Stem Characteristics and Wood Properties: Essential Considerations in Sustainable Multipurpose Forestry Regimes

Total Page:16

File Type:pdf, Size:1020Kb

Stem Characteristics and Wood Properties: Essential Considerations in Sustainable Multipurpose Forestry Regimes Proceedings from the Wood Compatibility Initiative Workshop, number 15. STEM CHARACTERISTICS AND WOOD PROPERTIES: ESSENTIAL CONSIDERATIONS IN SUSTAINABLE MULTIPURPOSE FORESTRY REGIMES David D. Marshall1 and Dean S. DeBell2 ABSTRACT The management of forest resources in the Pacific Northwest has changed greatly since the first harvests of large- diameter old-growth trees to the more recent harvests of younger, small diameter trees grown in plantations managed for rapid growth and wood production. This change continues with an increased emphasis on managing for both wood production and a range of other objectives, including aesthetics, wildlife habitat and other nontimber values. Much of our accumulated silvicultural knowledge can help in developing regimes to meet these new goals, however, these alternative regimes may produce trees and wood with very different characteristics than in the past. This could have large impacts on value. To date, only minor attention is placed on the impacts of silvicultural practices on wood quality, especially for species other than Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). We provide four examples using research on western hemlock (Tsuga heterophylla (Raf.) Sarg.), red alder (Alnus rubra Bong.), black cottonwood (Populus trichocarpa Torr. & Gray) (and hybrid poplar) and western redcedar (Thuja plicata Donn.) to demonstrate how silvicultural practices can alter stem characteristics and wood properties. KEY WORDS: Wood quality, Douglas-fir, (Pseudotsuga menziesii), western hemlock, (Tsuga heterophylla), red alder, (Alnus rubra), black cottonwood, (Populus trichocarpa), western redcedar, (Thuja plicata). INTRODUCTION derived values other than wood production via multi-pur­ pose forest management regimes. The vast forests that early settlers found in the Pacific Northwest provided the basis for a large forest products Although most of the technology of forest management industry. For the first century of its existence, raw materials was developed with the goal of enhanced wood production to supply this wood processing industry came primarily (Curtis and Carey 1996), the various silvicultural practices from the harvest of these existing older forests. Over the can be readily modified to meet a broad range of multiple past several decades, however, the forest industry in the objectives (Curtis et al. 1998). The values that society seeks region has been in transition. Beginning in the 1950s, a from such multi-purpose forestry may include commodity shift began from reliance on Douglas-fir from naturally or non-commodity uses that come directly or indirectly grown, primarily old-growth stands, to younger natural from trees in the form of wood products, wildlife habitat, forests, and then to managed Douglas-fir plantations. These water, other plants, scenery and recreation. changes are accompanied and influenced by research and development of plantation establishment practices, spacing Management planning and decisionmaking must guidelines, fertilization and improved genetic stock. More consider the value of forest outputs (whether commodity recently, numerous events in the region have prompted fur­ or non-commodity); such consideration requires realistic ther changes to occur. These changes include an increased assessment of quality and not just quantity of the outputs. importance of more species and a greater emphasis on forest Although wood outputs are probably the most easily valued, 1 Research Forester and 2 Retired team leader, Pacific Northwest Research Station, Olympia Forestry Sciences Laboratory, 3625 93rd Avenue SW, Olympia, WA 98512-9193. 