,f) = ∂t i ∂x Xi=1 i ′ ′ B(v v∗,σ) f(t, x, v )f(t, x, v∗) f(t, x, v)f(t, x, v∗) dv∗ dσ R3 2 − − Z v∗ ZS h i The Boltzmann equation (without boundaries) Unknown = time-dependent distribution f(t, x, v): ∂f 3 ∂f + v = Q(f,f) = ∂t i ∂x Xi=1 i ′ ′ B(v v∗,σ) f(t, x, v )f(t, x, v∗) f(t, x, v)f(t, x, v∗) dv∗ dσ R3 2 − − Z v∗ ZS h i The Boltzmann equation (without boundaries) Unknown = time-dependent distribution -
A Molecular Modeler's Guide to Statistical Mechanics
A Molecular Modeler’s Guide to Statistical Mechanics Course notes for BIOE575 Daniel A. Beard Department of Bioengineering University of Washington Box 3552255 [email protected] (206) 685 9891 April 11, 2001 Contents 1 Basic Principles and the Microcanonical Ensemble 2 1.1 Classical Laws of Motion . 2 1.2 Ensembles and Thermodynamics . 3 1.2.1 An Ensembles of Particles . 3 1.2.2 Microscopic Thermodynamics . 4 1.2.3 Formalism for Classical Systems . 7 1.3 Example Problem: Classical Ideal Gas . 8 1.4 Example Problem: Quantum Ideal Gas . 10 2 Canonical Ensemble and Equipartition 15 2.1 The Canonical Distribution . 15 2.1.1 A Derivation . 15 2.1.2 Another Derivation . 16 2.1.3 One More Derivation . 17 2.2 More Thermodynamics . 19 2.3 Formalism for Classical Systems . 20 2.4 Equipartition . 20 2.5 Example Problem: Harmonic Oscillators and Blackbody Radiation . 21 2.5.1 Classical Oscillator . 22 2.5.2 Quantum Oscillator . 22 2.5.3 Blackbody Radiation . 23 2.6 Example Application: Poisson-Boltzmann Theory . 24 2.7 Brief Introduction to the Grand Canonical Ensemble . 25 3 Brownian Motion, Fokker-Planck Equations, and the Fluctuation-Dissipation Theo- rem 27 3.1 One-Dimensional Langevin Equation and Fluctuation- Dissipation Theorem . 27 3.2 Fokker-Planck Equation . 29 3.3 Brownian Motion of Several Particles . 30 3.4 Fluctuation-Dissipation and Brownian Dynamics . 32 1 Chapter 1 Basic Principles and the Microcanonical Ensemble The first part of this course will consist of an introduction to the basic principles of statistical mechanics (or statistical physics) which is the set of theoretical techniques used to understand microscopic systems and how microscopic behavior is reflected on the macroscopic scale. -
Entropy: from the Boltzmann Equation to the Maxwell Boltzmann Distribution
Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution A formula to relate entropy to probability Often it is a lot more useful to think about entropy in terms of the probability with which different states are occupied. Lets see if we can describe entropy as a function of the probability distribution between different states. N! WN particles = n1!n2!....nt! stirling (N e)N N N W = = N particles n1 n2 nt n1 n2 nt (n1 e) (n2 e) ....(nt e) n1 n2 ...nt with N pi = ni 1 W = N particles n1 n2 nt p1 p2 ...pt takeln t lnWN particles = "#ni ln pi i=1 divide N particles t lnW1particle = "# pi ln pi i=1 times k t k lnW1particle = "k# pi ln pi = S1particle i=1 and t t S = "N k p ln p = "R p ln p NA A # i # i i i=1 i=1 ! Think about how this equation behaves for a moment. If any one of the states has a probability of occurring equal to 1, then the ln pi of that state is 0 and the probability of all the other states has to be 0 (the sum over all probabilities has to be 1). So the entropy of such a system is 0. This is exactly what we would have expected. In our coin flipping case there was only one way to be all heads and the W of that configuration was 1. Also, and this is not so obvious, the maximal entropy will result if all states are equally populated (if you want to see a mathematical proof of this check out Ken Dill’s book on page 85). -
Boltzmann Equation II: Binary Collisions
Physics 127b: Statistical Mechanics Boltzmann Equation II: Binary Collisions Binary collisions in a classical gas Scattering out Scattering in v'1 v'2 v 1 v 2 R v 2 v 1 v'2 v'1 Center of V' Mass Frame V θ θ b sc sc R V V' Figure 1: Binary collisions in a gas: top—lab frame; bottom—centre of mass frame Binary collisions in a gas are very similar, except that the scattering is off another molecule. An individual scattering process is, of course, simplest to describe in the center of mass frame in terms of the relative E velocity V =Ev1 −Ev2. However the center of mass frame is different for different collisions, so we must keep track of the results in the lab frame, and this makes the calculation rather intricate. I will indicate the main ideas here, and refer you to Reif or Landau and Lifshitz for precise discussions. Lets first set things up in the lab frame. Again we consider the pair of scattering in and scattering out processes that are space-time inverses, and so have identical cross sections. We can write abstractly for the scattering out from velocity vE1 due to collisions with molecules with all velocities vE2, which will clearly be proportional to the number f (vE1) of molecules at vE1 (which we write as f1—sorry, not the same notation as in the previous sections where f1 denoted the deviation of f from the equilibrium distribution!) and the 3 3 number f2d v2 ≡ f(vE2)d v2 in each velocity volume element, and then we must integrate over all possible vE0 vE0 outgoing velocities 1 and 2 ZZZ df (vE ) 1 =− w(vE0 , vE0 ;Ev , vE )f f d3v d3v0 d3v0 . -
