Does Alexandromys Evoronensis Inhabit the Northeastern Part of Verkhnezeiskaya Plain? I

Total Page:16

File Type:pdf, Size:1020Kb

Does Alexandromys Evoronensis Inhabit the Northeastern Part of Verkhnezeiskaya Plain? I ISSN 1062-3590, Biology Bulletin, 2017, Vol. 44, No. 9, pp. 1049–1055. © Pleiades Publishing, Inc., 2017. Original Russian Text © I.N. Sheremetyeva, I.V. Kartavtseva, T.V. Vasiljeva, 2017, published in Zoologicheskii Zhurnal, 2017, Vol. 96, No. 4, pp. 477–484. Does Alexandromys evoronensis Inhabit the Northeastern Part of Verkhnezeiskaya Plain? I. N. Sheremetyeva*, I. V. Kartavtseva, and T. V. Vasiljeva Institute of Biology and Soil Science, Far East Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia *e-mail: [email protected] Received October 16, 2015 Abstract⎯Gray voles of the “maximowiczii” group of the genus Alexandromys were found in the Argi River of the Amur region (northeastern part of Verkhnezeiskaya Plain). Analysis of mtDNA showed its similarity to A. evoronensis. The karyotype was 2n = 36, and NFa = 51–52. The karyotypes of these individuals did not contain the marker chromosome typical for Alexandromys maximowiczii. Keywords: Alexandromys, Verkhnezeiskaya Plain, inhabit, karyotypes, control region of mtDNA DOI: 10.1134/S1062359017090126 Alexandromys maximowiczii (Schrenck 1858) is (Verkhnebureinskaya Depression), which, according a wide-ranging species of voles of eastern Asia, which to the results of molecular genetic analysis, were close is characterized by a complex chromosomal polymor- to A. evoronensis (Sheremetyeva et al., 2016). It should phism (2n = 36–44, NFa = 50–60). Five chromo- be noted that the karyotype of the vole from the vicin- somal forms with geographical confinement have been ity of Chegdomyn (2n = 37, NF = 55) did not fit the distinguished. In the northern peripheral area in range of variability of the karyotype known for A. evo- opposite parts of the species range, two forms were ronensis (2n = 38–40, NF = 53–56) (Koval’skaya and 1 described in intermountain isolates. Later, as a result Sokolov, 1980; Golenishchev and Radzhabli, 1981; of the study of their karyotypes and hybridization Meyer et al., 1996; Kartavtseva et al., 2007) but was experiments, these forms acquired the species status: similar in the number and morphology of chromo- A. evoronensis (Kowalskaia et Sokolov 1980) (2n = 38– somes to the karyotype of A. maximowiczii from Khen- 40, NFa = 51–54) and A. mujanensis (Orlov et Kowal- tei in Mongolia (Orlov et al., 1978). The similarity in skaia 1978) (2n = 38, NFa = 46–50). A. evoronensis is the number and morphology of chromosomes (with- one of the sibling species of gray voles of the “maxi- out differential staining) for these species cannot be mowiczii” group, which was described 35 years ago regarded as evidence of their identity. However, near the source of the Devyatka River on the shore of Koval’skaya and Sokolov (1980) assumed that, Evoron Lake, Solnechnyi district, Khabarovsk krai according to the types of mutations known, the diploid only on the basis of the results of karyological analysis number in A. evoronensis theoretically may vary from (Koval’skaya and Sokolov, 1980). Until recently, this 36 to 42. However, extreme variants of chromosome species was reliably known only from the Evoron- numbers have not yet been found. These authors also Chukchagirskaya Lowland, Khabarovsk krai (Fig. 1, assumed that the distribution of A. evoronensis is not points 1–3): 1, in the vicinities of Evoron Lake (Gole- limited to the Evoron-Chukchagirskaya Lowland and nishchev and Radzhabli, 1981; Meyer et al., 1996; that this species may be found in some lacustrine basins Shenbrot and Krasnov, 2005); 2, in the environs of the in the eastern part of the Baikal–Amur Railroad. village of Kharpichan (51°19′ N, 136°35′ E) (Kartavt- Within the framework of the study of the variability seva et al., 2007; Sheremetyeva et al., 2010); and 3, in of marginal and isolated populations of species of gray the environs of the village named after Polina voles of the “maximowiczii” group, in July 2015 we Osipenko, Khabarovsk krai, near the confluence of made a second attempt to catch a representative of this Amgun and Nimelen rivers (Sheremetyeva et al., group (A. maximowiczii) in the northeastern part of the 2010). It was believed that the penetration of A. evo- Verkhnezeiskaya Plain. The first attempt was made ronensis to the west is hampered by the Bureya, Dusse- one year ago (Kartavtseva et al., 2015), when we Alin, and Yam-Alin ranges (Meyer et al., 1996). How- caught