Stream Bank Erosion Trends and Sediment Contributions in A

Total Page:16

File Type:pdf, Size:1020Kb

Stream Bank Erosion Trends and Sediment Contributions in A STREAM BANK EROSION TRENDS AND SEDIMENT CONTRIBUTIONS IN A SOUTHWESTERN MISSOURI RIVER A Masters Thesis Presented to The Graduate College of Missouri State University In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Ezekiel Kuehn July 2015 STREAM BANK EROSION TRENDS AND SEDIMENT CONTRIBUTIONS IN A SOUTHWESTERN MISSOURI RIVER Ezekiel Kuehn Geography, Geology, and Planning Missouri State University, July 2015 Masters of Science ABSTRACT Bank erosion can be a significant source of in-stream sediment that negatively affects water quality and aquatic habitat. However, assessments of the role that eroding banks play in suspended and bed sediment supply are rarely available to managers. The purpose of this study was to quantify bank erosion rates for a 7 km conservation easement the James River in southwest Missouri to evaluate the annual contributions of bank sediment to the channel. The objectives were to: (1) monitor an eroding 260 m bank to better understand short-term, reach scale bank erosion rates; (2) determine historical rates of bank erosion for the entire riparian easement using aerial photographs from 1952, 1997, and 2008; and (3) determine the contribution of bank erosion to annual river sediment loads and in-channel gravel storage. The erosion rates of fine sediment from historical aerial photograph analysis averaged 210 Mg/yr/km. Bank erosion contributions to suspended sediment loads in the James River ranged from 16% to 50%. Bank erosion along the James River is often limited by bedrock outcrops which can protect banks, increase channel stability, and reduce sediment supply. However, flow disturbance zones at channel bends along bedrock bluffs can enhance bar formation locally which can force lateral channel shifting and increased bank erosion rates. KEYWORDS: stream bank erosion, sediment transport, geographic information system, fluvial geomorphology This abstract is approved as to form and content _______________________________ Robert T. Pavlowsky Chairperson, Advisory Committee Missouri State University ii STREAM BANK EROSION TRENDS AND SEDIMENT CONTRIBUTIONS IN A SOUTHWESTERN MISSOURI RIVER By Ezekiel Kuehn A Masters Thesis Submitted to the Graduate College Of Missouri State University In Partial Fulfillment of the Requirements For the Degree of Master of Science, Geospatial Sciences in Geography, Geology, and Planning July 2015 Approved: _______________________________________ Dr. Robert T. Pavlowsky _______________________________________ Dr. Jun Luo _______________________________________ Dr. Xiaomin Qiu _______________________________________ Dr. Julie Masterson, Dean, Graduate College iii ACKNOWLEDGEMENTS First and foremost I would like to thank Dr. Pavlowsky for his patience and advice during my time as a graduate student at MSU. I would also like to thank Dr. Luo and Dr. Qiu for their time and advice as my committee members. A special thank you goes out to Marc Owen for his guidance and answering my never ending questions about GIS, field methods, and everything else. I would also like to acknowledge OEWRI for letting so many other students and myself obtain experience while helping us through Graduate College. I would like to thank my parents for bestowing upon me a love for the natural world, and supporting me through every step of my life. I would like to thank my beautiful wife Tiffany Kuehn for her unwavering support and patience during my years as a graduate student. I could not have done it without her. iv TABLE OF CONTENTS Introduction ..........................................................................................................................1 Causes of Bank Erosion ............................................................................................2 Geomorphic Processes Controlling Bank Erosion ....................................................5 Contribution to Sediment Loads ...............................................................................7 Sediment Loads and Bank Contributions in the Ozark Highlands .........................10 Purpose and Objectives ...........................................................................................11 Benefits of Study.....................................................................................................14 Study Area .........................................................................................................................16 Regional Location ...................................................................................................16 Geology ...................................................................................................................20 Climate ....................................................................................................................22 Land Use Past and Present......................................................................................24 Soils.........................................................................................................................23 Hydrology ...............................................................................................................25 Methodology ......................................................................................................................29 Site Selection and Study Design ..............................................................................29 Geomorphic Field Assessments ...............................................................................31 Erosion Pin Array Monitoring .................................................................................32 Segment Scale Bank Erosion Rates .........................................................................35 GIS Aerial Photograph Analysis ..................................................................35 Calculation of Bank Erosion Rates ..............................................................38 Sediment Volume and Mass Calculations ...................................................39 Bar Sediment Storage ..............................................................................................41 James River Sediment Loads ...................................................................................42 Determining Bank Full Discharge ...........................................................................45 Results & Discussion .........................................................................................................47 Reach-Scale Bank Erosion Pin Trends ....................................................................47 Erosion Pin Monitoring ...............................................................................47 Bank Sediment Loss ....................................................................................51 Segment Scale Bank Erosion Trends .......................................................................55 Bank Erosion Rates ......................................................................................55 River Bank Conditions .................................................................................62 Bank Sediment inputs to the James River....................................................66 Bar Distribution and Storage .......................................................................71 Bank Erosion Relationships .....................................................................................72 Fine Sediment Composition .........................................................................72 Valley Morphology and Channel Pattern ....................................................73 Bank Contributions to Sediment Loads in the James River ....................................76 Fine Sediment Contributions .......................................................................76 v Bank Erosion Contribution to the Gravel Bars in the James River .............78 Causes of Bank Erosion in the James River ...........................................................84 Hydrologic Factors........................................................................................84 Geomorphic Influences .................................................................................84 Channel Planform ........................................................................................85 Bar Deposition and Forcing ..........................................................................85 Geologic Factors ...........................................................................................91 Vegetation .....................................................................................................91 Evaluation of Bank Sediment Sources in the Ozarks .............................................92 Fine Sediment ...............................................................................................92 Coarse Sediment ...........................................................................................93 Study Limitations ....................................................................................................95 Conclusion .........................................................................................................................97 References ........................................................................................................................101 Appendicies .....................................................................................................................109
Recommended publications
  • Red River: the Northern Border of Texas!
    “From Palo Duro Canyon outside Amarillo Texas The prairie dog town fork of the Red River flows Headed cross the plains along the coast of Oklahoma To the Mississippi River and the Gulf of Mexico” Red River by Guy Clark Red River: The northern Border of Texas! By Wm Davey Edwards, PhD Texas & Oklahoma Professional Land Surveyor Texas Licensed State Land Surveyor US Federal Land Surveyor Edwards Surveying, LLC Decatur, Texas Red River Boundary between Texas and Oklahoma South bank of the Red River in July 2015 the day after a rain. Objectives • Natural Boundaries • Accretion, Erosion, and Avulsion • BLM Claims • Conclusion Natural Boundaries for International Borders Adams – Onís Treaty of 1819 • Sabine, Red, and Arkansas Rivers • begin on the Gulf of Mexico, at the mouth of the River Sabine in the Sea, continuing North, along the Western Bank of that River, to the 32d degree of Latitude; thence by a Line due North to the degree of Latitude, where it strikes the Rio Roxo of Natchitoches, or Red-River, then following the course of the Rio-Roxo Westward to the degree of Longitude, 100 West from London and 23 from Washington, then crossing the said Red-River, and running thence by a Line due North to the River Arkansas, thence, following the Course of the Southern bank of the Arkansas to its source in Latitude, 42. North and thence by that parallel of Latitude to the South-Sea Caroline C. Stafford v. Adam C. King • SUPREME COURT OF TEXAS, 30 Tex. 257, April, 1867 Natural objects are mountains, lakes, rivers, creeks, rocks, and the like; artificial objects are marked trees, stakes, mounds, etc., constructed by others or the surveyor, and called for in the field- notes, and they should be inserted in the patent.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • The Biology and Management of the River Dee