Boltzmann Equation
Boltzmann Equation ● Velocity distribution functions of particles ● Derivation of Boltzmann Equation Ludwig Eduard Boltzmann (February 20, 1844 - September 5, 1906), an Austrian physicist famous for the invention of statistical mechanics. Born in Vienna, Austria-Hungary, he committed suicide in 1906 by hanging himself while on holiday in Duino near Trieste in Italy. Distribution Function (probability density function) Random variable y is distributed with the probability density function f(y) if for any interval [a b] the probability of a<y<b is equal to b P=∫ f ydy a f(y) is always non-negative ∫ f ydy=1 Velocity space Axes u,v,w in velocity space v dv have the same directions as dv axes x,y,z in physical du dw u space. Each molecule can be v represented in velocity space by the point defined by its velocity vector v with components (u,v,w) w Velocity distribution function Consider a sample of gas that is homogeneous in physical space and contains N identical molecules. Velocity distribution function is defined by d N =Nf vd ud v d w (1) where dN is the number of molecules in the sample with velocity components (ui,vi,wi) such that u<ui<u+du, v<vi<v+dv, w<wi<w+dw dv = dudvdw is a volume element in the velocity space. Consequently, dN is the number of molecules in velocity space element dv. Functional statement if often omitted, so f(v) is designated as f Phase space distribution function Macroscopic properties of the flow are functions of position and time, so the distribution function depends on position and time as well as velocity. -
Nonlinear Electrostatics. the Poisson-Boltzmann Equation
Nonlinear Electrostatics. The Poisson-Boltzmann Equation C. G. Gray* and P. J. Stiles# *Department of Physics, University of Guelph, Guelph, ON N1G2W1, Canada ([email protected]) #Department of Molecular Sciences, Macquarie University, NSW 2109, Australia ([email protected]) The description of a conducting medium in thermal equilibrium, such as an electrolyte solution or a plasma, involves nonlinear electrostatics, a subject rarely discussed in the standard electricity and magnetism textbooks. We consider in detail the case of the electrostatic double layer formed by an electrolyte solution near a uniformly charged wall, and we use mean-field or Poisson-Boltzmann (PB) theory to calculate the mean electrostatic potential and the mean ion concentrations, as functions of distance from the wall. PB theory is developed from the Gibbs variational principle for thermal equilibrium of minimizing the system free energy. We clarify the key issue of which free energy (Helmholtz, Gibbs, grand, …) should be used in the Gibbs principle; this turns out to depend not only on the specified conditions in the bulk electrolyte solution (e.g., fixed volume or fixed pressure), but also on the specified surface conditions, such as fixed surface charge or fixed surface potential. Despite its nonlinearity the PB equation for the mean electrostatic potential can be solved analytically for planar or wall geometry, and we present analytic solutions for both a full electrolyte, and for an ionic solution which contains only counterions, i.e. ions of sign opposite to that of the wall charge. This latter case has some novel features. We also use the free energy to discuss the inter-wall forces which arise when the two parallel charged walls are sufficiently close to permit their double layers to overlap. -
Physical Origins of Anelasticity and Attenuation in Rock I