only a pair of root voles in the vicinity of the vil- ever, in July 2014, a pair of gray voles was caught in the lage of Verkhnezeysk. At this time, attempts to catch the Urgal River valley near the village of Chegdomyn (Fig. 1, animals were made in the Argi River valley (Fig. 1), point 4), Verkhnebureinskii district, Khabarovsk krai Amur region, near the place where, according to 1049 1050 SHEREMETYEVA et al. (a)(a) – A. evoronensis Yam-Alin Range Stanovoi Range – New find Tugur Уда Zeya Dusse-Alin Range Argi 3 Dzhagdy Range Nimelen Ezol Range 2 Amur Selemdzha Nora 1 Soktakhan RangeDep Amgun 4 Zeya Turana Range Bureinskii Range Bureya Amur China ((b)b) a ey ZeyaZ ЗеяЗ ея l i ne ArgiArg han a c 4 ZeyaZey channel 3 1 2 Fig. 1. (a) Sites of finds and (b) scheme of location of the biotopes in which the catches of A. evoronensis were performed. Sapaev (Sapaev, 1973; Sapaev and Voronov, 1976), completely covered with water. In total, 15 gray voles A. maximowiczii was previously caught. To set traps, were caught in 80 traps. Also we caught two gray red- we selected four biotopes: (1) the left bank of the Zeya backed voles, five wood mice, one pika, and one shrew Channel with a broadleaf forest site (54°40′17″ N, of the genus Sorex. The biological diversity in the catches 129°6′36″ E); (2) the left bank of the Zeya channel was maximum in biotope 1, and the number of gray voles overgrown with willows, at the confluence into the was maximum (eight individuals) in biotope 3. Argi River (54°40′6″ N, 129°6′39″ E); (3) an island on The species diagnostics of gray voles was performed the Argi River, overgrown willow and horsetail using karyological analysis and sequencing of the (54°40′31″ N, 129°5′49″ E); and (4) a high bank of the mtDNA control region. For ten individuals, species Argi River with a larch forest, overgrown with rosehip identification was performed in vivo, and the individ- (54°40′40″ N, 129°6′1″ E). It should be noted that, uals themselves were left for further breeding. Chro- during a heavy flood in 2013, biotopes 2 and 3 were mosome preparations were obtained in the field from BIOLOGY BULLETIN Vol. 44 No. 9 2017 DOES ALEXANDROMYS EVORONENSIS INHABIT 1051 (a)(a) XY ((b)b) XY Fig. 2. (a) Karyotype and (b) C-banding of chromosomes of the vole (male no. 3859) from the Argi River basin (Amur region). the femoral bone marrow cells (Grafodatskii and and the live specimens are kept in the vivarium of the Radzhabli, 1988). Staining for structural heterochro- Institute of Biology and Soil Science, Far East matin was performed according to Sumner (1972) Branch, Russian Academy of Sciences (Vladivostok). without pretreatment of preparations with hydrochlo- ric acid. G-bands on chromosomes were identified The analysis of the chromosomal preparations pre- using trypsin (Seabright, 1971). Chromosome images pared for one male (no. 3950) from the natural popu- were obtained with an AxioImager M1 microscope. lation and one female (no. 4017), which was obtained as a result of vivarium breeding, showed that the DNA was isolated by salt extraction (Aljanabi and karyotypes of these individuals contained 36 chromo- Martinez, 1997) from tissues fixed with alcohol. The somes (Fig. 2a). The number of autosomal arms of the procedure of the reaction mixture preparation, the male (no. 3950) and the female (no. 4017) was 51 and scheme of PCR reaction for obtaining the fragment, 52, respectively. Thus, this population is characterized and the preparation of samples for sequencing were by polymorphism, which requires a more detailed described previously (Sheremetyeva et al., 2015). The analysis. The Y chromosome is acrocentric and con- nucleotide sequence was determined with an ABI sists of heterochromatin only. The Y chromosome was Prizm 3130 automatic sequencer (Applied Biosystems, determined by the structural heterochromatin staining United States) on the basis of the Institute of Biology method (Fig. 2b). The X chromosome is a medium- and Soil Science, Far East Branch, Russian Academy size submetacentric (it was determined by G-banding) of Sciences (Vladivostok). The editing and alignment and has a slight C-block in the pericentromeric region. of the sequences obtained was performed using the Pericentromeric C-blocks were identified in three BioEdit 7.0.9.0 software (Hall, 1999). Constructing pairs of meta-submetacentric chromosomes (one pair phylogenetic trees and the calculation of genetic dis- of medium-size chromosomes and two pairs of tances performed using MEGA 6.0 program (Tamura smaller chromosomes) as well as