    THEBIOLOGY AND MANAGEMENT OFTHE RIVERDEE INSTITUTEofTERRESTRIAL ECOLOGY NATURALENVIRONMENT RESEARCH COUNCIL á Natural Environment Research Council INSTITUTE OF TERRESTRIAL ECOLOGY The biology and management of the River Dee Edited by DAVID JENKINS Banchory Research Station Hill of Brathens, Glassel BANCHORY Kincardineshire 2 Printed in Great Britain by The Lavenham Press Ltd, Lavenham, Suffolk NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS BRITISH LIBRARY CATALOGUING-IN-PUBLICATIONDATA The biology and management of the River Dee.—(ITE symposium, ISSN 0263-8614; no. 14) 1. Stream ecology—Scotland—Dee River 2. Dee, River (Grampian) I. Jenkins, D. (David), 1926– II. Institute of Terrestrial Ecology Ill. Series 574.526323'094124 OH141 ISBN 0 904282 88 0 COVER ILLUSTRATION River Dee west from Invercauld, with the high corries and plateau of 1196 m (3924 ft) Beinn a'Bhuird in the background marking the watershed boundary (Photograph N Picozzi) The centre pages illustrate part of Grampian Region showing the water shed of the River Dee. Acknowledgements All the papers were typed by Mrs L M Burnett and Mrs E J P Allen, ITE Banchory. Considerable help during the symposium was received from Dr N G Bayfield, Mr J W H Conroy and Mr A D Littlejohn. Mrs L M Burnett and Mrs J Jenkins helped with the organization of the symposium. Mrs J King checked all the references and Mrs P A Ward helped with the final editing and proof reading. The photographs were selected by Mr N Picozzi. The symposium was planned by a steering committee composed of Dr D Jenkins (ITE), Dr P S Maitland (ITE), Mr W M Shearer (DAES) and Mr J A Forster (NCC).
    [Show full text]
  • Topic 12 – Shaping the Earth Vocabulary
    Topic 12 – Shaping the Earth Vocabulary Abrasion – physical action of scraping, rubbing, grinding or wearing away rock material Chemical weathering – the process of using natural chemical reactions to break down rock Cut bank – Outside bend in a stream where the water velocity is fastest and erosion is the greatest. Delta – the region of a stream mouth where sediment is deposited as it flows into a large body of water in graded beds of largest to smallest particles Deposition – the process where sediment is dropped out of the stream current and builds into layers Drumlin – a glacial feature that is created as a glacier flows. The blunt end shows the direction of flow Erosion – the removal of sediment and weather material from rock Glacier – a mass of ice that flows due to gravity Kettle lake – a small round lake that is formed when a large chunk of glacial ice creates a depression in the Earth’s surface and melts Landscape – regions on Earth’s surface with similar surface feature such as mountains, plains and plateaus Mass movement – the movement of large quantities of earth materials due to gravity, includes landslides, mudslides, rock slides and soil creep Meander – the curve or bend of a stream channel Moraine – a large ridge, pile or sheet of unsorted sediment deposited by a glacier Outwash plain – a glacial feature of sorted layered sediment as the result of the glacier melting Physical weathering – the mechanical breakdown of rock material at the earth’s surface into smaller pieces Point bar – Opposite the cut bank in a stream where the velocity is slowest and deposition is the greatest.
    [Show full text]
  • Cumulative Effective Stream Power and Bank Erosion on the Sacramento River, California, Usa1
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION AUGUST AMERICAN WATER RESOURCES ASSOCIATION 2006 CUMULATIVE EFFECTIVE STREAM POWER AND BANK EROSION ON THE SACRAMENTO RIVER, CALIFORNIA, USA1 Eric W. Larsen, Alexander K. Fremier, and Steven E. Greco2 ABSTRACT: Bank erosion along a river channel determines the INTRODUCTION pattern of channel migration. Lateral channel migration in large alluvial rivers creates new floodplain land that is essential for Natural rivers and their surrounding areas consti- riparian vegetation to get established. Migration also erodes tute some of the world’s most diverse, dynamic, and existing riparian, agricultural, and urban lands, sometimes complex terrestrial ecosystems (Naiman et al., 1993). damaging human infrastructure (e.g., scouring bridge founda- Land deposition on the inside bank of a curved river tions and endangering pumping facilities) in the process. channel is a process that creates opportunities for Understanding what controls the rate of bank erosion and asso- vegetation to colonize the riparian corridor (Hupp and ciated point bar deposition is necessary to manage large allu- Osterkamp, 1996; Mahoney and Rood, 1998). Point vial rivers effectively. In this study, bank erosion was bar deposition and outside bank erosion are tightly proportionally related to the magnitude of stream power. Linear coupled. These physical processes (which constitute regressions were used to correlate the cumulative stream channel migration) maintain ecosystem heterogeneity power, above a lower flow threshold, with rates of bank erosion in floodplains over space and time (Malanson, 1993). at 13 sites on the middle Sacramento River in California. Two Channel migration structures and sustains riparian forms of data were used: aerial photography and field data.