145 Table 1—Some potentially important stem characteristics EVALUATING WOOD QUALITY AND and wood properties for assessing wood quality POTENTIAL SILVICULTURAL IMPACTS Stem Characteristics Wood Properties Wood quality—as a term or concept—is not easy to define nor simple to measure or apply. There are many Diameter Ring characteristics possible products and quality measures that will vary with (e.g. width) product or end use. Therefore, no single measure is neces­ sarily appropriate for all uses. General definitions of wood Straightness Density—specific gravity quality are similar to the one given by Briggs and Smith (average and variability) (1986), “Wood quality is a measure of the aptness of wood for a specific use.” Central to this definition is the notion Grain Fiber dimensions of wood’s suitability for an end product. This suitability is (length and angle) dependent on various stem characteristics and wood prop­ erties that affect the yield of end products, cost of process­ Age Reaction wood ing raw material from forest to end products and the serviceability value of end products (product quality). Branch/knot Growth stresses (e.g. Some potentially important stem and wood property char­ (size and distribution) reaction/compression wood) acteristics are given in Table 1. Juvenile wood / mature Of the species that are found in the northwest, most of wood distribution the information about wood quality and potential impacts from silvicultural practices is for Douglas-fir. There are Chemical content several studies which used this information to predict future trends in value. Ernst and Fahey’s (1986) analysis Bark Moisture content suggested that the major impact of the change from old- growth to young-growth logs would be a decrease in log Decay Heartwood / sapwood size and a decrease in appearance grade lumber. They sug­ proportion gested pruning to increase the production of clear wood for appearance grades and thinning to increase average size and average recovery. They also pointed out that thinning past evaluations of management regimes and benefits were might also produce larger limbs and a greater proportion of quantified in terms of improved volume yields or decreased juvenile wood resulting in a decrease in quality. Juvenile time to achieve a desired tree size. Yet the change from wood is the column of wood that forms around the pith of harvesting of old-growth stands with trees of large size or a tree; it has inferior mechanical properties and dimensional younger managed stands to harvests in stands based on stability (Senft et al. 1985). The transition from juvenile to regimes designed to meet multiple objectives, not only mature wood is not well understood and probably refers to produces other valued benefits, but trees grown under these a zone, but this transition is thought to occur about 20 years new regimes can have different stem characteristics and from the pith in Douglas-fir (Megraw 1986). Maguire et al. wood properties which may result in different values. It is (1991) developed models to predict maximum branch size critical to accurately assess the value of wood produced and juvenile wood core for Douglas-fir. Projecting stands because the economic returns from harvesting wood often with different thinning strategies (both residual density and finance, directly or indirectly, the costs of forest ownership structure) they found that stand density management could and management for other forest derived values. Still, little impact branch size, whorl frequency and the amount of attention is paid to wood quality considerations when juvenile wood produced. Briggs and Fight (1992) used developing silvicultural regimes, particularly for species these methods and the TREEVAL model to predict the other than Douglas-fir. quality and value of products produced from two stands with widely differing initial spacing (370 and 1,876 trees per hectare). They found that if they ignored tree character­ istics other than tree size, the larger trees produced by the wider initial spacing had greater value (1.06 times greater 146 at age 70). However these wider spaced trees also produced two other examples that demonstrate how wood properties larger limbs, had a greater proportion of juvenile wood and impact wood quality for black cottonwood (and hybrid lower density wood. Considering the associated tree char­ poplar) and western redcedar. acteristics and wood properties of the trees produced by silvicultural regimes, the resulting value at age 70 of the Western hemlock has increased in importance in the denser stand was 1.31 times greater than the widely spaced region because of: (1) expanding emphasis on ecosystem stand. Barbour et al. (1997) also used these methods to management and alternative management regimes that analyze the potential impact on wood quality from ecosys­ favor more shade-tolerant species, (2) growing concern tem management on federal lands. They found that man­ over Swiss needle cast and its negative