2.17 Properties of Rocks and Minerals – Physical Origins of Anelasticity and Attenuation in Rock I. Jackson, Australian National University, Canberra, ACT, Australia ª 2007 Elsevier B.V. All rights reserved. 2.17.1 Introduction 496 2.17.2 Theoretical Background 496 2.17.2.1 Phenomenological Description of Viscoelasticity 496 2.17.2.2 Intragranular Processes of Viscoelastic Relaxation 499 2.17.2.2.1 Stress-induced rearrangement of point defects 499 2.17.2.2.2 Stress-induced motion of dislocations 500 2.17.2.3 Intergranular Relaxation Processes 505 2.17.2.3.1 Effects of elastic and thermoelastic heterogeneity in polycrystals and composites 505 2.17.2.3.2 Grain-boundary sliding 506 2.17.2.4 Relaxation Mechanisms Associated with Phase Transformations 508 2.17.2.4.1 Stress-induced variation of the proportions of coexisting phases 508 2.17.2.4.2 Stress-induced migration of transformational twin boundaries 509 2.17.2.5 Anelastic Relaxation Associated with Stress-Induced Fluid Flow 509 2.17.3 Insights from Laboratory Studies of Geological Materials 512 2.17.3.1 Dislocation Relaxation 512 2.17.3.1.1 Linearity and recoverability 512 2.17.3.1.2 Laboratory measurements on single crystals and coarse-grained rocks 512 2.17.3.2 Stress-Induced Migration of Transformational Twin Boundaries in Ferroelastic Perovskites 513 2.17.3.3 Grain-Boundary Relaxation Processes 513 2.17.3.3.1 Grain-boundary migration in b.c.c. and f.c.c. Fe? 513 2.17.3.3.2 Grain-boundary sliding 514 2.17.3.4 Viscoelastic Relaxation in Cracked and Water-Saturated Crystalline Rocks -
Lecture 7: Boltzmann Distribution & Thermodynamics of Mixing
Prof. Tibbitt Lecture 7 Networks & Gels Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Mark W. Tibbitt { ETH Z¨urich { 14 M¨arz2019 1 Suggested reading • Molecular Driving Forces { Dill and Bromberg: Chapters 10, 15 2 Boltzmann distribution Before continuing with the thermodynamics of polymer solutions, we will briefly discuss the Boltzmann distri- bution that we have used occassionally already in the course and will continue to assume a working knowledge of for future derivations. We introduced statistical mechanics earlier in the course, showing how a probabilistic view of systems can predict macroscale observable behavior from the structures of the atoms and molecules that compose them. At the core, we model probability distributions and relate them to thermodynamic equilibria. We discussed macrostates, microstates, ensembles, ergodicity, and the microcanonical ensemble and used these to predict the driving forces of systems as they move toward equilibrium or maximum entropy. In the beginning section of the course, we discussed ideal behavior meaning that we assumed there was no energetic contribution from interactions between atoms and molecules in our systems. In general, we are interested in modeling the behavior of real (non-ideal) systems that accounts for energetic interactions between species of the system. Here, we build on the introduction of statistical mechanics, as presented in Lecture 2, to consider how we can develop mathematical tools that account for these energetic interactions in real systems. The central result is the Boltzmann distribution, which provides probability distributions based on the underlying energy levels of the system. In this approach, we now want to consider simple models (often lattice models) that allow us to count microstates but also assign an energy Ei for each microstate. -
Statistical Thermodynamics (Mechanics) Pressure of Ideal Gas
1/16 [simolant -I0 -N100] 2/16 Statistical thermodynamics (mechanics) co05 Pressure of ideal gas from kinetic theory I co05 Molecule = mass point L Macroscopic quantities are a consequence ¨¨* N molecules of mass m in a cube of edge length L HY HH of averaged behavior of many particles HH Velocity of molecule = ~ , , 6 H = ( , ,y ,z) HH HH ¨¨* After reflection from the wall: , , y ¨ → − ¨ Next time it hits the wall after τ = 2L/, Force = change in momentum per unit time - Momentum P~ = m~ Change of momentum = ΔP = 2m, Averaged force by impacts of one molecule: 2 ΔP 2m, m, F, = = = τ 2L/, L → Pressure = force of all N molecules divided by the area N N 2 F, 1 m, p =1 = = 2 = 3 P L P L Kinetic energy of one molecule: 1 2 1 2 1 2 2 2 m ~ m = m(, + ,y + ,z) 2 | | ≡ 2 2 3/16 4/16 Pressure of ideal gas from kinetic theory II co05 Boltzmann constant co05 Kinetic energy = internal energy (monoatomic gas) 1 N 3 N 2 2 pV = nRT = NkBT Ekin = m = m, 2 1 2 1 X= X= N = nNA ⇒ N 2 1 m, 2 Ekin p = = 3 = P L 3 V R k 1.380649 10 23 JK 1 Or B = = − − NA × 2 ! pV = Ekin = nRT 3 Note: Summary: since May 20, 2019 it is defined: Temperature is a measure of the kinetic energy ( 0th Law) k 1.380649 10 23 JK 1, B = − − ∼ × 23 1 Pressure = averaged impacts of molecules NA = 6.02214076 10 mol , × − We needed the classical mechanics therefore, exactly: 1 1 R = 8.31446261815324 J mol K Ludwig Eduard Boltzmann (1844–1906) Once more: − − credit: scienceworld.wolfram.com/biography/Boltzmann.html N R 3n 3N 3 n = , kB = U Ekin = RT = kBT, CV,m = R NA NA ⇒ ≡ 2 2