in the first pair and et al., 2011). In constructing phylogenetic trees, the the two last pairs of acrocentric chromosomes. Other mtDNA control region sequences of seven species of acrocentric chromosome pairs may contain small eastern Asian voles (A. fortis, A. sachalinensis, A. gro- amounts of heterochromatin. In addition, the short movi, A. mujanensis, A. middendorffii, A. evoronensis, arms of one of the subtelocentric chromosomes con- and A. maximowiczii), obtained previously (Haring sist solely of heterochromatin. When comparing the et al., 2011; Sheremetyeva et al., 2015), as well as the newly described karyotype of the individuals from the mtDNA control region sequences of the voles that Argi River basin (2n = 36, NF = 54) (Verkhnezeiskaya were caught in July 2015 in the vicinity of Chegdomyn Plain) with the karyotype of the male (no.
Recommended publications
  • Further Assessment of the Genus Neodon and the Description of a New Species from Nepal
    RESEARCH ARTICLE Further assessment of the Genus Neodon and the description of a new species from Nepal 1³ 2 2 3 Nelish PradhanID , Ajay N. Sharma , Adarsh M. Sherchan , Saurav Chhetri , 4 1³ Paliza Shrestha , C. William KilpatrickID * 1 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 2 Center for Molecular Dynamics±Nepal, Kathmandu, Nepal, 3 Department of Biology, Trinity University, San Antonio, Texas, United States of America, 4 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, United States of America a1111111111 ³ These authors are joint senior authors on this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Recent molecular systematic studies of arvicoline voles of the genera Neodon, Lasiopod- omys, Phaiomys, and Microtus from Central Asia suggest the inclusion of Phaiomys leu- OPEN ACCESS curus, Microtus clarkei, and Lasiopodomys fuscus into Neodon and moving Neodon juldaschi into Microtus (Blanfordimys). In addition, three new species of Neodon (N. linz- Citation: Pradhan N, Sharma AN, Sherchan AM, Chhetri S, Shrestha P, Kilpatrick CW (2019) Further hiensis, N. medogensis, and N. nyalamensis) have recently been described from Tibet. assessment of the Genus Neodon and the Analyses of concatenated mitochondrial (Cytb, COI) and nuclear (Ghr, Rbp3) genes recov- description of a new species from Nepal. PLoS ered Neodon as a well-supported monophyletic clade including all the recently described ONE 14(7): e0219157. https://doi.org/10.1371/ and relocated species. Kimura-2-parameter distance between Neodon from western Nepal journal.pone.0219157 compared to N. sikimensis (K2P = 13.1) and N. irene (K2P = 13.4) was equivalent to genetic Editor: Johan R.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Ecological Niche Evolution and Its Relation To
    514 G. Shenbrot Сборник трудов Зоологического музея МГУ им. М.В. Ломоносова Archives of Zoological Museum of Lomonosov Moscow State University Том / Vol. 54 Cтр. / Pр. 514–540 ECOLOGICAL NICHE EVOLUTION AND ITS RELATION TO PHYLOGENY AND GEOGRAPHY: A CASE STUDY OF ARVICOLINE VOLES (RODENTIA: ARVICOLINI) Georgy Shenbrot Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev; [email protected] Relations between ecological niches, genetic distances and geographic ranges were analyzed by pair-wise comparisons of 43 species and 38 intra- specifi c phylogenetic lineages of arvicoline voles (genera Alexandromys, Chi onomys, Lasiopodomys, Microtus). The level of niche divergence was found to be positively correlated with the level of genetic divergence and negatively correlated with the level of differences in position of geographic ranges of species and intraspecifi c forms. Frequency of different types of niche evolution (divergence, convergence, equivalence) was found to depend on genetic and geographic relations of compared forms. Among the latter with allopatric distribution, divergence was less frequent and convergence more frequent between intra-specifi c genetic lineages than between either clo sely-related or distant species. Among the forms with parapatric dis- tri bution, frequency of divergence gradually increased and frequencies of both convergence and equivalence gradually decreased from intra-specifi c genetic lineages via closely related to distant species. Among species with allopatric distribution, frequencies of niche divergence, con vergence and equivalence in closely related and distant species were si milar. The results obtained allowed suggesting that the main direction of the niche evolution was their divergence that gradually increased with ti me since population split.