impacts on the agement strategies could be designed to accelerate the growth of Douglas-fir on many coastal sites were western development of important ecosystem structures while pro­ hemlock grows well, and (3) western hemlock’s machin­ ducing wood comparable to that grown in commercial ability and color that make it an excellent candidate for plantations. However, they also concluded that early heavy value-added uses. However, fluting (longitudinal depres­ thinnings would produce greater proportions of lower grade sions in the bole from inconsistent radial growth) is common lumber. Use of lighter and later thinning treatments could stem characteristic of western hemlock growing in Alaska reduce this impact. To date, little research has been done (Julin et al. 1993) and it can cause difficulties in debarking, for Douglas-fir on how fertilization and genetics impact sawing and peeling logs. In addition, out of roundness
Recommended publications
  • Salicaceae Cottonwood Cottonwood (The Genus Populus) Is Composed of 35 Species Which Contain the Aspens and Poplars
    Populus spp. Family: Salicaceae Cottonwood Cottonwood (the genus Populus) is composed of 35 species which contain the aspens and poplars. Species in this group are native to Eurasia/north Africa [25], Central America [2] and North America [8]. All species look alike microscopically. The word populus is the classical Latin name for the poplar tree. Populus angustifolia-balsam, bitter cottonwood, black cottonwood, lanceleaf cottonwood, mountain cottonwood, narrowleaf cottonwood, narrow leaved poplar, Rydberg cottonwood, smoothbark cottonwood, willow cottonwood, willowleaf cottonwood Populus balsamifera-balm, balm of Gilead, balm of Gilead poplar, balm cottonwood, balsam, balsam cottonwood, balsam poplar, bam, black balsam poplar, black cottonwood, black poplar, California poplar, Canadian balsam poplar, Canadian poplar, cottonwax, hackmatack, hairy balm of Gilead, heartleaf balsam poplar, northern black cottonwood, Ontario poplar, tacamahac, tacamahac poplar, toughbark poplar, western balsam poplar Populus deltoides*-aspen cottonwood, big cottonwood, Carolina poplar, cotton tree, eastern cottonwood, eastern poplar, fremont cottonwood, great plains cottonwood, Missourian poplar, necklace poplar, northern fremont cottonwood, palmer cottonwood, plains cottonwood, Rio Grande cottonwood, river cottonwood, river poplar, southern cottonwood, Tennessee poplar, Texas cottonwood, valley cottonwood, Vermont poplar, Virginia poplar, water poplar, western cottonwood, whitewood, wislizenus cottonwood, yellow cottonwood Populus fremontii-Arizona cottonwood,
    [Show full text]
  • Northstar Fire Department, Fire Resistant Landscaping Plant List
    Northstar Fire Department, Fire Resistant Landscaping Plant List Many common plants naturally resist fire and can even slow its spread. In general, irrigated and well maintained leafy plants burn slowly. By replacing highly flammable vegetation with these fire resistant recommended species, you can significantly improve the statistical survivability of your home when a wildfire threatens. Courtesy of the “Villager Nursery” in Truckee, this list of fire resistive plants should be considered when enhancing or adding landscape. Here are some other key components to remember when selecting appropriate fire resistant landscaping plants. Choose plants that don’t produce much litter such as dead branches and twigs Plants that produce oils, resins or waxes should be avoided When planting from the approved list, appropriately space plants to prevent fire spread Never plant under conifer trees, this can create a ladder effect which allows smaller ground fires the ability to transfer into larger trees creating crown fires To help ensure their fire resistance, plants must be maintained, watered, and pruned. Routine care will provide you with an attractive defensible space landscape and help ensure the survival of your property in the event of a wildfire. Northstar Fire Department enforces both State and District fire codes that may directly affect your landscape. Northstar Fire Department recommends that prior to changing your landscape you consult with us in order to make sure your property will be compliant with applicable fire codes. Trees Common Name Scientific Name Please note that there Apple Malus spp. may be other vegetative Bigtooth Maple Acer grandidentatum species that are Cherry Prunus spp.
