Low Impact Pest Control Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Low Impact Pest Control Brochure More low impact insecticides (cont.) FOR MORE INFORMATION • Boric acid • Good for cockroach control, but should never be Lots of useful information is available from left where children or pets can reach. Boric acid is Texas AgriLife Online. Check out the not toxic to touch, but in high doses can be toxic to swallow. following resources: • Light, barely visible, residues are best for control‐ • http://Agrilifebookstore.org ling cockroaches. A great site with hundreds of Extension • Used as an active ingredient in some cockroach and ant bait products. publications on topics ranging from • Diatomaceous earth water conservation to pest management. • Can control pests if kept dry and used in dry envi‐ Try browsing the House and garden ronments. Try dusting pet beds for flea control, and in walls and other dry locations for ant and insect section, or search on a pest of cockroach control. interest. • Botanical (plant-based) insecticides • http://insects.tamu.edu • Plants make their own insecticides, some of which we use too. Check the labels of these products to A diverse site devoted to all things insect. compare toxicity. Just because a pesticide comes The home for the department of from a plant doesn’t mean it’s safe for people. entomology at Texas A&M University. • Botanical pesticides generally break down quickly when exposed to sunlight, air and water. This • http://Citybugs.tamu.edu keeps them relatively safe for many beneficial A north-Texas based site with an eclectic insects. assortment of information on pests • Look for products containing pyrethrins, neem extracts, mint oils and citrus oils. missed by other sites. • Attractants and repellents • Sometimes the best way to manage pests is to repel them, or attract them elsewhere (like to a trap). What’s the difference between an • DEET, lemon oil of eucalyptus, and picaridin are insecticide and a pesticide? Low impact insecticides are the leading mosquito and tick repellents today. Pesticides are chemical tools designed to kill, products that are relatively low in • Attractants are often added to sticky traps to repel or prevent any kind of pest. Insecticides toxicity to people, pets and wildlife, make them more effective. are a special kind of pesticide designed espe‐ cially for insect control. including beneficial insects. You can find a variety of low‐impact products as close as your nearest Tip: Educational programs of the Texas AgriLife Extension Service are open “Sticky traps” can help you catch and identify to all people without regard to race, color, sex, disability, religion age, grocery or garden store. household pests. In some cases they can even or national origin.. help control pests. Look for sticky traps Author: Michael Merchant, PhD, BCE (sometimes called roach hotels) in your local Extension Urban Entomologist with the Urban Solutions Low-Impact Insect Center at Texas AgriLife Research & Extension Center at hardware, grocery or do‐it‐yourself pest con‐ Dallas, 17360 Coit Road, Dallas, TX 75252-6599 trol shop. http://urbansolutionscenter.tamu.edu Control for Everyone Misc. handout 4‐2009 Not all insecticides are created equal. In What is low-impact pest control? themselves, insecticides do not have to be harmful to the It’s hard to be green when pests are driving Examples of low impact insecticides environment. Some you crazy. That seems to sum up our popular insecticides on shelves attitude about pests and pesticides. Some of • Insecticide soaps and horticultural oils today are very low in us are willing to resort to almost any means to • These products kill smaller, soft‐bodied arthropods like toxicity to people and get rid of scary and pesky bugs, but many mites, aphids and scales. But they only kill when sprayed pests can be controlled with very little risk to directly on the pest. highly selective for cer‐ us or the environment. By combining low risk • Horticultural oils are sometimes called dormant oil, Volck tain insects. This allows pesticides with oil, summer oils or ultrafine spray oils. us to control pests non‐chemical • Store bought versions of these products are generally safely and preserve control measures, safer to plants (plus they come with instructions!). beneficial insects. we soften our • Soaps and oils are among the cheapest and safest pesti‐ cides