    [Show full text]
  • Defining the Moment of Erosion
    Earth Surface Processes and Landforms EarthDefining Surf. the Process. moment Landforms of erosion 30, 1597–1615 (2005) 1597 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/esp.1234 Defining the moment of erosion: the principle of thermal consonance timing D. M. Lawler* School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham B15 2TT, UK *Correspondence to: Abstract D. M. Lawler, School of Geography, Earth and Geomorphological process research demands quantitative information on erosion and deposi- Environmental Sciences, tion event timing and magnitude, in relation to fluctuations in the suspected driving forces. University of Birmingham, This paper establishes a new measurement principle – thermal consonance timing (TCT) Birmingham B15 2TT. – which delivers clearer, more continuous and quantitative information on erosion and E-mail: [email protected] deposition event magnitude, timing and frequency, to assist understanding of the controlling mechanisms. TCT is based on monitoring the switch from characteristically strong tempera- ture gradients in sediment, to weaker gradients in air or water, which reveals the moment of erosion. The paper (1) derives the TCT principle from soil micrometeorological theory; (2) illustrates initial concept operationalization for field and laboratory use; (3) presents experimental data for simple soil erosion simulations; and (4) discusses initial application of TCT and perifluvial micrometeorology principles in the delivery of timing solutions for two bank erosion events on the River Wharfe, UK, in relation to the hydrograph. River bank thermal regimes respond, as soil temperature and energy balance theory pre- dicts, with strong horizontal thermal gradients (often >>>1Kcm−−−1 over 6·8 cm).
    [Show full text]
  • Montana State Parks Guide Reservations for Camping and Other Accommodations: Toll Free: 1-855-922-6768 Stateparks.Mt.Gov
    For more information about Montana State Parks: 406-444-3750 TDD: 406-444-1200 website: stateparks.mt.gov P.O. Box 200701 • Helena, MT 59620-0701 Montana State Parks Guide Reservations for camping and other accommodations: Toll Free: 1-855-922-6768 stateparks.mt.gov For general travel information: 1-800-VISIT-MT (1-800-847-4868) www.visitmt.com Join us on Twitter, Facebook & Instagram If you need emergency assistance, call 911. To report vandalism or other park violations, call 1-800-TIP-MONT (1-800-847-6668). Your call can be anonymous. You may be eligible for a reward. Montana Fish, Wildlife & Parks strives to ensure its programs, sites and facilities are accessible to all people, including those with disabilities. To learn more, or to request accommodations, call 406-444-3750. Cover photo by Jason Savage Photography Lewis and Clark portrait reproductions courtesy of Independence National Historic Park Library, Philadelphia, PA. This document was produced by Montana Fish Wildlife & Parks and was printed at state expense. Information on the cost of this publication can be obtained by contacting Montana State Parks. Printed on Recycled Paper © 2018 Montana State Parks MSP Brochure Cover 15.indd 1 7/13/2018 9:40:43 AM 1 Whitefish Lake 6 15 24 33 First Peoples Buffalo Jump* 42 Tongue River Reservoir Logan BeTableaverta ilof Hill Contents Lewis & Clark Caverns Les Mason* 7 16 25 34 43 Thompson Falls Fort3-9 Owen*Historical Sites 28. VisitorMadison Centers, Buff Camping,alo Ju mp* Giant Springs* Medicine Rocks Whitefish Lake 8 Fish Creek 17 Granite11-15 *Nature Parks 26DisabledMissouri Access Headw ibility aters 35 Ackley Lake 44 Pirogue Island* WATERTON-GLACIER INTERNATIONAL 2 Lone Pine* PEACE PARK9 Council Grove* 18 Lost Creek 27 Elkhorn* 36 Greycliff Prairie Dog Town* 45 Makoshika Y a WHITEFISH < 16-23 Water-based Recreation 29.