    [Show full text]
  • Poplar Chap 1.Indd
    Populus: A Premier Pioneer System for Plant Genomics 1 1 Populus: A Premier Pioneer System for Plant Genomics Stephen P. DiFazio,1,a,* Gancho T. Slavov 1,b and Chandrashekhar P. Joshi 2 ABSTRACT The genus Populus has emerged as one of the premier systems for studying multiple aspects of tree biology, combining diverse ecological characteristics, a suite of hybridization complexes in natural systems, an extensive toolbox of genetic and genomic tools, and biological characteristics that facilitate experimental manipulation. Here we review some of the salient biological characteristics that have made this genus such a popular object of study. We begin with the taxonomic status of Populus, which is now a subject of ongoing debate, though it is becoming increasingly clear that molecular phylogenies are accumulating. We also cover some of the life history traits that characterize the genus, including the pioneer habit, long-distance pollen and seed dispersal, and extensive vegetative propagation. In keeping with the focus of this book, we highlight the genetic diversity of the genus, including patterns of differentiation among populations, inbreeding, nucleotide diversity, and linkage disequilibrium for species from the major commercially- important sections of the genus. We conclude with an overview of the extent and rapid spread of global Populus culture, which is a testimony to the growing economic importance of this fascinating genus. Keywords: Populus, SNP, population structure, linkage disequilibrium, taxonomy, hybridization 1Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA; ae-mail: [email protected] be-mail: [email protected] 2 School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA; e-mail: [email protected] *Corresponding author 2 Genetics, Genomics and Breeding of Poplar 1.1 Introduction The genus Populus is full of contrasts and surprises, which combine to make it one of the most interesting and widely-studied model organisms.
    [Show full text]
  • Founded in Montana
    Native Plant Society founded in Montana BY KATHY AHLENSLAGER Montana Native Plant Society President When Peter lrsica, Virginia Vincent and I first discussed forming a Montana Native Plant Society last fall, we had no idea of the tremendous response we'd receive from throughout the state. Thank you all for your encouagement and enthusiasm. Presently our mailing list includes more than 250 names of interested persons. To stay on the list, please fill out the enclosed membership application and send it hck with your dues . Members of the Society comprise a diverse group of amateurs and professionals who share a common interest in Montana's unique flora. The society offers members an opportunity to share and acquire knowledge of wildflowers, cultivation of native plants and the conservation of threatened and endangered species. Through education and appreciation we hope to preserve Montana's botanical beritage. We will meet several times a year throughout the state. Ifyou are interested in helping organize a group in your area, please contact me. People already organizing activities, but welcoming help, include Shelly Bruce (Bozeman); Steve Shelly (Helena) and mysclf (Missoula). Our meetings and field trips are open to the public. If you would like to present a program or lead a field trip, have ideas for future programs or trips, or have suggestions how we can improve ttre Montana Native Plant Society, or contributions for this quarterly newsletter, please let us know. Please have your newsletter items to Virginia Vincent, editor, by Jan. 8. The Botany Department of the University of Montana graciously covered our initial expenses.
    [Show full text]
  • Populus Balsamifera L. Balsam Poplar Salicaceae Willow Family John C
    Populus balsamifera L. Balsam Poplar Salicaceae Willow family John C. Zasada and Howard M. Phipps Balsam poplar (Populus bdsamiferu) is the north- Tanana drainage. The highest precipitation, 140 cm ernmost American hardwood. It grows transcontinen- (55 in), occurs in the Maritime Provinces of eastern tally on upland and flood plain sites but attains the Canada. Distribution of precipitation varies best development on flood plains. It is a hardy, fast- throughout the range, but prolonged summer growing tree which is generally short lived, with droughts are uncommon. Annual snowfall is lowest some trees reaching 200 years. Other names are in interior Alaska (100 to 200 cm; 40 to 80 in) and balm-of-gilead, barn, tacamahac, cottonwood, or highest in Newfoundland (400 cm; 160 in). Maximum heartleaf balsam poplar. Many kinds of animals use summer daylength varies from 16 to 24 hours. Min- the twigs for food. The light, soft wood is used for imum daylength in winter drops to zero above the pulp and construction. Arctic Circle. The frost-free period varies from 75 to 160 days, The longest growing seasons are in the southern part of the range and the shortest in the Habitat north, but growing seasons can be 120 days in parts of Alaska. Native Range Soils and Topography The range of balsam poplar (fig. 1) spans about 110” in longitude (55” to 165” W.) and 26” in latitude (42” to 68” N.). It extends across North America Maximum development of balsam poplar stands along the northern limit of trees from Newfoundland, occurs on the river flood plains in Alaska, Yukon Labrador, and Quebec west to Hudson Bay and Territory and Northwest Territories, British Colum- northwest to Mackenzie Bay From northwest Alas- bia, and Alberta.