for the garden. Some of the smallest insects impact on the • Microbe-based products in the garden should be your environment and • These products consist of, or are derived from, bacteria best friends. Predatory control pests at and other microbes. pirate bugs, parasitic wasps, the same time. • Microbe‐based products, like Bacillus thuringiensis and spinosad, are generally safe for people and selective for predator flies and even Pesticides aren’t pests. beneficial mites and thrips are the answer to all • Caution: Even the low toxicity product spinosad can be common in most gardens, pest problems. In harmful to bees. It’s best to spray flowering plants in the evening to minimize risks to bees and other pollinators. and in many cases do a better fact, we often • Insect growth regulators (IGRs) job of controlling pests than don’t need pesti‐ • These products are usually man‐made copies of hor‐ cides to keep insects and other pests at bay. the better‐known lady mones that are found in insects. They can affect insects Home grown lady The best low‐impact approach is called inte‐ beetle. by disrupting egg laying or interfering with normal beetles are best! grated pest management, or IPM. It provides growth. They are generally harmless to people and pets. a way to use fewer pesticides along with other • Examples of IGRs include methoprene (flea and fire ant Mother Nature does a effective tactics to keep pest numbers man‐ control), hydroprene (mosquito control), and good job of delivering halofenozide (caterpillar and white grub control). ageable. lady beetles to our • Baits front step when they • Because baits are fed on by pests, the amount of pesti‐ IPM starts with identifying the pest, then cides needed to kill is very small. In many cases, baits are needed. Repeated looking for sanitation or other non‐chemical can eliminate the need for potentially more hazardous research studies show sprays. ways to make the environment less attractive that store‐bought lady • Cockroach bait stations and liquid ant baits can provide to pests. Excluding the pest from your home excellent control of these pests. beetles rarely stay or garden is next. Finally, IPM encourages use • Fire ant baits should be scattered over the whole yard around long enough to of the least‐toxic products that will control and not placed in piles around ant mounds for best con‐ trol. control your pests— the pest. Put all these things together and • Some baits, like fire ant, slug and rodent baits can be though they may help you’ve got low‐impact pest control! toxic to pets unless label directions are followed care‐ someone on the other fully. side of town! .
Recommended publications
  • Features & Benefits
    Click Here To Purchase Features & Benefits: • TAURUS SC is a water-based suspension concentrate of 9.1% Fipronil for Pre and Post-construction termite applications, and to control perimeter pests • Apply at a rate of 4 gallons of dilution per 10 linear feet per foot of depth for termites • TAURUS SC is labeled for barrier applications targeting listed occasional invaders around structures • Now with EP/LI applications PRECAUTIONARY STATEMENTS ® Hazards to Humans and Domestic Animals Caution TAURUS SC Harmful if swallowed, absorbed through skin or inhaled. Do not get in eyes, on skin Termiticide / Insecticide or on clothing. Do not breathe spray mist. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, or using tobacco. Remove and It is a violation of federal law to use this product in a manner inconsistent wash contaminated clothing before reuse. with its labeling. Personal Protective Equipment (PPE): • For sale to, use and storage only by individuals/firms licensed or registered All pesticide handlers (mixers, loaders, and applicators) must wear long-sleeved by the state to apply termiticide and/or general pest control products. shirt and long pants, socks, shoes, and chemical-resistant gloves. All pesticide • DO NOT use this product for termite or other pest control indoors, except for handlers must wear a dust/mist filtering respirator (MSHA/NIOSH approval number label-specified applications for termite control and foam applications to wall prefix TC-21C), or a NIOSH approved respirator with any N, R, P or HE filter, when voids for control of other listed pests. working in a non-ventilated space, including but not limited to crawl-spaces and • DO NOT use on golf course turf.