    [Show full text]
  • News Release
    FORTRESS MINERALS CORP. Suite #2101, 885 W. Georgia Street Vancouver, B.C. V6C 3E8 Ph. (604) 689-7842 www.fortressminerals.com NEWS RELEASE FORTRESS INTERCEPTS 474.7 METRES OF CONTINUOUS COPPER AND GOLD MINERALIZATION AT THE MALMYZH PROJECT IN EASTERN RUSSIA March 17, 2010 (FST-TSXV) Fortress Minerals Corp. (“Fortress”) is pleased to announce initial assay results from the phase 1 drilling program at its 74-square kilometre Malmyzh Project in eastern Russia. The phase 1 drill program, which is planned to include 5,200 metres of drilling in 26 holes, will test ten large geophysical and geochemical targets. The first four diamond drill holes totalling 1,311 metres, reported herein, were drilled to test the Flats target, where an earlier drill hole by Freeport-McMoRan Exploration Corporation ("FMEC") intersected 195.6 metres grading 0.39% copper and 0.29 gram/tonne (g/t) gold (see Press Release dated September 29, 2009). All four drill holes encountered significant mineralization from the collar to the bottom of the hole. Hole AMM-002 intersected 474.7 metres grading 0.26% copper and 0.29 g/t gold. The first five holes into the Flats target are wide spaced and have tested an area about 400 metres by 200 metres (please see figure 3). Mineralization is open in all directions and at depth. Results are shown in the table below. Copper Gold Copper TD From To Width Hole Grade Grade Equivalent (m) (m) (m) (m) (%) (g/t) (%) ** AMM-001 300.1 1.2300.1 298.9 0.29 0.17 0.38 Including 2.7 96.7 94.0 0.33 0.18 0.43 And including 104.7 244.8 140.1 0.33 0.22 0.45 AMM-002 475.7 1.0475.7 474.7 0.26 0.29 0.42 Including 56.8 74.9 18.1 0.43 1.49 1.25 And including 213.3 377.9 164.6 0.33 0.41 0.56 AMM-003 263.1 5.8260.0 254.2 0.20 0.07 0.24 Including 69.4 91.4 22.0 0.29 0.08 0.34 AMM-004 271.9 11.3271.9 260.6 0.23 0.19 0.34 Including 29.1 87.4 58.3 0.30 0.37 0.50 ** Intercepts are calculated using a copper equivalent cut-off grade and have been calculated using assumed metal prices (US$2.34/pound of copper and US$972.35/ounce for gold); Copper equivalent = %Cu + 0.55 x g/t Au.