    [Show full text]
  • Black Cottonwood (Act) - Populus Trichocarpa
    Black cottonwood (Act) - Populus trichocarpa Tree Species > Black cottonwood Page Index Distribution Range and Amplitiudes Tolerances and Damaging Agents Silvical Characteristics Genetics and Notes BC Distribution of Black cottonwood (Act) Range of Black cottonwood An immature stand of black conntowood adjacent to the Chilliwack River. Black cottonwood and balsam are distinguished from other tree species by the highest rate of early growth Geographic Range and Ecological Amplitudes Description Black cottonwood is a medium- to large-sized (exceptionally over 60 m tall), deciduous broad-leaved tree, at maturity with a narrow, sometimes columnar crown, with a few thick ascending branches and dark gray, irregularly shaped furrows. Many kinds of wildlife use the foliage, twigs, and buds for food. The wood is light and soft and is used for lumber, veneer, and pulp. Geographic Range Geographic element: Western North American/Pacific and Cordilleran Distribution in Western North America: north, central, and south in the Pacific region; central and south in the Cordilleran region Ecological Climatic amplitude>: Amplitudes (subalpine boreal) - montane boreal - cool temperate - cool mesothermal (absent or marginally in hypermaritime climates) Orographic amplitude: submontane - montane - (subalpine) Occurrence in biogeoclimatic zones: (lower MH), (lower ESSF), (MS), BWBS, SBS, (SBPS), (BG), (PP), IDF, ICH, CDF, CWH Edaphic Amplitude: Range of soil moisture regimes: slightly dry - fresh - moist - very moist - (wet) Range of soil nutrient regimes: (poor) - medium - rich - very rich The edaphic amplitude of black cottonwood is very similar to that of balsam poplar. The major ecological difference between the two species is in their climatic requirements. While balsam poplar is mainly a subarctic or boreal tree, black cottonwood grows mainly in temperate and mesothermal climates, only marginally in subalpine boreal climates.
    [Show full text]
  • Productivity and Biomass Partitioning in 20-Year Black Cottonwood at Variable Spacing
    BS – ritgerð Maí 2011 Productivity and biomass partitioning in 20-year Black cottonwood at variable spacing Lena Mikaelsson Umhverfisdeild BS – ritgerð Maí 2011 Productivity and biomass partitioning in 20-year Black cottonwood at variable spacing Lena Mikaelsson Leiðbeinendur: Þorbergur H. Jónsson, Bjarni D. Sigurðsson Landbúnaðarháskóli Íslands Umhverfisdeild Statement I hereby declare that present thesis is based on my own observations, is written by me and that it has never been in part or as a whole submitted to a higher degree. Lena Mikaelsson iv Abstract The main objectives of this study were to investigate the effects of different spacing treatments on aboveground biomass production, bark, sapwood and heartwood ratios and the branching ratio in 20-year old Black cottonwood (Populus balsamifera L. ssp. trichocarpa (Torr. & A. Gray ex Hook.) Brayshaw) experimental plantation within Sandlækjarmýri research forest in southern Iceland. Data and wood samples were collected from 40 trees of 8 different spacing treatments (0.5 x 0.5 m, 0.5 x 1.0 m, 1.0 x 1.0 m, 1.0 x 1.5 m, 1.0 x 2.0, 2.0 x 1.5 m, 2.0 x 2.0 m and 3.0 x 3.0 m) repeated five times in a random manner. Main findings were that overall aboveground biomass per hectare increased with density and reached carrying capacity at approximately 5 000 trees ha-1. Density effects on survival and bark, sapwood and heartwood ratios were insignificant between spacing treatments. Initial spacing, however, did have significant effect on the ratio of branch mass to total above ground biomass that decreased with increasing density.