    [Show full text]
  • Historical Use of Lead Arsenate and Survey of Soil Residues in Former Apple Orchards in Virginia
    HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA by Therese Nowak Schooley Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN LIFE SCIENCES in Entomology Michael J. Weaver, Chair Donald E. Mullins, Co-Chair Matthew J. Eick May 4, 2006 Blacksburg, Virginia Keywords: arsenic, lead, lead arsenate, orchards, soil residues, historical pesticides HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA Therese Nowak Schooley Abstract Inorganic pesticides including natural chemicals such as arsenic, copper, lead, and sulfur have been used extensively to control pests in agriculture. Lead arsenate (PbHAsO4) was first used in apple orchards in the late 1890’s to combat the codling moth, Cydia pomonella (Linnaeus). The affordable and persistent pesticide was applied in ever increasing amounts for the next half century. The persistence in the environment in addition to the heavy applications during the early 1900’s may have led to many of the current and former orchards in this country being contaminated. In this study, soil samples were taken from several apple orchards across the state, ranging from Southwest to Northern Virginia and were analyzed for arsenic and lead. Based on naturally occurring background levels and standards set by other states, two orchards sampled in this study were found to have very high levels of arsenic and lead in the soil, Snead Farm and Mint Spring Recreational Park. Average arsenic levels at Mint Spring Recreational Park and Snead Farm were found to be 65.2 ppm and 107.6 ppm, respectively.
    [Show full text]
  • Safe Pest Control
    SAFE PEST CONTROL U.S. Department of Housing and Urban Development • Office of Healthy Homes and Lead Hazard Control “For years, cockroaches have defeated our best efforts to get rid of them. We sprayed and sprayed, but they always came back. Now we under- stand there are better methods and products that really work” Environmental Health Watch Did you know...? ■ Many pesticides for home use are toxic? ■ There are alternative pest management methods that limit the use of toxic substances? ■ Mice, cockroaches, and cockroach "dust” can trigger asthma attack? What is it? Integrated pest management (IPM) is a way to remove pests, like cock- roaches, mice, and rats from a home. IPM is a common sense approach that: ■ Denies pests food, water, shelter and a way to enter the home. ■ Uses baits and powders, such as gel baits, traps and borate powder. Why use IPM? ■ IPM is safer. IPM does not use as many harmful pesticides as traditional pest control. - Avoiding pesticides is especially important in homes. Pesticides can contain long lasting, toxic chemicals or lung irritants that cause asthma attacks. Children are among those most vulnerable to exposure. IPM strategies apply pesticides only as needed and use the least hazardous pesticides to control pests. continued on back www.hud.gov/offices/lead U.S. Department of Housing and Urban Development SAFE PEST CONTROL Office of Healthy Homes and Lead Hazard Control Non-toxic traps can be part of an IPM strategy. If needed, call a pest control professional who uses IPM practices. If you have taken all the steps described above and still have a pest problem, you may need a professional to help.
    [Show full text]
  • 4-Cyano-3-Benzoylamino-N
    (19) TZZ _T (11) EP 2 427 427 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 255/60 (2006.01) 25.12.2013 Bulletin 2013/52 (86) International application number: (21) Application number: 10713937.0 PCT/EP2010/054862 (22) Date of filing: 14.04.2010 (87) International publication number: WO 2010/127926 (11.11.2010 Gazette 2010/45) (54) 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDES FOR USE IN PEST CONTROL 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDE ZUR VERWENDUNG IN DER SCHÄDLINGSBEKÄMPFUNG 4-CYANO-3-BENZOYLAMINO-N-PHÉNYL-BENZAMIDES DESTINÉS À ÊTRE UTILISÉS DANS LA LUTTE ANTIPARASITAIRE (84) Designated Contracting States: • HUETER, Ottmar Franz AT BE BG CH CY CZ DE DK EE ES FI FR GB GR CH-4332 Stein (CH) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • MAIENFISCH, Peter PT RO SE SI SK SM TR CH-4332 Stein (CH) (30) Priority: 06.05.2009 GB 0907822 (74) Representative: Herrmann, Jörg et al 18.12.2009 GB 0922234 Syngenta Crop Protection Münchwilen AG (43) Date of publication of application: Intellectual Property Department 14.03.2012 Bulletin 2012/11 Schaffhauserstrasse CH-4332 Stein (CH) (73) Proprietor: Syngenta Participations AG 4058 Basel (CH) (56) References cited: EP-A1- 1 714 958 WO-A1-2008/000438 (72) Inventors: WO-A1-2008/074427 • JUNG, Pierre Joseph Marcel CH-4332 Stein (CH) Remarks: • GODFREY, Christopher Richard Ayles Thefile contains technical information submitted after CH-4332 Stein (CH) the application was filed and not included in this specification Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Who Needs Chlorpyrifos and Why (By Crop)?