    [Show full text]
  • RCN #33 21/8/03 13:57 Page 1
    RCN #33 21/8/03 13:57 Page 1 No. 33 Summer 2003 Special issue: The Transformation of Protected Areas in Russia A Ten-Year Review PROMOTING BIODIVERSITY CONSERVATION IN RUSSIA AND THROUGHOUT NORTHERN EURASIA RCN #33 21/8/03 13:57 Page 2 CONTENTS CONTENTS Voice from the Wild (Letter from the Editors)......................................1 Ten Years of Teaching and Learning in Bolshaya Kokshaga Zapovednik ...............................................................24 BY WAY OF AN INTRODUCTION The Formation of Regional Associations A Brief History of Modern Russian Nature Reserves..........................2 of Protected Areas........................................................................................................27 A Glossary of Russian Protected Areas...........................................................3 The Growth of Regional Nature Protection: A Case Study from the Orlovskaya Oblast ..............................................29 THE PAST TEN YEARS: Making Friends beyond Boundaries.............................................................30 TRENDS AND CASE STUDIES A Spotlight on Kerzhensky Zapovednik...................................................32 Geographic Development ........................................................................................5 Ecotourism in Protected Areas: Problems and Possibilities......34 Legal Developments in Nature Protection.................................................7 A LOOK TO THE FUTURE Financing Zapovedniks ...........................................................................................10
    [Show full text]
  • 10. Social Impact Assessment
    Social impact assessment 10-1 10. SOCIAL IMPACT ASSESSMENT 10.1 Project social area of influence In line with PS1, the assessment of social impacts is carried out over the PSAoI. This PSAoI is defined to include certain areas and communities, where both positive and negative direct social impacts are going to be perceptible in the various phases of the Project. Based on the Project description, and particularly the location and delineation of facilities, and on potential impacts of the various components, the PSAoI includes the following areas and communities: Within the territory of Svobodnensky District, the territory of the following three adjacent Village Councils (‘selsovet’): o Dmitrievka, within which the settlements of Dmitrievka, Ust-Pera , Yukhta and Yukhta 3 are part of the PSAoI; o Zheltoyarovo, within which the settlement of Chernigovka is part of the PSAoI; o Nizhny Buzuli, which includes land that is affected by the Project but no close-by settlement. The town of Svobodny. 10.2 Overview of impacts Based on the preliminary assessment of potential social impacts conducted at scoping stage and on the outcome of further baseline studies, the identification and assessment of social impacts is presented in the following table. Associated impact management measures are presented in further detail in sections 10.5 (in overview) and 10.6 (in further detail). 10.3 Assessment of positive social impacts Positive impacts (see impacts A1 to A5 in Table below) are related to the economic benefits that the Project will bring to the communities of the PSAOI, which are currently economically depressed and in need of economic development, as shown by the baseline studies.
    [Show full text]
  • Amur Oblast TYNDINSKY 361,900 Sq
    AMUR 196 Ⅲ THE RUSSIAN FAR EAST SAKHA Map 5.1 Ust-Nyukzha Amur Oblast TY NDINS KY 361,900 sq. km Lopcha Lapri Ust-Urkima Baikal-Amur Mainline Tynda CHITA !. ZEISKY Kirovsky Kirovsky Zeiskoe Zolotaya Gora Reservoir Takhtamygda Solovyovsk Urkan Urusha !Skovorodino KHABAROVSK Erofei Pavlovich Never SKOVO MAGDAGACHINSKY Tra ns-Siberian Railroad DIRO Taldan Mokhe NSKY Zeya .! Ignashino Ivanovka Dzhalinda Ovsyanka ! Pioner Magdagachi Beketovo Yasny Tolbuzino Yubileiny Tokur Ekimchan Tygda Inzhan Oktyabrskiy Lukachek Zlatoustovsk Koboldo Ushumun Stoiba Ivanovskoe Chernyaevo Sivaki Ogodzha Ust-Tygda Selemdzhinsk Kuznetsovo Byssa Fevralsk KY Kukhterin-Lug NS Mukhino Tu Novorossiika Norsk M DHI Chagoyan Maisky SELE Novovoskresenovka SKY N OV ! Shimanovsk Uglovoe MAZ SHIMA ANOV Novogeorgievka Y Novokievsky Uval SK EN SK Mazanovo Y SVOBODN Chernigovka !. Svobodny Margaritovka e CHINA Kostyukovka inlin SERYSHEVSKY ! Seryshevo Belogorsk ROMNENSKY rMa Bolshaya Sazanka !. Shiroky Log - Amu BELOGORSKY Pridorozhnoe BLAGOVESHCHENSKY Romny Baikal Pozdeevka Berezovka Novotroitskoe IVANOVSKY Ekaterinoslavka Y Cheugda Ivanovka Talakan BRSKY SKY P! O KTYA INSK EI BLAGOVESHCHENSK Tambovka ZavitinskIT BUR ! Bakhirevo ZAV T A M B OVSKY Muravyovka Raichikhinsk ! ! VKONSTANTINO SKY Poyarkovo Progress ARKHARINSKY Konstantinovka Arkhara ! Gribovka M LIKHAI O VSKY ¯ Kundur Innokentevka Leninskoe km A m Trans -Siberianad Railro u 100 r R i v JAO Russian Far East e r By Newell and Zhou / Sources: Ministry of Natural Resources, 2002; ESRI, 2002. Newell, J. 2004. The Russian Far East: A Reference Guide for Conservation and Development. McKinleyville, CA: Daniel & Daniel. 466 pages CHAPTER 5 Amur Oblast Location Amur Oblast, in the upper and middle Amur River basin, is 8,000 km east of Moscow by rail (or 6,500 km by air).