    [Show full text]
  • Populus Breeding: from the Classical to the Genomic Approach (Brian J
    Populus Breeding: From the Classical to the Genomic Approach (Brian J. Stanton, David B. Neale, and Shanwen Li - 2010) Populus Breeding: From the Classical to the Genomic Approach Brian J. Stanton, David B. Neale, and Shanwen Li Abstract Populus breeding is distinguished by a long history in forest tree improvement and its frequent dual reliance on inter-specific hybridization and vari- etal selection as the prominent domestication strategy. This chapter presents a review of the genecology and the principal long-term improvement approaches con- sidered in the manipulation of the genus’ key taxa, the pertinent experimental design features of worldwide varietal evaluation programs, and the current understanding of the morphological, physiological, and pathology components of yield and the physical and chemical components of wood quality. The chapter concludes with an assessment of the molecular tools being developed for an integrated translational genomics program to improve upon present breeding and selection methodologies. 1 Introduction Populus was the first woody perennial to gain recognition as a model for worldwide tree breeding programs because of the groundbreaking work in species hybridiza- tion, polyploid breeding, and investigations into pathogen resistance during the early part of the twentieth century (Pauley, 1949). More recently, the success that Populus clonal testing, selection, and deployment has achieved in boosting the trend toward worldwide varietal forestry over the last 20 years cannot be overestimated. Although tree improvement work in Populus may be surpassed in sophistication by today’s Pinus and Eucalyptus breeding programs, the model designation remains deserved in view of the sequencing of the Populus genome – the first of any tree in 2006 – and the subsequent investigations into genotype-phenotype associations.
    [Show full text]
  • Black Cottonwood
    Populus trichocarpa Torr. & Gray Black Cottonwood . thi Salicaceae Willow family s file Ab Was ou t. Mi creat t h1.s Fi sscan . ed b . le: Dean S. DeBell s lde y sca · . h . ntIt·c· l nn n owev ed b 1 g th er, s Y th e Pn. orne . e sof nted . tnJst t War PLi.b akes e hav iJcati tnay e be on.' ret n en C al.n . orrec ted;) Black cottonwood (Populus trichocarpa) is the largest of the American poplars and the largest hardwood tree in western North America. Known also as balsam cottonwood, western balsam poplar, and California poplar, it grows primarily on moist sites west of the Rocky Mountains. The most produc­ tive sites are the bottom lands of major streams and rivers west of the Cascade Range in the Pacific Northwest. Pure stands may form on alluvial soils. Black cottonwood is harvested and used -for lumber, veneer, and fiber products. Many kinds of wildlife use the foliage, twigs, and buds for food, and the tree is planted for shade and in windbreaks and shelter­ belts. Habitat Native Range The range of black cottonwood (fig. 1) extends northeast from Kodiak Island along Cook Inlet to latitude 62° 30' N., then southeast in southeast Alas­ ka and British Columbia to the forested areas of Washington and Oregon, to the mountains in southern California and northern Baja California (lat. 31o N. ). It is also found inland, generally on the west side of the Rocky Mountains, in British Colum­ bia, western Alberta, western Montana, and northern Idaho.
    [Show full text]
  • Guide for Planting Stream Or Wetland Buffers Tulalip Reservation
    SHRUBS.