    1 WHO NEEDS CHLORPYRIFOS AND WHY (BY CROP)? EXCERPTS OF COMMENTS SUBMITTED TO EPA AT EPA-HQ-OPP-2015-0653 GENERAL “Consumers I have visited with that do not have any ag background are easily swayed into the belief that farmers are polluting the environment and recklessly applying chemicals. Truth is our farmers are professionals and with today’s pricing cannot afford to be over- or misapplying inputs that affect their bottom lines…. I strongly suggest that you…allow producers of the world’s food source to continue using the product chlorpyrifos.” – North Dakota farmer. “Many food crop industries in the Pacific Northwest are concerned about the impacts to pest management based on EPA’s proposed tolerance revocation of chlorpyrifos, including several minor crop groups with limited pesticide options. These industries include processed vegetables, strawberry, grass seed, mint, and cranberry. For many of these industries, chlorpyrifos has unique properties that make it an essential part of their Integrated Pest Management program. It is also an important tool for resistance management. Several of these industries have conducted research to identify effective alternatives to chlorpyrifos, but currently there aren’t viable alternatives that match the efficacy and low risk of this product for managing a number of critical pests…. A revocation of all chlorpyrifos tolerances would eliminate a number of low-risk, critical uses in cases where few alternatives exist at present, and in many cases those alternatives (neonicotinoids, pyrethroids) would be less efficacious, more expensive and have greater impacts on nontarget species including pollinators and beneficial insects. Further, the economic impacts based on resulting crop damage would be substantial.” – Oregon State University Agronomist.
    [Show full text]
  • Chlorpyrifos, Part 1: Toxicology
    JOURNAL OF PESTICIDE REFORM/ WINTER 1994 • VOL.14, NO. 4 ■ INSECTICIDE FACTSHEET CHLORPYRIFOS, PART 1: TOXICOLOGY The broad spectrum organophosphate insecticide chlorpyrifos is the most widely used insecticide in the U.S. Total use is estimated at almost 30 million pounds per year. Like all organophosphate insecticides, chlorpyrifos affects the nervous system by inhibiting an enzyme that is important in the transmission of nerve impulses. Symptoms of acute poisoning include headache, nausea, muscle twitching, and convulsions. Chlorpyrifos poisonings are reported to state and federal agencies more often than poisonings of almost every other insecticide. In both laboratory animals and humans, chlorpyrifos can also cause delayed effects on the nervous system. Some effects have been measured years after exposure. Human birth defects have been associated with exposure to chlorpyrifos products. In pregnant laboratory animals, chlorpyrifos exposure caused fetal death. Pups that did survive were smaller pups and did not survive as well as pups from unexposed mothers. Chlorpyrifos also affects the male reproductive system; exposure to a chlorpyrifos product has caused death of cells in male rat testes and a decrease in sperm production in cattle. Chlorpyrifos has caused genetic damage in human blood and lymph cells, mice spleen cells, and hamster bone marrow cells. Immune system abnormalities have been reported from patients exposed to chlorpyrifos. Many individuals report developing sensitivities to a broad array of substances following chlorpyrifos exposure. The second part of this factsheet will discuss human exposure to chlorpyrifos and the ecological effects of chlorpyrifos. BY CAROLINE COX mary agricultural uses are for oranges, al- plications are made annually.