    [Show full text]
  • New Species and Records of Stenus (Nestus) of the Canaliculatus Group, with the Erection of a New Species Group (Insecta: Coleoptera: Staphylinidae: Steninae)
    European Journal of Taxonomy 13: 1-62 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2012.13 www.europeanjournaloftaxonomy.eu 2012 · Alexandr B. Ryvkin This work is licensed under a Creative Commons Attribution 3.0 License. Monograph New species and records of Stenus (Nestus) of the canaliculatus group, with the erection of a new species group (Insecta: Coleoptera: Staphylinidae: Steninae) Alexandr B. RYVKIN Laboratory of Soil Zoology & General Entomology, Severtsov Institute of Problems of Ecology & Evolution, Russian Academy of Sciences, Leninskiy Prospect, 33, Moscow, 119071 Russia. Bureinskiy Nature Reserve, Zelyonaya 3, Chegdomyn, Khabarovsk Territory, 682030 Russia. Leninskiy Prospekt, 79, 15, Moscow, 119261 Russia. Email: [email protected] Abstract. The canaliculatus species group of Stenus (Nestus) is redefi ned. Four new Palaearctic species of the group are described and illustrated: S. (N.) alopex sp. nov. from the Putorana Highland and Taymyr Peninsula, Russia; S. (N.) canalis sp. nov. from SE Siberia and the Russian Far East; S. (N.) canosus sp. nov. from the Narat Mt Ridge, Chinese Tien Shan; S. (N.) delitor sp. nov. from C & SE Siberia. New distributional data as well as brief analyses of old records for fourteen species described earlier are provided from both Palaearctic and Nearctic material. S. (N.) milleporus Casey, 1884 (= sectilifer Casey, 1884) is revalidated as a species propria. S. (N.) sphaerops Casey, 1884 is redescribed; its aedeagus is fi gured for the fi rst time; the aedeagus of S. (N.) caseyi Puthz, 1972 as well as aedeagi of eight previously described Palaearctic species are illustrated anew. A key for the identifi cation of all the known Palaearctic species of the group is given.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • Newell, J. 2004. the Russian Far East
    Industrial pollution in the Komsomolsky, Solnechny, and Amursky regions, and in the city of Khabarovsk and its Table 3.1 suburbs, is excessive. Atmospheric pollution has been increas- Protected areas in Khabarovsk Krai ing for decades, with large quantities of methyl mercaptan in Amursk, formaldehyde, sulfur dioxide, phenols, lead, and Type and name Size (ha) Raion Established benzopyrene in Khabarovsk and Komsomolsk-on-Amur, and Zapovedniks dust prevalent in Solnechny, Urgal, Chegdomyn, Komso- molsk-on-Amur, and Khabarovsk. Dzhugdzhursky 860,000 Ayano-Maysky 1990 Between 1990 and 1999, industries in Komsomolsky and Bureinsky 359,000 Verkhne-Bureinsky 1987 Amursky Raions were the worst polluters of the Amur River. Botchinsky 267,400 Sovetsko-Gavansky 1994 High concentrations of heavy metals, copper (38–49 mpc), Bolonsky 103,600 Amursky, Nanaisky 1997 KHABAROVSK zinc (22 mpc), and chloroprene (2 mpc) were found. Indus- trial and agricultural facilities that treat 40 percent or less of Komsomolsky 61,200 Komsomolsky 1963 their wastewater (some treat none) create a water defi cit for Bolshekhekhtsirsky 44,900 Khabarovsky 1963 people and industry, despite the seeming abundance of water. The problem is exacerbated because of: Federal Zakazniks Ⅲ Pollution and low water levels in smaller rivers, particular- Badzhalsky 275,000 Solnechny 1973 ly near industrial centers (e.g., Solnechny and the Silinka River, where heavy metal levels exceed 130 mpc). Oldzhikhansky 159,700 Poliny Osipenko 1969 Ⅲ A loss of soil fertility. Tumninsky 143,100 Vaninsky 1967 Ⅲ Fires and logging, which impair the forests. Udylsky 100,400 Ulchsky 1988 Ⅲ Intensive development and quarrying of mineral resourc- Khekhtsirsky 56,000 Khabarovsky 1959 es, primarily construction materials.