    [Show full text]
  • The Spatial Distribution of Bed Sediment on Fluvial System: a Mini Review of the Aceh Meandering River
    Aceh Int. J. Sci. Technol., 5(2): 82-87 August 2016 doi: 10.13170/aijst.5.2.4932 Aceh International Journal of Science and Technology ISSN: 2088-9860 Journal homepage: http://jurnal.unsyiah.ac.id/aijst The Spatial Distribution of Bed Sediment on Fluvial System: A Mini Review of the Aceh Meandering River Muhammad Irham Faculty of Marine and Fisheries Science, University of Syiah Kuala, Banda Aceh 23111, Indonesia. Corresponding author, email: [email protected] Received : 2 August 2016 Accepted : 28 August 2016 Online : 31 August2016 Abstract - Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associate with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed.
    [Show full text]
  • Modification of Meander Migration by Bank Failures
    JournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE Modification of meander migration by bank failures 10.1002/2013JF002952 D. Motta1, E. J. Langendoen2,J.D.Abad3, and M. H. García1 Key Points: 1Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, • Cantilever failure impacts migration 2National Sedimentation Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Oxford, Mississippi, through horizontal/vertical floodplain 3 material heterogeneity USA, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA • Planar failure in low-cohesion floodplain materials can affect meander evolution Abstract Meander migration and planform evolution depend on the resistance to erosion of the • Stratigraphy of the floodplain floodplain materials. To date, research to quantify meandering river adjustment has largely focused on materials can significantly affect meander evolution resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and vertical floodplain material heterogeneity on meander migration by simulating fluvial Correspondence to: erosion and cantilever and planar bank mass failure processes responsible for bank retreat. The impact of D. Motta, stream bank failures on meander migration is conceptualized in our RVR Meander model through a bank [email protected] armoring factor associated with the dynamics of slump blocks produced by cantilever and planar failures. Simulation periods smaller than the time to cutoff are considered, such that all planform complexity is Citation: caused by bank erosion processes and floodplain heterogeneity and not by cutoff dynamics. Cantilever Motta, D., E. J. Langendoen, J. D. Abad, failure continuously affects meander migration, because it is primarily controlled by the fluvial erosion at and M.
    [Show full text]
  • East Osage River Watershed Inventory and Assessment
    EAST OSAGE RIVER WATERSHED INVENTORY AND ASSESSMENT Prepared by Alex L. S. Schubert Missouri Department of Conservation West Central Region-Fisheries Division Clinton, MO November 30, 2001 Acknowledgments Thank you's are in order to numerous individuals who provided assistance on this document. Thanks to Mike Bayless and Tom Groshens for information gathering and the compilation of numerous tables, and to Ron Dent for his guidance on, and editing of early drafts of this document. Mike was also a tremendous help in getting me started and making final changes to this document. Thanks to Bill Turner for the guidance he provided throughout this process. Thanks to Mark Caldwell for assistance with ArcView GIS software, his assistance in the field, and his dedication to providing the best data and information possible in GIS format. Thanks to Del Lobb for extensive help throughout the draft process. Thanks also to Missouri Department of Conservation, Missouri Department of Natural Resources, Environmental Protection Agency, U.S. Army Corps of Engineers, and U.S. Geological Survey personnel and to other contributors too numerous to mention. Executive Summary The East Osage River Basin is found in central Missouri in the Missouri counties of Osage, Maries, Cole, Pulaski, Miller, Camden, Morgan, Benton, and Hickory and encompasses 2,474.52 mi2. This basin has been divided into two 8-digit hydrologic units (HUCs) and fourteen 11-digit HUCs. Lake of the Ozarks was formed in 1931 in the western half of the East Osage River Basin. Geomorphology This basin lies within a dissected plateau known as the Salem Plateau and is represented by four of Missouri’s natural divisions.