    [Show full text]
  • Appendix C: Revegetation Recommendations
    APPENDIX C Duwamish Blueprint November 6, 2014 Duwamish Revegetation Recommendations Upland terrestrial and riparian vegetation should favor tree species historically present in the Duwamish (Collins and Sheikh, 2005), and a diversity of plants that will support a wide variety of terrestrial insects, which juvenile salmonids eat when available. Tree species composition should be shaped by historical information along with expected soil and moisture characteristics. Plants may need to be irrigated during the first two seasons until established. “Streamside tree species being both relatively common and large in diameter . include Douglas fir (Pseudotsuga menziesii, which may actually have been partially or dominantly Sitka spruce, Picea sitchensis), western redcedar (Thuja plicata), bigleaf maple (Acer macrophyllum), and black cottonwood (Populus trichocarpa). The valley floor was dominated in frequency (but not basal area) by red alder (Alnus rubra) and Oregon ash (Fraxinus latifolia) (Collins and Sheikh, 2005).” Revegetation recommendations from the U.S. Forest Service (R. Beal, pers. comm.): • Conduct adequate site preparation by fully removing invasive species (mechanical removal with crews and/or herbicide treatment with follow-up one or two times to grub roots or reapply, depending on species) within a defensible project boundary (extend projects so they are bordered by a road, trail, water terrace or other). Avoid soil disturbance after treatment to minimize growth of invasive seeds that may be deeper in the soil. • Use reference / least disturbed sites to inform your plant species selection, stem densities, tree-shrub ratios to build a trans-successional palette (vs. one that is early or late seral only). Typical densities are between 2200-2600 stems per acre, with an interplant the following year or two as needed to address any loss.
    [Show full text]
  • Free Native Plant List
    CLEAN WATER SERVICES PLANT GIVEAWAY Species Name Common Name Abies grandis Grand fir (Tree) Acer circinatum Vine maple Qualifications: Acer macrophyllum Bigleaf maple (Tree) 1. Live within the Tualatin River Watershed. Alnus rubra Red alder (Tree) 2. Remove any non-native, invasive species Amelanchier alnifolia Serviceberry before planting. Carex obnupta Slough sedge 3. Review the plant list on the back of this Cornus sericea Red-osier dogwood sheet toplan your planting and choose Crataegus douglasii Black hawthorn (Tree) plants. Fraxinus latifolia Oregon ash All plant requests are subject to inventory Gaultheria shallon Salal availability changes. Substitutions will be Holodiscus discolor Oceanspray chosen by District staff based on similar growing conditions and plant type. Juncus patens Spreading rush Lonicera involucrata Black twinberry Contact: [email protected] Tualatin River Farm Office: 503.615.3525 Mahonia aquifolium Tall Oregon grape Mahonia nervosa Dull Oregon grape Malus fusca Western crabapple (Tree) Oemleria cerasiformis Indian plum Philadelphus lewisii Mock orange Physocarpus capitatus Ninebark Pinus ponderosa (W.v.) Ponderosa Pine (Tree) Polystichum minutum Sword fern Populus trichocarpa Black cottonwood (Tree) Psuedotsuga menziesii Douglas fir (Tree) Quercus garryana Oregon White Oak (Tree) Rhamnus purshiana Cascara (Tree) Ribes sanguineum Red flowering currant Rosa pisocarpa Swamp Rose Rubus parviflorus Thimbleberry Rubus spectabilis Salmonberry Salix geyeriana Geyer willow Salix lasiandra Pacific wilow Salix scouleriana Scouler willow Sambucus cerulea Blue elderberry Sambucus racemosa Red elderberry Scirpus microcarpus Small fruited bulrush Spiraea douglasii Douglas spiraea Symphoriocarpus albus Common snowberry Thuja plicata Western red cedar (Tree) Revised 7/2021 Main Office • 2550 SW Hillsboro Highway • Hillsboro, Oregon 97123 • p: 503.681.3600 f: 503.681.3603 • cleanwaterservices.org.
    [Show full text]