    [Show full text]
  • Contracting for Pest Control Service in Public Buildings ______A
    Contracting for Pest Control Service in Public Buildings _____________________________________________________ A. Greene Regional Entomologist U. S. General Services Administration Three Core Principles of Public Sector Contracting ______________________________________________________ Contracting is Law The Principle of Fairness Competition must be maximized No bidder can be unfairly excluded The Principle of Frugality Minimum requirements only The goal should be greatest value The Six Principal Components of Service Contracting ______________________________________________________ Program management Type of contract Estimating cost Method of award Statement of work Quality assurance 1. Program Management ______________________________________________________ Who will be the Integrated Pest MANAGER? IPM = Integrated Procurement Mission 2. Type of Contract ________________________________________________________ Janitorial service or separate contract? How will the work be ordered & paid for? Firm-Fixed Price Indefinite Delivery __________________________________________________________The Firm-Fixed-Price Contract Advantages: Minimum administrative burden Easiest type of contract to budget for Disadvantages: Highly inflated prices if bidders feel there are high cost risks, e.g.: Excessive monitoring/recordkeeping requirements High-cost, indeterminate specialty work included (e.g. termites, bird deterrence, wildlife trapping) __________________________________________________________The Firm-Fixed-Price Contract Needless (& Expensive)
    [Show full text]
  • Broadacre Pest Control After DDT
    Journal of the Department of Agriculture, Western Australia, Series 4 Volume 28 Number 3 1987 Article 2 1-1-1987 Broadacre pest control after DDT P J. Michael Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4 Part of the Agronomy and Crop Sciences Commons, Entomology Commons, and the Environmental Health and Protection Commons Recommended Citation Michael, P J. (1987) "Broadacre pest control after DDT," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 28 : No. 3 , Article 2. Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol28/iss3/2 This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact [email protected]. BROADACRE PEST CONTROL AFTER y.'4 Bv Phil Michael, Entomologist DDT may no longer be applied to broadacre crops grown in Western Australia. It is being replaced by other effective chemicals and with new methods of pest control. DDT was the most effective chemical for the control •»*mwi of several major broadacre pests in this State and farmers may well wonder why this change was necessary and how they will manage without DDT. MS«£22?!«s r Journal of Agriculture, Vol 27, No. 4, 1986 75 Benefits of DDT As DDT was effective against a wide range of insects, it sometimes reduced the numbers The outstanding effectiveness of DDT against of predators and parasites even more than a wide range of local pests was demonstrated the pests.
    [Show full text]
  • Newly Developed Insecticides for Pest Control
    Page 2 CALIFORNIA AGRICULTURE September, I947 Oil Fractions And Their Toxic Vewly Developed Leasing Of Farm Lands In State Effect On Plants When Used As 'nsecticides For Thought To Be At Low Point Now Weed Killing Sprays Explained 'esf Control But Increase Is Anticipated Robert L. Metcalf (Continued from page 1) Scientific research by commercial ownership from one generation of Rental arrangements need to be nd governmental interests has re- farmers to the next. re-examined annually. ulted in an unprecedented devel- Young farmers find it a way to Trends pment of new materials showing expand their operations and earnings New procedures need to be devel- reat promise as insecticides. Intelli- more rapidly than through owner- oped to facilitate the gradual passage .ent evaluation of their potentiali- ship. of a farm from owner to son or po- ies will offer big dividends in im- Truck and crop specialists may In contrast to sprays in water solu- condense later. Thus each batch of tential purchaser with little capital. roving the efficiency of present shift their operations more readily New forms of profit sharing and tion, oils wet plant surfaces readily crude oil contains some gasoline ay pest control practices. where they lease a large part of the and tend to spread as thin films and some stove oil, and some Diesel fuel partnership contracts for farm op- DDD or TDE land they farm. eration will supplement traditional run down the stems. They penetrated etc., and each fraction may be re- Rental Arrangements moved within its own boiling range DDD or TDE is 2,2-bis-(p-chloro- leasing practices.