    [Show full text]
  • PDF of Montana
    USDA Farm Service Agency - Montana Office Directory Montana FSA State Office | P.O. Box 670 | Bozeman, MT 59771 | Phone: 406.587.6872 State Executive Director Mike Foster | www.fsa.usda.gov/mt | Fax: 855.546.0264 FSA Service Center Offices (Listed by County/Reservation) Phone # Fax # Beaverhead 420 Barrett Street, Dillon, MT 59725 406/683-3830 855/556-1258 Big Horn, Crow Reservation, 724 West Third, Hardin, MT 59034 406/665-3442 855/556-1457 Northern Cheyenne Reservation Blaine, Fort PO Box 307, 228 Ohio, Chinook, MT 59523 406/357-2320 855/546-0388 Belknap Reservation Ft. Belknap Service Center, 158 Tribal Way, Harlem, MT 59526 406/353-8526 855/546-0388 Broadwater 415 South Front Street, Townsend, MT 59644 406/266-4253 855/575-2506 PO Box 509, 606 W Front Street, Joliet, MT 59041- Carbon 406/962-3300 855/558-5641 0136 Carter PO Box 5, 308 S. Mormon Ave., Ekalaka, MT 59324 406/775-6355 855/556-1271 Cascade 12 3rd St NW, Suite 300, Great Falls, MT 59404 406/727-7580 866/609-8434 PO Box 309, 1210 25th Street, Fort Benton, Chouteau 406/622-5401 855/556-1450 MT 59442-0309 Custer 3120 Valley Drive East, Miles City, MT 59301-5599 406/232-7905 855/558-5665 Daniels 131 B Highway 5 East, Scobey, MT 59263 406/487-5366 855/575-2501 Dawson 102 Fir Street, Glendive, MT 59330-3196 406/377-5566 855/556-1455 1002 Hollenback Road, Suite B, Deer Lodge, Deer Lodge 406/846-2337 855-547-5750 MT 59722 PO Box 1516, 141 South 4th Street West, Baker, Fallon 406/778-2238 855-510-7029 MT 59313-1516 Fergus 211 McKinley St., Suite 2, Lewistown, MT 59457 406/538-3489 855/558-5654 Flathead 133 Interstate LN, Kalispell, MT 59901-2877 406/752-4242 855/558-5653 Gallatin 3710 W.
    [Show full text]
  • Glacier County Pre-Disaster Mitigation Plan February 2017
    Glacier County Pre-Disaster Mitigation Plan February 2017 Encompassing the Jurisdictions of: Glacier County City of Cut Bank Prepared By: Fulton Wold, CBCP Tony Gertz, AEM Executive Officer Mitigation Planner (615) 469-5558 (615) 469-5558 [email protected] [email protected] Glacier County Pre-Disaster Mitigation Plan Page 2 Executive Summary The Glacier County Pre-Disaster Mitigation Plan is being developed to update and revise hazard mitigation activities for Glacier County. The Glacier County Mitigation Planning Committee will evaluate mitigation measures to be undertaken, and outline a strategy for implementation of mitigation projects. This plan covers two municipalities in Glacier County, including the governments of: Glacier County and the City of Cut Bank. Formal adoption and implementation of a pre-disaster mitigation plan may present many benefits to Glacier County and Cut Bank. By identifying problems and possible solutions in advance of a disaster, Glacier County and Cut Bank will be in a better position to obtain pre and post-disaster funding. This document aims to produce the following strategic outcomes: 1) Reduce loss of life and decrease property losses to Glacier County and its jurisdictions due to natural disasters; and 2) Provide the framework and coordination to encourage government, and both public and private organizations at all levels, to undertake mitigation in order to minimize potential disasters and to employ mitigation strategies in the recovery following disasters. Specifically, these strategic
    [Show full text]