    [Show full text]
  • On Distribution of Lampyris Noctiluca (Linnaeus, 1767) (Coleoptera, Lampyridae) in the Amur Region
    Ecologica Montenegrina 16: 111-113 (2018) This journal is available online at: www.biotaxa.org/em On distribution of Lampyris noctiluca (Linnaeus, 1767) (Coleoptera, Lampyridae) in the Amur region VITALY G. BEZBORODOV1* & EVGENY S. KOSHKIN2 1Amur Branch of Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, 2-d km of Ignatevskoye road, Blagoveshchensk, 675000, Russia, 2Institute of Water and Ecology Problems of the Far Eastern Branch of the Russian Academy of Sciences, Dikopoltsev St. 56, Khabarovsk, 680000, Russia; State Nature Reserve «Bureinskii», Zelenaya Str. 3, Chegdomyn, Khabarovskii Krai, 682030, Russia. Corresponding author: Vitaly G. Bezborodov; e-mail: [email protected] Received: 7 February 2018│ Accepted by V. Pešić: 28 February 2018 │ Published online: 2 March 2018. Lampyris noctiluca (Linnaeus, 1767) (Coleoptera, Lampyridae) covers an extensive transpalaearctic range (Medvedev & Ryvkin 1992; Geisthardt & Sato 2007; Kazantsev 2010, 2011) with unclear boundaries of distribution on the periphery. The eastern sector of the range has been studied the least. Until recently, from the Amur region (within the borders of the Amurskaya oblast' and Khabarovskii krai of Russia) three points of collection of L. noctiluca were known. However, this which does not give a detailed idea of the range of the species in this region (Kazantsev 2010) (Fig. 1). Our research provided material from the basins of the Amur and Uda rivers, which significantly clarifies the northern boundary of distribution in the eastern sector of the range of Lampyris noctiluca. Lampyris noctiluca is also firstly recorded for the Heilongjiang province in China and the Evreiskaya avtonomnaya oblast' in Russia.
    [Show full text]
  • Environmental Flow Releases for Wetland Biodiversity Conservation in the Amur River Basin
    water Article Environmental Flow Releases for Wetland Biodiversity Conservation in the Amur River Basin Oxana I. Nikitina 1,* , Valentina G. Dubinina 2, Mikhail V. Bolgov 3, Mikhail P. Parilov 4 and Tatyana A. Parilova 4 1 World Wide Fund for Nature (WWF-Russia), Moscow 109240, Russia 2 Central Directorate for Fisheries Expertise and Standards for the Conservation, Reproduction of Aquatic Biological Resources and Acclimatization, Moscow 125009, Russia; [email protected] 3 Water Problems Institute of the Russian Academy of Sciences, Moscow 117971, Russia; [email protected] 4 Khingan Nature Reserve, Arkhara 676748, Russia; [email protected] (M.P.P.); [email protected] (T.A.P.) * Correspondence: [email protected]; Tel.: +7-910-462-90-57 Received: 31 August 2020; Accepted: 7 October 2020; Published: 10 October 2020 Abstract: Flow regulation by large dams has transformed the freshwater and floodplain ecosystems of the Middle Amur River basin in Northeast Asia, and negatively impacted the biodiversity and fisheries. This study aimed to develop environmental flow recommendations for the Zeya and Bureya rivers based on past flow rate records. The recommended floodplain inundation by environmental flow releases from the Zeya reservoir are currently impracticable due to technical reasons. Therefore, the importance of preserving the free-flowing tributaries of the Zeya River increases. Future technical improvements for implementing environmental flow releases at the Zeya dam would improve dam management regulation during large floods. The recommendations developed for environmental flow releases from reservoirs on the Bureya River should help to preserve the important Ramsar wetlands which provide habitats for endangered bird species while avoiding flooding of settlements.
    [Show full text]