    [Show full text]
  • Pest Management and Pesticides: a Historical Perspective1 Frederick M
    PI219 Pest Management and Pesticides: A Historical Perspective1 Frederick M. Fishel2 Pests in History nineteenth century. A plant disease called late blight (Figure 1) essentially eliminated potatoes, the staple food crop in Civilization has battled pests throughout history. Of the Ireland at that time. Up to a million Europeans starved to many examples of how pests have impacted human society, death during the Great Irish Famine of 1845-1847. Social one of the most infamous is the Black Plague in Europe implications of this pest infestation in Ireland included the in the fourteenth century, when millions of people — ap- largest ever migration to the United States, with more than proximately one-third of Europe’s population at that time a million people migrating to this country from Ireland — died from a mysterious disease. during that famine. At the time, the disease was believed to be the result of God’s displeasure with humanity or the result of other supernatural powers or heavenly disturbances. Additionally, innocent groups of people were blamed for spreading the plague and were persecuted by the panicked masses. Nu- merous references in art, literature, and public monuments attest to the horrors and devastation of that epidemic. Centuries later, scientific inquiry determined that a bacte- rial disease spread by rat fleas was the cause of the plague that devastated Europe. Rat fleas became infected with bacteria while feeding on diseased rats. When rats were unavailable as a food source, the fleas sought other warm- blooded hosts, often humans, thereby vectoring the disease. Today this disease, known as bubonic plague, can be treated Figure 1.
    [Show full text]
  • A Pest Control Program
    PURDUE EXTENSION Safe food guidelines for small meat and poultry processors FS-22-W A Pest Control Program Introduction Basic pest control in the food Kevin Keener, Ph.D., P.E. Outline processing plant is an essential prerequisite food safety program. Food process engineer, Extension 1. What is a pest control program? 2. Common pests in the food plant Unfortunately, many processors have specialist, and associate professor never established a systematic, written of food science 2.1 Cockroaches 2.2 Flying insects pest control program. This fact sheet 2.3 Pest of stored products outlines the pests of concern and steps 2.4 Rodents that the small processor can take to 2.5 Bird pests start a pest control program. 3. Integrated pest management 1. What is a pest control program? 4. Verification of pest control All meat and poultry processing programs facilities, regardless of size, must have 5. Action steps for the processor a written Sanitation program. One section of the Sanitation program (9 CFR 416.2(a), http://a257. g.akamaitech.net/7/257/2422/ 14mar20010800/edocket.access.gpo. gov/cfr_2002/janqtr/9cfr416.2.htm) is the control of pests: insects, rodents, and birds. GMPs (Good Manufacturing Practices) specified in the Code of The common housefly is a Federal Regulations (CFR) clearly known carrier of diseases and specify that pests cannot be present pathogens, including listeria and in the food-processing environment salmonella. The housefly vomits (CFR Title 21, Part 110.35 http://a257. stomach fluid onto its food and g.akamaitech.net/7/257/2422/ sucks up the dissolved nutrients.
    [Show full text]
  • Section 2 INTRODUCTION
    National Registration Authority for Agricultural and Veterinary Chemicals, Australia Section 2 INTRODUCTION 1. INTRODUCTION .......................................................................................................................................65 1.1 REGULATORY INFORMATION......................................................................................................................65 2. PROTECTED INFORMATION................................................................................................................66 3. REASONS FOR THE ENDOSULFAN REVIEW....................................................................................67 4. COMMUNITY CONSULTATION ACTIVITIES ...................................................................................67 4.1 RESPONSES FROM GROWERS......................................................................................................................68 4.2 RESPONSES FROM THE COMMUNITY .........................................................................................................69 4.3 ENDOSULFAN SURVEY ...............................................................................................................................69 5. CHEMICAL AND PRODUCT DETAILS ................................................................................................69 5.1 HISTORY OF REGISTRATION .......................................................................................................................69 5.2 USE PATTERN ............................................................................................................................................70
    [Show full text]